
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.1

 Containerization

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington – Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING THIS WEEK

Tuesday:

▪2:30 to 3:30 pm - CP 229

Friday *:

▪1:30 pm to 2:30 pm –via Zoom*

Or email for appointment

> Of f ice Hour s set based on Student Demographics sur vey feedback

OFFICE HOURS – FALL 2024

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

OBJECTIVES – 11/19

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

ONLINE DAILY FEEDBACK SURVEY

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.5

 Please classify your perspective on material covered in today’s

class (42 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.31 (- previous 5.60)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.10 (- previous 5.42)

 Response rates:

 TCSS 462: 28/42 – 66.6%

 TCSS 562: 14/20 – 70.0%

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.2

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK FROM 11/14

 Why is it advantageous for containers to be run

on top of VMs?

 Why is it advantageous for containers to be run

on top of bare metal?

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK FROM 11/16

 AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS

462/562

 Credits provided on request

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject

“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the

class, during the breaks, after class, during office hours,

by appt

▪ 57 credit requests fulfilled as of Nov 18 @ 11:59p

 Codes not provided using discord

November 19, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

AWS CLOUD CREDITS UPDATE Don’t Forget to Terminate (Shutdown)

all EC2 instances for Tutorials 3 & 7

Tutorial 3 spot instance:
c5d.large instance @ ~3.2 cents / hour

$0.78 / day
$5.48 / week

$23.78 / month
$285.42 / year

AWS CREDITS → → → → → → → →

 Tutorials can now be submitted on the due date until the very

last minute of the day Anywhere-on-Earth (AOE)

▪ Equivalent to 4:59 AM Pacific Standard Time (PST)

 Anywhere-on-Earth timezone: Baker Is land, Pacific Ocean

 https://www.timeanddate.com/time/zones/aoe

 Uninhabited island in Pacific Ocean

 Coordinates 0°11′45″N 176°28′45″W

 Area 2.1 km2 (0.81 sq mi)

 Length 1 .81 km (1.125 mi)

 Width 1 .13 km (0.702 mi)

 Coastline 4.8 km (2.98 mi)

 Highest e levation 8 m (26 f t)

 Population 0 (2000)

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

TUTORIAL SUBMISSION TIME

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 11/19

7 8

9 10

11 12

mailto:wlloyd@uw.edu
https://www.timeanddate.com/time/zones/aoe

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.3

 Introduction to Lambda II: Working with Files in S3 and
CloudWatch Events

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_5.pdf

 Customize the Request object (add getters/setters)
▪ Why do this instead of HashMap ?

 Import dependencies (jar files) into project for AWS S3

 Create an S3 Bucket

 Give your Lambda function(s) permission to work with S3

 Write to the CloudWatch logs

 Use of CloudTrai l to generate S3 events

 Creating CloudWatch rule to capture events from CloudTrai l

 Have the CloudWatch rule tr igger a target Lambda function with
a static JSON input object (hard -coded fi lename)

 Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

TUTORIAL 5 – DUE NOV 14,

LATE SUBMISSIONS UNTIL NOV 19

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3 tool

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. f ile-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

TUTORIAL 6 – NOV 23

 Introduction to Docker

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_7.pdf

 Complete tutorial using Ubuntu 24.04 (for cgroups v2)

 Complete using c6i.large ec2 instance (for consistency)

 Use DOCX file for copying and pasting Docker install
commands

 Topics:

▪ Installing Docker

▪ Creating a container using a Dockerfile

▪ Using cgroups virtual filesystem to monitor CPU utilization of a
container

▪ Persisting container images to Docker Hub image repository

▪ Container vertical scaling of CPU/memory resources

▪ Testing container CPU and memory isolation

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

TUTORIAL 7 – DEC 1

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

OBJECTIVES – 11/19

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Presentation dates:

