TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING =THIS WEEK

=Tuesday:
Containerization =2:30 to 3:30 pm - CP 229
=Friday *:

=1:30 pm to 2:30 pm -via Zoom*

OFFICE HOURS - FALL 2024

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

=0r email for appointment

> Office Hours set based on Student Demographics survey feedback

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma ez

OBJECTIVES - 11/19

ONLINE DAILY FEEDBACK SURVEY

I = Questions from 11/14 I = Daily Feedback Quiz in Canvas - Take After Each Class
= Tutorials Questions = Extra Credit PO
= Class Presentations Schedule - for completing * Upcoming Assignments

Cloud Technology or Research Paper Review
= Tutorial 8: AWS Step Functions, AWS SQS
= Containerization

ity 1 - Implicit vs. Explicit Paallelism

5 Tl d ol

= Kubernetes

* Past Assigaments

|

o TCS5562 Oniine Daify Feedback Survey - 9/30

TCS5462/562:(Software Engineering for) Cloud Computing [Fall2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberdd)i2028) School of Engineering and Technology, University of Washington - Tacoma. 13 Novemberd3)2028 School of Engineering and Technology, University of Washington - Tacoma Les

TCSS 562 - Online Daily Feedback Survey - 10/5
Startec Ot 7 at 1:13am
Quiz Instructions MATERIAL / PACE
Question 1 0.5pts
On a scale of 1 to 10, please classify your perspective on material covered in today's L Please cIaSSify your perspeCtive on material covered in tOdayvs
class class (42 respondents):
1 2 a 4 s 8 7 8 a 10 = 1-mostly review, 5-equal new/review, 10-mostly new
sy L od = Average - 5.31 ({ - previous 5.60)
= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.10 ({ - previous 5.42)
Question 2 05pts
Please rate the pace of today's class: = Response rates:
. o
s a s e s e e e wm = TCSS 462: 28/42 - 66.6%
. - st = TCSS 562: 14/20 - 70.0%
TCS5462/562:(Soft: Er for) Cloud C uting [Fall 2024]
2024 oo of Enafsastig a Tochmelogy, Lnivraty o Washngton - Toeoma ‘ November19, 2024 | i/ of Engineering and Technoloy, University of Washington - Tacoma

Slides by Wes J. Lloyd L16.1

TCSS 462:
TCSS 562:

Cloud Computing
Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

FEEDBACK FROM 11/14

|

November 19, 2024 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024] 67

School of Engineering and Technology, University of Washington - Tacoma

[Fall 2024]

FEEDBACK FROM 11/16

= Why is it advantageous for containers to be run
on top of VMs?

= Why is it advantageous for containers to be run
on top of bare metal?

l November 19, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] s

School of Engineering and Technology, University of Washington - Tacoma

AWS CLOUD CREDITS UPDATE

= AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS
462/562

= Credits provided on request

= Credit codes must be securely exchanged

= Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

= Codes can also be obtained in person (or zoom), in the
class, during the breaks, after class, during office hours,
by appt
=57 credit requests fulfilled as of Nov 18 @ 11:59p

= Codes not provided using discord

|

November19, 2024 TCS462/562: (Software Engineering for) Cloud Computing (Fall 2024] 68

School of Engineering and Technology, University of Washington - Tacoma

TUTORIAL SUBMISSION TIME

= Tutorials can now be submitted on the due date until the very
last minute of the day Anywhere-on-Earth (AOE)

= Equivalent to 4:59 AM Pacific Standard Time (PST)

= Anywhere-on-Earth timezone: Baker Island, Pacific Ocean
= https://www.timeanddate.com/time/zones/aoe

= Uninhabited island in Pacific Ocean

= Coordinates 0°11'45"N 176°28'45"W

= Area 2.1 km2 (0.81 sq mi)

= Length 1.81 km (1.125 mi)

= Width 1.13 km (0.702 mi)

= Coastline 4.8 km (2.98 mi)

= Highest elevation 8 m (26 ft)

= Population 0 (2000)

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

(T e e School of Engineering and Technology, University of Washington - Tacoma

Don't Forget to Terminate (Shutdown)
all EC2 instances for Tutorials 3 & 7

Tutorial 3 spot instance
c5d.large instance @ ~3.2 cents / hour

$0.78 / day
$5.48 / week
$23.78 / month
$285.42 / year

OBJECTIVES - 11/19

= Questions from 11/14
| = Tutorials Questions |

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Tutorial 8: AWS Step Functions, AWS SQS
= Containerization

= Kubernetes

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024] 612

l November 19, 2024 School of Engineering and Technology, University of Washington - Tacoma

11

Slides by Wes J. Lloyd

12

L16.2

mailto:wlloyd@uw.edu
https://www.timeanddate.com/time/zones/aoe

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

TUTORIAL 5 - DUE NOV 14,

LATE SUBMISSIONS UNTIL NOV 19

= |Introduction to Lambda Il: Working with Files in S3 and
CloudWatch Events

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_5.pdf

= Customize the Request object (add getters/setters)
= Why do this instead of HashMap ?

= I[mport dependencies (jar files) into project for AWS S3

= Create an S3 Bucket

= Give your Lambda function(s) permission to work with S3

= Write to the CloudWatch logs

= Use of CloudTrail to generate S3 events

= Creating CloudWatch rule to capture events from CloudTrail

= Have the CloudWatch rule trigger a target Lambda function with
a static JSON input object (hard-coded filename)

= Optlonal: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma ue1s

TUTORIAL 6 - NOV 23

= Introduction to Lambda Ill: Serverless Databases

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_6.pdf

= Create and use Sqlite databases using sqlite3 tool

= Deploy Lambda function with Sqlite3 database under /tmp

= Compare in-memory vs. file-based Sqlite DBs on Lambda

= Create an Amazon Aurora “Serverless” v2 MySQL database

= Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

= Deploy an AWS Lambda function that uses the MySQL
“serverless” database

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma L1

13

14

TUTORIAL 7 - DEC 1

= Introduction to Docker
= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_7.pdf
= Complete tutorial using Ubuntu 24.04 (for cgroups v2)
= Complete using c6l.large ec2 Instance (for consistency)
= Use DOCX file for copying and pasting Docker install
commands
= Topics:
= Installing Docker
= Creating a container using a Dockerfile

= Using cgroups virtual filesystem to monitor CPU utilization of a
container

= Persisting container images to Docker Hub image repository
= Container vertical scaling of CPU/memory resources
= Testing container CPU and memory isolation

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November 19,2024 School of Engineering and Technology, University of Washington - Tacoma usis

OBJECTIVES - 11/19

= Questions from 11/14
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Revlew

= Tutorial 8: AWS Step Functions, AWS SQS
= Containerization

= Kubernetes

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November19,2024 School of Engineering and Technology, University of Washington - Tacoma U616

15

16

GROUP PRESENTATIONS

= TWO OPTIONS:
= Cloud technology presentation
= Cloud research paper presentation

= Recent & suggested papers will be posted at:

http://f Ity.washington.. wll r 2, r:

= Pr ntatlon

= Tuesday November 26

= Tuesday December 3, Thursday December 5

= Peer Reviews
= Word DOCX form will be provided, fill out, submit PDF on Canvas
= Feedback shared with groups
= TCSS 462: submit 4 total peer reviews in lieu of a group presentation

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma uer

GROUP PRESENTATIONS

= 9 Presentation Teams

= 3 Cloud Technology Talks

= 6 Cloud Research Paper Presentations
= 2 one-person teams

= 4 two-person teams

= 3 three-person teams

= Thank you for the submissions

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERE D School of Engineering and Technology, University of Washington - Tacoma ues

17

Slides by Wes J. Lloyd

18

L16.3

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

PRESENTATION SCHEDULE

= <Tuesday November 26>

Multi-tenant Serverless Deployments

2. Mingzhi Ma, Derry Cheng, Aaron Chen

Research paper: Serverless? RISC more!

3. Ishwarya Narayana Subramanian, Thanvi Yadav Sirla
Cloud Technology: Azure Kubernetes Service

4. Steven Golob

CPU Allocatlon for Serverless Functions

= <Tuesday December 3>
1. Andrew Nguyen, Pavel Braginskiy

Cloud Technology: AWS Amplify

1. Soumith Kondubhotla, Siva Srinivasa Aditya, Sri Mylavarapu
Research paper: SandboxIng Functions for Efficlent and Secure

Research paper: Tiny Autoscalers for Tiny Workloads: Dynamic

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma

619

PRESENTATION SCHEDULE - 2

= <Thursday December 5>

1. Viktoria Dolojan and Carla Peterson

Research paper: FootPrinter: Quantifying Data Center Carbon
Footprint

2. Andrew Jang, Shrey Srivastava, Naga

Cloud Technology: SageMaker: training configurations

3. Roark Zhang

Research paper: Process-as-a-Service: Unifying Elastic and
Stateful Clouds with Serverless Processes

4. Sanya Sinha, Jackson Davis

Research paper: Goldfish: Serverless Actors with Short-Term
Memory State for the Edge-Cloud Continuum

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] L1620

P eenbesiR02y School of Engineering and Technology, University of Washington - Tacoma

19

20

OBJECTIVES - 11/19

= Questions from 11/14
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Tutorial 8: AWS Step Functions, AWS SQS |
= Containerization

= Kubernetes

TCS5462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ Novemberdd)i2028) School of Engineering and Technology, University of Washington - Tacoma.

us21

TUTORIAL 8 - TO BE POSTED

= Introduction to AWS Step Functions and Amazon Simple
Queue Service (SQS)

= Not Required, available for extra credit (scored out of 0)
= adds points to overall tutorials score

= Tasks

= Adapt Caesar Cipher Lambda functions for use with AWS Step
Functions

= Create AWS Step Functions State Machine

= Create a BASH client to invoke the AWS Step Function

= Create Simple Queue Service Queue for messages

= Add message to SQS queue from AWS Lambda function

= Modify AWS Step Function Bash client script to retrieve AWS
Step Function result from SQS queue

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 622

Novemberd3)2028 School of Engineering and Technology, University of Washington - Tacoma

21

OBJECTIVES - 11/19

= Questions from 11/14
= Tutorials Questions
= Class Presentations Schedule -
Cloud Technology or Research Paper Review
= Tutorial 8: AWS Step Functions, AWS SQS

= Kubernetes

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ (T e e School of Engineering and Technology, University of Washington - Tacoma

623

23

Slides by Wes J. Lloyd

22

CONTAINERIZATION

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 20f

oenbes10;2028 School of Engineering and Technology, University of Washington -

24

L16.4

TCSS 462:
TCSS 562:
School of E

Cloud Computing
Software Engineering for Cloud Computing
ngineering and Technology, UW-Tacoma