▪ Tuesday November 26

▪ Tuesday December 3, Thursday December 5

 Peer Reviews

▪ Word DOCX form will be provided, fill out, submit PDF on Canvas

▪ Feedback shared with groups

▪ TCSS 462: submit 4 total peer reviews in lieu of a group presentation

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

GROUP PRESENTATIONS

 9 Presentation Teams

 3 Cloud Technology Talks

 6 Cloud Research Paper Presentations

 2 one-person teams

 4 two-person teams

 3 three-person teams

 Thank you for the submissions

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

GROUP PRESENTATIONS

13 14

15 16

17 18

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.4

 <Tuesday November 26>

1. Soumith Kondubhotla, Siva Srinivasa Aditya, Sri Mylavarapu
Research paper: Sandboxing Functions for Ef ficient and Secure
Multi-tenant Serverless Deployments

2. Mingzhi Ma, Derry Cheng, Aaron Chen

Research paper : Serverless? RISC more!

3. Ishwarya Narayana Subramanian, Thanvi Yadav Sirla
Cloud Technology: Azure Kubernetes Service

4. Steven Golob

Research paper: Tiny Autoscalers for T iny Workloads: Dynamic
CPU Allocation for Serverless Functions

 <Tuesday December 3>

1. Andrew Nguyen, Pavel Braginskiy

Cloud Technology: AWS Amplify

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

PRESENTATION SCHEDULE

 <Thursday December 5>

1. Viktoria Dolojan and Carla Peterson

Research paper: FootPrinter: Quantifying Data Center Carbon

Footprint

2. Andrew Jang, Shrey Srivastava, Naga

Cloud Technology: SageMaker: training configurations

3. Roark Zhang

Research paper: Process-as-a-Service: Unifying Elastic and

Stateful C louds with Serverless Processes

4. Sanya Sinha, Jackson Davis

Research paper: Goldfish: Serverless Actors with Short -Term

Memory State for the Edge-Cloud Continuum

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

PRESENTATION SCHEDULE - 2

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

OBJECTIVES – 11/19

 Introduction to AWS Step Functions and Amazon Simple
Queue Service (SQS)

 Not Required, available for extra credit (scored out of 0)

▪ adds points to overall tutorials score

 Tasks

▪ Adapt Caesar Cipher Lambda functions for use with AWS Step
Functions

▪ Create AWS Step Functions State Machine

▪ Create a BASH client to invoke the AWS Step Function

▪ Create Simple Queue Service Queue for messages

▪ Add message to SQS queue from AWS Lambda function

▪ Modify AWS Step Function Bash client script to retrieve AWS
Step Function result from SQS queue

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

TUTORIAL 8 – TO BE POSTED

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

OBJECTIVES – 11/19

CONTAINERIZATION

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.24

19 20

21 22

23 24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.5

 Containers provide “light -weight” alternative to full OS

virtualization provided by a VM hypervisor

 Containers do not provide a full “machine”

 Instead they use operating system constructs to provide

“sand boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve l inear equations – matr ix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Vir tual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple vir tualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l og . r i s i n g s t a c k . c o m/o p er a t i ng - s ys t e m - c o nt a i ne r s - v s - a p pl i c a t i o n - c on t a i n e r s /

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

OPERATING SYSTEM CONTAINERS

25 26

27 28

29 30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.6

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

APPLICATION CONTAINERS - 2

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Star t ing in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

DOCKER

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

31 32

33 34

35 36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.7

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc inter faces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

 Docker CLI: inter faces with dockerd daemon

 Docker engine: dockerd daemon, inter faces with containerd

 Containerd: simple daemon, inter faces with runc to manage
containers; CRUD inter face for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) inter face;

 runc: lightweight command-line tool for running containers;
Inter faces with Linux cgroups, namespaces; Runs an OCI
container

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvir t-lxc,

libvir t-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

WE WILL RETURN AT

~4:50 PM

 7 dif ferent namespaces in Linux

(cgroups not shown)