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a VM hypervisor

= Containers do not provide a full “machine”

= Instead they use operating system constructs to provide
“sand boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

Comtainer

Hest 08

| Containers

[
Hypervisor/lVM

Hardware
TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma Lezs

[Fall 2024]

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:
Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:
A Per Comparison

MFleps thizher is brster)

[0 BOCKER L€ NATIVE asy

Fig.4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

(I 2 School of Engineering and Technology, University of Washington - Tacoma

U626

25

26

CONTAINER PERFORMANCE
- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:

= ‘ ;\’PyerlormanZe-Comparison o
GRVM

170 | lanocker

1700 BLXC
ENATIVE

i
2

7\ 7\

Computation Time Total Time

TCS8462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

us27

November 19, 2024

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
250000 1 A Per Comparison

@KVVM _HDOCKER HLXC ENATIVE

200000

150000

100000

0000

Disk Throughput (Kb/s - higher is better)

o
Block Output

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown.

Block Input

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

U628

November 19, 2024 ‘

27

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)
= Virtuallzatlon: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

Operating System Virtuallzation (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-

180 draft). E.g., Docker (containerd), rkt
ueas

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

(T e e School of Engineering and Technology, University of Washington -Tacoma

29

Slides by Wes J. Lloyd

28

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services

= Mix different Linux distros on same host
m

= Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

Different flavoured OS containers

Identical OS containers
= Credit: https://bl tack

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

U630

November 19, 2024

30

L16.5

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma L3t

31

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% = -

60%,

& dockar

‘ November 19, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 633

School of Engineering and Technology, University of Washington - Tacoma

33

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

= (1) Original Docker engine relied on LXC

= LXC itself is a containerization tool predating Docker

= Original Docker API just called it

= LXC originally provided access $Docker client
to Linux kernel features:
namespaces and cgroups

= LXC was Linux specific - caused
issues if wanting to be multi-platform

= Docker implemented their own
replacement for LXC

Capabilities

Host Kernel
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma ues

APPLICATION CONTAINERS - 2

= Container images are “layered”
= Base image: common for all components

= Add layers that are specific
for components, services e
as needed parent

= Layering promotes reuse image

= Reduces duplication of
data across images

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma L3z

32

DOCKER

= Docker daemon “dockerd”
= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

= Starting in 2017 version
numbering switches from o
1.x to YR.x

= 2017 releases: 17.03 - 17.12

2018 releases: 18.01 - 18.09

® 2019 releases: 19.03.0 - 19.03.13 g

Docker Clent-Sever Architectu
© crot https

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November19,2024 School of Engineering and Technology, University of Washington - Tacoma U634

34

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: libcontainer introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

| libcontainer |

Capabilities

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERE D School of Engineering and Technology, University of Washington - Tacoma L6

Host Kernel

35

Slides by Wes J. Lloyd

36

L16.6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

OPEN CONTAINER INITIATIVE (OCI)

= OClI created container standards for:
= Image specification
= Container runtime specification
= Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards
= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker's design conformed
to the OCI standard
= Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer
= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.
The Docker API is much more user friendly
= Support for OCl compliant images was added to Contalnerd

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma 637

= Daemon calls contalnerd
dockerd
0OCI compliant bundle
= Runc interfaces with the Linux kernel
= Shim remains as a daemonless stub to
. :
stopping the container !!! Host Kernel

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo

= Containerd converts docker image into

to be plugged into the back-end
= Shim: once a container is created, runc exits
Namespaces Capabilities
= Allows Docker to be upgraded w/o
School of Engineering and Technology, University of Washington - Tacoma

= Contalnerd passes of request to runc
containerd
= This step would allow any OCI compliant container
(namespaces, cgroups, etc.) to create container
implement the container
‘ November19, 2024 | 1C35462/562:(Software Engineering for) Cloud Computing [Fall 2024] U538

37

38

CREATING A CONTAINER - 2

Doeker CLIUI

Rune and other OCI runtimes.
Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with contalnerd

= Contalnerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API - Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

‘TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberdd)i2028) School of Engineering and Technology, University of Washington - Tacoma 1630

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

= Enables docker to support many _&
alternate container backends Docker

= OpenVZ, system-nspawn, libvirt-Ixc, . a s
libvirt-sandbox, gemu/kvm, o e g

BSD Jails, Solaris Zones, and chroot
Linux
cgroups namespaces netlink

selinux netfilter
capabilivies —
e

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberd3)2028 School of Engineering and Technology, University of Washington - Tacoma 11640

39

WE WILL RETURN AT

~4:50 PM

41

Slides by Wes J. Lloyd

40

LINUX KERNEL NAMESPACES

= 7 different namespaces in Linux
(cgroups not shown)
= pid, mnt, ipc, user, net, UTS

= Partitions kernel resources

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (AN School of Engineering and Technology, University of Washington -Tacoma e

42

L16.7

TCSS 462: Cloud Computing [Fall 2024]

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

NAMESPACES - 2

= Provides Isolatlon of 0S
entities for containers
= mnt: separate filesystems
= pld: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= user: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharing): provides separate host and domain

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma tess

LINUX KERNEL NAMESPACES - 3

= Processes see only their set of resources
= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= Each process can only see resources associated
with the namespace, and descendent namespaces

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma u

43

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk 1/0, network I/0
= Resource limiting
= Memory, disk cache
= Prioritizati
= CPU share
= Disk 1/0 throughput
= Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November 19,2024 School of Engineering and Technology, University of Washington - Tacoma Usss

45

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Unlon mount flle system: combine multiple directories into one that

appears to contain combined contents

= |dea: Docker uses layered file systems
= Only the top layer is writeable
= Other layers are read-only
= Layers are merged to present the notion of a real file system
= Copy-on-write- implicit sharing

= Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scaleldx-Ixc-talk-1,

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma ues

47

Slides by Wes J. Lloyd

44

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts zsux;:ivs name [hierarchy | num_cgroups | enabled
for CPU usage pu
puacct
blkio
memory 8
= cgroup filesystem: jdevices
roezer
= /sys/fs/cgroup net_cls
. . r_event T
= Can browse resource utilization et oo
. uget!
of containers... ids T
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ [Novemberdo) 2028 School of Engineering and Technology, University of Washington - Tacoma L4

46

AYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04
= Dockerfile: copy . sapp
RUN make /app
CHD python /app/app.py

Thin RIW layer }e—— Container fayer

Python /app/app.py = | IR

Run make /app | 2R

Image lavers (R/0)

Copy . /app > [0s i)

Ubuntu base image > R EE

ubunti15.04
Container
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERE D ‘ School of Engineering and Technology, University of Washington - Tacoma L6

48

L16.8

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

THREE-TIER ARCHITECTURE

OS containers App containers

= Meant o used as an 08 - run mulliple + Meant to run for a sing
. L

ples - LXC, OpenZ, Linux VSarver,
BSD Jails, Solaris Zones

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma

6.9

[Fall 2024]

CONTAINER ISOLATION

= |s the host isolated from application containers?

= Are application containers isolated from each
other?

Application
containers
Application
containers

VM kernel

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 ‘ School of Engineering and Technology, University of Washington - Tacoma 11650

49

LXC (LINUX CONTAINERS)

= Operating system level virtualization

using a single Linux kernel
= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

= Linux namespaces
= Docker initially based on LXC

= Run multiple isolated Linux systems on a host

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ November 19,2024 School of Engineering and Technology, University of Washington - Tacoma

uss1

50

OTHER DOCKER TOOLS

Docker Engine
(TN T
runC runC

Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

= Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

‘ November 19, 2024 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2024] sz

School of Engineering and Technology, University of Washington - Tacoma

51

CONTAINER ORCHESTRATION
FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
= Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

infrastructure
= Generate to cost savings
= Reduce vendor lock-in

= Compact multiple apps onto shared public cloud

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ November 19, 2024 School of Engineering and Technology, University of Washington - Tacoma.

u6s3

52

KEY ORCHESTRATION FEATURES

= Management of container hosts
= Launching set of containers
= Rescheduling failed containers
= Linking containers to support workflows
= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers
= Rolling upgrades of containers for application

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERE D School of Engineering and Technology, University of Washington - Tacoma Lest

53

Slides by Wes J. Lloyd

54

L16.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
" Kubernetes

= Many public clouds now offer managed services to host
Kubernetes clusters

= Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes
Service (AKS), Google Kubernetes Engine (GKE)

= Amazon elastic container service (ECS)
= Apache aurora (retired project based on Mesos)

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma L6ss

OBJECTIVES - 11/19

= Questions from 11/14
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Tutorial 8: AWS Step Functions, AWS SQS
= Containerization

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ P eenbesiR02y School of Engineering and Technology, University of Washington - Tacoma 11656

55

56

KUBERNETES

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

KUBERNETES

= Name is from the Greek word meaning Helmsman
= The person who steers a seafaring ship
= The logo reinforces this theme

= Kubernetes is also sometimes called K8s

= Kubernetes is an application orchestrator

= Most common use case is to containerize
cloud-native microservices applications

= What is an orchestrator?

= Sy that deploys and p ions
TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberd3)2028 School of Engineering and Technology, University of Washington - Tacoma 11658

57

KUBERNETES - 2

Why does Google want
to give Kubernetes away
= |nitially developed by Google for free?
= Goal: make it easier for potential customers to use Google Cloud
= Kubernetes leverages knowledge gained from two internal
container management systems developed at Google
= Borg and Omega

= Google donated Kubernetes to the Cloud Native Computing
Foundation in 2014 as an open-source project

= Kubernetes is written in Go (Golang)

= Kubernetes is available under the Apache 2.0 license

= Releases were previously maintained for only 8 months!
= Starting w/ v 1.19 (released Aug 2020) support is 1 year

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma b

59

Slides by Wes J. Lloyd

58

GOALS OF KUBERNETES

. Deploy your application

. Scale it up and down dynamically according to demand
. Self-heal it when things break

. Perform zero-downtime rolling updates and rollbacks

= These features represent automatic infrastructure
management

A WN PR

= Containerized applications run in container(s)

= Compared to VMs, containers are thought of as being:
= Faster
= More light-weight
= More suited to rapidly evolving software requirements

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (AN School of Engineering and Technology, University of Washington - Tacoma v

60

L16.10

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD NATIVE APPLICATIONS WHAT IS A MICROSERVICES APP?