▪ pid, mnt, ipc, user, net, UTS

 Partitions kernel resources

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

37 38

39 40

41 42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.8

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack vir tualization. Multiple loopbacks (lo)

 UTS (UNIX t ime sharing) : provides separate host and domain

names
November 19, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

NAMESPACES - 2

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

LINUX KERNEL NAMESPACES - 3

pid mnt

ipc

user net

UTS

 Collect ion of Linux processes

 Group-level resource allocat ion: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Pr ioritization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

CONTROL GROUPS (CGROUPS)

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup f ilesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

CGROUPS - 2

 Docker leverages overlay f i lesystems

 1st: AUFS - Advanced mult i - layered unification f i lesystem

 Now: overlay2

 Union mount f i le s ystem: combine mult iple di rectories into one that
appears to contain combined contents

 Idea: Docker uses layered f i le systems

 Only the top layer is wri teable

 Other layers are read-only

 Layers are merged to present the notion of a real f i le system

 Copy -on-write- impl ici t sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker-containers-fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc-talk-1/

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

OVERLAY FILE SYSTEMS

 Dockerfile:

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

43 44

45 46

47 48

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.9

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

THREE-TIER ARCHITECTURE

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

CONTAINER ISOLATION

Host kernel

Container
runtime

VM kernel

Host kernel

Container
runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

 Linux namespaces

Docker initially based on LXC

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

LXC (LINUX CONTAINERS)

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

OTHER DOCKER TOOLS

 Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

CONTAINER ORCHESTRATION

FRAMEWORKS

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

KEY ORCHESTRATION FEATURES

49 50

51 52

53 54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.10

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪ Many public clouds now offer managed services to host
Kubernetes clusters

▪ Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes
Service (AKS), Google Kubernetes Engine (GKE)

 Amazon elastic container service (ECS)

 Apache aurora (retired project based on Mesos)

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

 Questions from 11/14

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Tutorial 8: AWS Step Functions, AWS SQS

 Containerization

 Kubernetes

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

OBJECTIVES – 11/19

KUBERNETES

L16.57

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

 Name is from the Greek word meaning Helmsman

▪ The person who steers a seafaring ship

▪ The logo reinforces this theme

 Kubernetes is also sometimes called K8s

 Kubernetes is an application orchestrator

 Most common use case is to containerize

cloud-native microservices applications

 What is an orchestrator?

▪ System that deploys and manages applications

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

KUBERNETES

 Initially developed by Google

 Goal: make it easier for potential customers to use Google Cloud

 Kubernetes leverages knowledge gained from two internal

container management systems developed at Google

▪ Borg and Omega

 Google donated Kubernetes to the Cloud Native Computing

Foundation in 2014 as an open-source project

 Kubernetes is written in Go (Golang)

 Kubernetes is available under the Apache 2.0 license

 Releases were previously maintained for only 8 months!

 Starting w/ v 1.19 (released Aug 2020) support is 1 year

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

KUBERNETES – 2

Why does Google want
to give Kubernetes away

for free? 1. Deploy your application

2. Scale it up and down dynamically according to demand

3. Self-heal it when things break

4. Perform zero-downtime rolling updates and rollbacks

 These features represent automatic infrastructure

management

 Containerized applications run in container(s)

 Compared to VMs, containers are thought of as being:

▪ Faster

▪More light-weight

▪More suited to rapidly evolving software requirements

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

GOALS OF KUBERNETES

55 56

57 58

59 60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.11

 Applications designed to meet modern software

requirements including:

▪ Auto-scaling: resources to meet demand

▪ Self-healing: required for high availability (HA) and fault

tolerance

▪ Rolling software updates: with no application downtime

for DevOPS

▪ Portability: can run anywhere there’s a Kubernetes cluster

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

CLOUD NATIVE APPLICATIONS

 Application consisting of many specialized parts that

communicate and form a meaningful application

 Example components of a microservice eCommerce app:

Web front-end Catalog service

Shopping cart Authentication service

Logging service Persistent data store

 KEY IDEAS:

 Each microservice can be coded/maintained by dif ferent team

 Each has its own release cadence

 Each is deployed/scaled separately

 Can patch & scale the log service w/o impacting others

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

WHAT IS A MICROSERVICES APP?