= Applications designed to meet modern software L Applicati.on consisting of many .specializec! parts that
requirements including: communicate and form a meaningful application

= Auto-scaling: resources to meet demand

Example components of a microservice eCommerce app:

= Self-healing: required for high availability (HA) and fault Web front-end Catalog service
tolerance Shopping cart Authentication service
= Rolling software updates: with no application downtime Logging service Persistent data store
for DevOPS
= KEY IDEAS:

= Portablllty: can run anywhere there’s a Kubernetes cluster

Each microservice can be coded/maintained by different team
Each has its own release cadence

Each is deployed/scaled separately

Can patch & scale the log service w/o impacting others

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma L6l (I 2 School of Engineering and Technology, University of Washington - Tacoma Lee2

61 62
KUBERNETES - 3 KUBERNETES - 4
= Provides “an operating system for the cloud” = Features:
= Offers the de-facto standard platform for deploying and = A “control plane” - brain of the cluster
managing cloud-native applications « Impl & a ing, rolling up w/o downtime, self-healing
= 0S: abstracts physical server, schedules processes " A “bunch of nodes” - workers (muscle) of the cluster

Kubernetes: abstracts the cloud, schedules microservices
= Provides orchestration
= The process of organizing everything into a useful application
= And also the goal of keeping it running smoothly

Kubernetes abstracts differences between private and public
clouds

Enable cloud-native applications to be cloud agnostic

= i.e. they don’t care WHAT cloud they run on

= Enables fluid application migration between clouds

Kubernetes provides rich set of tools/APIs to introspect
(observe and examine) your apps

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November 19,2024 School of Engineering and Technology, University of Washington - Tacoma Uess November19,2024 School of Engineering and Technology, University of Washington - Tacoma Lese

63 64

KUBERNETES - CLUSTER MANAGEMENT LOOK AHEAD: PODS
= Master node(s) manage the cluster by: = Pod - atomic unit of deployment & scheduling in Kubernetes
= Making scheduling decisions = A Kubernetes Pod is defined to run a containerized application
= Performing monitoring = Kubernetes manages Pods, not individual containers
= Implementing changes = Cannot run a container directly on Kubernetes
= Responding to events = All containers run through Pods

Masters implement the control plane of a Kubernetes cluster
= Pod comes from “pod of whales”

= Recipe for deploying to Kubernetes: = Docker logo shows a whale with containers stacked on top
= Write app as independent microservices in preferred language = Whale represents the Docker engine that runs on a single host
= Package each microservice in a container = Pods encapsulate the definltlon of a single
= Create a manifest to encapsulate the definition of a Pod micraservice for hosting purposes *
= Deploy Pods to the cluster w/ a higher-level controller such as = Pods can have a single contalner, or multiple
“Deployments” or “DaemonSets” contalners, If the service requires more than one dOCer
[ot o | s e oy [oo o | ot ety b

65 66

Slides by Wes J. Lloyd L16.11

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

DECLARATIVE SERVICE APPROACH

= Imperatlve definitlon: sets of commands and operations
= Example: BASH script, Dockerfile

= What level of service it should sustain, etc.
= Example: Kubernetes YAML files
= Kubernetes manages resources declaratively
= YAML files are POSTed to Kubernetes endpoints

= Kubernetes deploys and manages applications based on
declarative service requirements

tries to fix it

= Declaratlve deflInltlon: specification of a service’s properties

= How apps are deployed and run are defined with YAML files

= |f something isn’t as it should be: Kubernetes automatically

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma

uss7

KUBERNETES MASTERS

= Provide system services to host the control plane

= Simplest clusters use only 1 master - (i.e. no replication)
= Suitable for lab and dev/test environments

= Production environments: masters are replicated ~3-5x
= Provides fault tolerance and high availability (HA)
= Cloud-based managed Kubernetes services offer HA
deployments

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] L1668

‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma

67

68

MASTER SERVICES

|=API Server |
= Cluster store

= Controller
Manager

= Scheduler
= Cloud controller

Kubcmmu Cluster

Kubernetas Master Server(s)

Linux Server(s)

Kubemetes Node Kubametes Node

Kubermetes Node

Linux Server Linux Server Linux Server

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ November 19,2024 School of Engineering and Technology, University of Washington - Tacoma

U669

APl SERVER

= Can run on 1-node for lab, test/dev environments
= Default port is 443

= Exposes a RESTful APl where YAML configuration files are
POST(ed) to

= YAML files (manifests) describe desired state of an
application
= Which container image(s) to use
= Which ports to expose
= How many POD replicas to run

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] w670

‘ November19,2024 School of Engineering and Technology, University of Washington - Tacoma

69

MASTER SERVICES

= API Server

|lCIuster store | Cluster

= Controller
Manager

mScheduler
= Cloud controller

Kubernetas Master Server(s)

Linux Server(s)

Kubemetes Node

Kubemetes Node

Linux Server Linux Server

Kubermetes Node

Linux Server

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ November 19, 2024 School of Engineering and Technology, University of Washington - Tacoma.

ue71

71

Slides by Wes J. Lloyd

70

CLUSTER STORE

= Used to persist Kubernetes cluster state information
= Persistently stores entire configuration and state of the
cluster
= Currently implemented with eted
= Popular distributed key/value store (db) supporting replication
= HA deployments may use ~3-5 replicas
= Is the authority on true state of the cluster
= etcd prefers consistency over availability
= etcd failure: apps continue to run, nothing can be reconfigured
= Consistency of writes is vital

= Employs RAFT consensus protocol to negotiate which replica
has correct view of the system in the event of replica failure

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024] 672

‘ (UERERE D School of Engineering and Technology, University of Washington - Tacoma

72

L16.12

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MASTER SERVICES CONTROLLER MANAGER

= Provides a “controller” of the controllers
= API Server :
= Implements background control loops to monitor cluster

m Cluster store x i i and respond to events
ubamates Clustar
= Control loops include: node controller, endpoints controller,

= Controller i rad e bl replicaset controller, etc...
Manager = GOAL: ensure cluster current state matches desired state
= Scheduler

Linux Server(s)

= Control Loop Logic:
= Cloud controller . Obtain desired state (defined in manifest YAMLs)

. Observe the current state

Kubemetes Node Kubametes Node Kubermetes Node

1
2
3. Determine differences
4. Reconcile differences
.

Controllers are specialized to manage a specific resource type

ik Saevar Lz Sarver: inizx Sacvar: = They are not aware/concerned with of other parts of the system
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma 673 ‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma Le7e

73 74

MASTER SERVICES TASK SCHEDULER

= API| Server = Scheduler’s job is to identify the best node to run a task

= Scheduler does not actually run tasks itself
- CIUSter Store Kubcmﬂﬂclulill

= Controller
Manager

= Cloud controller

Kubermnetas Mastar Server(s)
= Assigns work tasks to appropriate healthy nodes

Linux Server(s) = Implements complex logic to filter out nodes incapable of

running specified task(s)

Kubemetes Node Kubametes Node Kubermetes Node

= Capable nodes are ranked

= Node with highest ranking is selected to run the task

Linux Server Linux Servar Linux Server
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November 19,2024 School of Engineering and Technology, University of Washington - Tacoma ue7s November19,2024 School of Engineering and Technology, University of Washington - Tacoma Le7e

75 76

ENFORCING SCHEDULING PREDICATES RANKING NODES
= Scheduler performs predicate (property) checks to verify = Remaining nodes are ranked based on for example:
how/where to run tasks 1. Does the node have the required images?
= |s a node tainted? = Cached images will lead to faster deployment time
= Does task have affinity (deploy together), anti-affinity 2. How much free capacity (CPU, memory) does the node have?
(separation) requirements? 3. How many tasks is the node already running?
=Is a required network port available on the node? = Each criterion is worth points
= Does node have sufficient free resources? = Node with most points Is selected
= |If there is no suitable node, task is not scheduled, but marked
as pending

= Nodes incapable of running the task are eliminated as

candidate hosts = PROBLEM: There is no one-sized fits all solution to selecting
the best node. How weights are assigned to conditions may
not reflect what is best for the task

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma uer (AN School of Engineering and Technology, University of Washington - Tacoma e

77 78

Slides by Wes J. Lloyd L16.13

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MASTER SERVICES

= AP| Server

= Cluster store Kbt Gl
Kubernetas Master Sarver(s)

= Controller
Manager

= Scheduler

= Cloud controller

Linux Server(s)

Kubemetes Node Kubametes Node

Linux Server

Linux Server

Kubermetes Node

Linux Server

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma

ue79

[Fall 2024]

CLOUD CONTROLLER MANAGER

= Abstracts and manages integration with specific cloud(s)

= Manages vendor specific cloud infrastructure to provide
instances (VMs), load balancing, storage, etc.

= Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

(I 2 School of Engineering and Technology, University of Washington - Tacoma

usg0

79

MASTER SERVICES

= AP| Server
= Cluster store

= Controller
Manager

= Scheduler

= Cloud controller

Kubcmmu Cluster

Kubernetas Master Server(s)

Linux Server(s)

Kubemetes Node Kubametes Node

Linux Server

Linux Server

Kubermetes Node

Linux Server

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ Novemberdd)i2028) School of Engineering and Technology, University of Washington - Tacoma

uss1

80

WORKER NODES

= Nodes perform tasks (i.e. host containers & services)

= Three primary functions:

1. Wait for the scheduler to assign work
2. Execute work (host containers, etc.)
3. Report back state information, etc.

= Nodes are considerably simpler than masters

81

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Novemberd3)2028 School of Engineering and Technology, University of Washington - Tacoma

s

WORKER NODES

= Kubelet

= Container
runtime
(Docker, etc.)

= Kubernetes

Kubcmmu Cluster

Kubernetas Master Server(s)

Linux Server(s)

School of Engineering and Technology, University of Washington - Tacoma

Proxy
Kubemetes Node Kubemetes Node Kubernetes Node
Linux Server Linux Sarver Linux Server
‘ November19, 2024 TCS$462/562:(Software Engineering for) Cloud Computing [Fall 2024] .

82

KUBELET

= Main Kubernetes agent

= Runs on every node

= Adding a new node installs the kubelet onto the node
= Kubelet registers the node with the cluster

= Monitors APl server for new work assignments

= Maintains reporting back to control plane

= When a node can’t run a task, kubelet is NOT responsible
for finding an alternate node

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]

(AN School of Engineering and Technology, University of Washington - Tacoma

usss

83

Slides by Wes J. Lloyd

84

L16.14

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WORKER NODES CONTAINER RUNTIME(S)
= Kubelet = Each node requires a container runtime to run containers
" Cont.ainer) Kubamates Clustr = Early versions had custom support for a limited number of
runtime Kubernetas Master Server(s) container types, e.g. Docker

(Docker, etc.)
= Kubernetes

= Kubernetes now provides a standard Container Runtime
Interface (CRI)

Linux Server(s)

Proxy
= CRI exposes a clean interface for 3™ party container
Kubemetes Node Kubemetes Node Kubernetes Node runtimes to plug_ln to
= Popular container runtimes: Docker, containerd, Kata
Linux Server Linux Sarver Linux Server
TCSS462/562:(Software Engineering for) Cloud Cc ing [Fall 2024] TCS5462/562:(Soft Engir ing for) Cloud C ing [Fall 2024)
‘ Bexenbes R0z School of Engmenerm:r:nd" $e:f\$m?nggv° rl]ni::rsilva :;m:ﬁin;on “Tacoma Liess ‘ (I 2 School of Engineerm':n; ig'e';::ﬁgy rUnivo:rs\t: Spm:ﬁng:nn “Tacoma e
= Kubelet = Runs on every node in the cluster
= Container = Responsible for managing the cluster’s networking
. Eruoemaies Clomtr = Ensures each node obtains a unique IP address
runtime Kubernetas Master Server(s)

Implemented local IPTABLES and IPVS rules to route and load-

(Docker, etc.) balance traffic

= Kubernetes

Linux Server(s)

Proxy = |[PTABLES (ipv4) - enables configuration of IP packet filtering
rules of the Linux kernel firewall
Kubemetes Node Kubemetes Node Kubemetes Node . R
= |[PVS - IP Virtual Server: provides transport-layer (layer 4) load
balancing as part of the Linux kernel; Configured using
ipvsadm tool in Linux
Linux Server Linux Sarver Linux Server
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November 19,2024 School of Engineering and Technology; University of Washington - Tacoma ues? ‘ November19,2024 School of Engineering snd Technologys Unlversty of washingion -Tacoma U688

CORE KUBERNETES COMPONENTS KUBERNETES DNS

= Kubernetes DNS = Every Kubernetes cluster has an internal DNS service

= Pods = Accessed with a static IP

= Hard-coded so that every container can find it

=Services
= Every service is registered with the DNS so that all

components can find every Service on the cluster by
NAME

= |s based on CoreDNS (https://coredns.io)

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma b (AN School of Engineering and Technology, University of Washington - Tacoma v

89 90

Slides by Wes J. Lloyd L16.15

https://coredns.io/

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CORE KUBERNETES COMPONENTS PODS

= Kubernetes DNS = Pod - atomic unit of deployment & scheduling in Kubernetes
= A Kubernetes Pod is defined to run a containerized application
= Kubernetes manages Pods, not individual containers

= Cannot run a container directly on Kubernetes

=Services = All containers run through Pods

= Pod comes from “pod of whales”
= Docker logo shows a whale with containers stacked on top
= Whale represents the Docker engine that runs on a single host
Pods encapsulate the definition of a single
microservice for hosting purposes
= Pods can have a single container, or multiple
containers if the service requires more than one dOCer

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Bexenbes R0z School of Engineering and Technology, University of Washington - Tacoma st (I 2 School of Engineering and Technology, University of Washington - Tacoma s

91 92

PODS -3

= Examples of multi-container Pods: = Pods provide a “fenced” environment to run containers
Provide a “sandbox”

Only tightly coupled containers are deployed with a single pod
Best practice: decouple individual containers to separate pods

= Service meshes
= Web containers with a helper container that pulls latest content
= Containers with a tightly coupled log scraper or profiler

= YAML manifest files are used to provide a declarative = What is the best container composition into pods? (1:1, 1:many)
description for how to run and manage a Pod = Scallng

= Pods are the unit of scaling

= Add and remove pods to scale up/down

= Do not add containers to a pod, add pod instances

® A Pod runs on a single node (host) = Pod instances can be scheduled on the same or different host

" Pods share:
= Interprocess communication (IPC) namespace = Atomic Operation
= Pods are either fully up and running their service (i.e. port

= To run a pod, POST a YAML to the API Server:
“kubectl run <NAME>" where NAME is the service

* Memory, Volumes, Network stack open/exposed), or pods are down / offline
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberdd)i2028) School of Engineering and Technology, University of Washington - Tacoma U693 ‘ November19,2024 School of Engineering and Technology, University of Washington - Tacoma U694

93 94

PODS - 4 CORE KUBERNETES COMPONENTS

= Pod Lifecycle = Kubernetes DNS
= An application should not be tightly bound or dependent on a
specific Pod instance = Pods

= Pods are designed to fail and be replaced
= Use of service objects in Kubernetes help decouple pods to offer
resiliency upon failure ervices

= Deployments
= Higher level controllers often used to deploy pods
= Controllers implement a controller and watch loop:
= “Deployments” - offer scalability & rolling updates
= “DaemonSets” - run instance of service on every cluster node
= “StatefulSets” - used for stateful components
= “CronJobs” - for short lived tasks that need to run at specified times

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T e e School of Engineering and Technology, University of Washington - Tacoma ues (UERERE D School of Engineering and Technology, University of Washington - Tacoma v

95 96

Slides by Wes J. Lloyd L16.16

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

KUBERNETES “SERVICES”

= Pods managed with “Deployments” or “DameonSets”
controllers are automatically replaced when they die
= This provides resiliency for the application

= KEY IDEA: Pods are unreliable

= Services provide reliability by acting as a “GATEWAY”
to pods that implement the services
=They underlying pods can change over time
=The services endpoints remain and are always available

= Service objects provide an abstraction layer w/ a reliable
name and load balancing of requests to a set of pods

l T O] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma

U697

97

Kubemetes Chuster

|
Services 7
1721707 g% Load Balancer / ﬂ Pod
— : | .

Srveetama .
pos wn et

"

on awtoniend

[
»
2
/”

apiVersion: 1 q -
apiversion:v1
i 7 band o
metadacs meradara
e s iroend name w-frontend
. Iabets
app: s frontend prR—

fainers.
tmage. nnormaloks, sentmment-analyss-frontend
name: s frontend

containers

 tnage. rimormaloks sentment-analysis-frantend

pores e -
perts

- containerPore: 60 e

, 2024 SaiEanat i (Pe 2

C
School of Engineering and Technology, University of Washington - Tacoma L16.99

[Fall 2024]

SERVICES

= Provide reliable front-end with:
= Stable DNS name
= |P Address
= Port
= Services do not posses application intelligence
= No support for application-layer host and path routing

= Services have a “label selector” which is a set of lables
= Requests/traffic is only sent to Pods with matching labels
= Services only send traffic to healthy Pods

= KEY IDEA: Services bring stable IP addresses and DNS
names to unstable Pods

l November 19, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma

98

QUESTIONS

e TCSS462/562:(Software Engineering for) Cloud Computing [Fall 208

99

Slides by Wes J. Lloyd

School of Engineering and Technology, University of Washington -

L1610
0

100

L16.17

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2024
	Slide 3: OBJECTIVES – 11/19
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/14
	Slide 8: Feedback from 11/16
	Slide 9: AWS Cloud Credits update
	Slide 10
	Slide 11: Tutorial submission time
	Slide 12: OBJECTIVES – 11/19
	Slide 13: Tutorial 5 – due nov 14, late submissions until nov 19
	Slide 14: Tutorial 6 – nov 23
	Slide 15: Tutorial 7 – dec 1
	Slide 16: OBJECTIVES – 11/19
	Slide 17: Group presentations
	Slide 18: Group presentations
	Slide 19: Presentation schedule
	Slide 20: Presentation schedule - 2
	Slide 21: OBJECTIVES – 11/19
	Slide 22: Tutorial 8 – to be posted
	Slide 23: OBJECTIVES – 11/19
	Slide 24: Containerization
	Slide 25: Motivation for containerization
	Slide 26: Container performance – LU factorization performance
	Slide 27: Container performance – y-cruncher: pi calculator
	Slide 28: Container performance – bonnie++
	Slide 29: What is a container?
	Slide 30: Operating system containers
	Slide 31: Application containers
	Slide 32: Application containers - 2
	Slide 33: 2016 docker survey
	Slide 34: docker
	Slide 35: Original Docker engine implementation
	Slide 36: Introduction of libcontainer
	Slide 37: Open container initiative (OCI)
	Slide 38: Creating a container
	Slide 39: Creating a container - 2
	Slide 40: Support for alternate container runtimes
	Slide 41: We will return at ~4:50 pm
	Slide 42: Linux kernel namespaces
	Slide 43: Namespaces - 2
	Slide 44: Linux kernel namespaces - 3
	Slide 45: Control groups (cgroups)
	Slide 46: Cgroups - 2
	Slide 47: Overlay file systems
	Slide 48: Layered fs: Building a container
	Slide 49: Three-tier architecture
	Slide 50: Container isolation
	Slide 51: Lxc (linux containers)
	Slide 52: Other docker tools
	Slide 53: Container orchestration frameworks
	Slide 54: Key orchestration features
	Slide 55: Container orchestration frameworks - 2
	Slide 56: OBJECTIVES – 11/19
	Slide 57: Kubernetes
	Slide 58: kubernetes
	Slide 59: Kubernetes – 2
	Slide 60: Goals of kubernetes
	Slide 61: Cloud native applications
	Slide 62: What is a microservices app?
	Slide 63: Kubernetes - 3
	Slide 64: Kubernetes - 4
	Slide 65: Kubernetes - Cluster management
	Slide 66: Look ahead: Pods
	Slide 67: Declarative service approach
	Slide 68: Kubernetes masters
	Slide 69: Master services
	Slide 70: Api server
	Slide 71: Master services
	Slide 72: Cluster store
	Slide 73: Master services
	Slide 74: Controller manager
	Slide 75: Master services
	Slide 76: Task scheduler
	Slide 77: Enforcing Scheduling predicates
	Slide 78: Ranking nodes
	Slide 79: Master services
	Slide 80: Cloud controller manager
	Slide 81: Master services
	Slide 82: Worker nodes
	Slide 83: Worker nodes
	Slide 84: kubelet
	Slide 85: Worker nodes
	Slide 86: Container runtime(s)
	Slide 87: Worker nodes
	Slide 88: Kube-proxy
	Slide 89: Core kubernetes components
	Slide 90: Kubernetes dns
	Slide 91: Core kubernetes components
	Slide 92: Pods
	Slide 93: Pods - 2
	Slide 94: Pods - 3
	Slide 95: Pods - 4
	Slide 96: Core kubernetes components
	Slide 97: Kubernetes “Services”
	Slide 98: services
	Slide 99
	Slide 100: Questions