 Provides “an operating system for the cloud”

 Offers the de-facto standard platform for deploying and

managing cloud-native applications

 OS: abstracts physical server, schedules processes

 Kubernetes: abstracts the c loud , schedules microservices

 Kubernetes abstracts dif ferences between private and public

clouds

 Enable cloud-native applications to be cloud agnostic

▪ i.e. they don’t care WHAT cloud they run on

▪ Enables fluid application migration between clouds

 Kubernetes provides rich set of tools/APIs to introspect

(observe and examine) your apps

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

KUBERNETES - 3

 Features:

 A “control plane” – brain of the cluster

▪ Implements autoscaling, rolling updates w/o downtime, self -healing

 A “bunch of nodes” – workers (muscle) of the cluster

 Provides orchestration

▪ The process of organizing everything into a useful application

▪ And also the goal of keeping it running smoothly

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

KUBERNETES - 4

 Master node(s) manage the cluster by:

▪ Making scheduling decisions

▪ Performing monitoring

▪ Implementing changes

▪ Responding to events

 Masters implement the control plane of a Kubernetes cluster

 Recipe for deploying to Kubernetes:

 Write app as independent microservices in preferred language

 Package each microservice in a container

 Create a manifest to encapsulate the definition of a Pod

 Deploy Pods to the cluster w/ a higher -level controller such as

“Deployments” or “DaemonSets”

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

KUBERNETES - CLUSTER MANAGEMENT

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a s ingle

microservice for hosting purposes

 Pods can have a s ingle container, or multiple

containers, i f the service requires more than one

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

LOOK AHEAD: PODS

61 62

63 64

65 66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.12

 Imperative definition: sets of commands and operations

▪ Example: BASH script, Dockerfile

 Declarative definition : specification of a service’s properties

▪ What level of service it should sustain, etc.

▪ Example: Kubernetes YAML files

 Kubernetes manages resources declaratively

 How apps are deployed and run are defined with YAML files

 YAML files are POSTed to Kubernetes endpoints

 Kubernetes deploys and manages applications based on

declarative service requirements

 If something isn’t as it should be: Kubernetes automatically

tries to fix it

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

DECLARATIVE SERVICE APPROACH

 Provide system services to host the control plane

 Simplest clusters use only 1 master – (i.e. no replication)

▪ Suitable for lab and dev/test environments

 Production environments: masters are replicated ~3 -5x

▪ Provides fault tolerance and high availability (HA)

▪ Cloud-based managed Kubernetes services offer HA

deployments

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

KUBERNETES MASTERS

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

MASTER SERVICES

 Can run on 1-node for lab, test/dev environments

 Default port is 443

 Exposes a RESTful API where YAML configuration files are

POST(ed) to

 YAML files (manifests) describe desired state of an

application

▪Which container image(s) to use

▪Which ports to expose

▪ How many POD replicas to run

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

API SERVER

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

MASTER SERVICES

 Used to persist Kubernetes cluster state information

 Persistently stores entire configuration and state of the

cluster

 Currently implemented with etcd

▪ Popular distributed key/value store (db) supporting replication

▪ HA deployments may use ~3-5 replicas

▪ Is the authority on true state of the cluster

 etcd prefers consistency over availability

 etcd failure: apps continue to run, nothing can be reconfigured

 Consistency of writes is vital

 Employs RAFT consensus protocol to negotiate which replica

has correct view of the system in the event of replica failure

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

CLUSTER STORE

67 68

69 70

71 72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.13

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

MASTER SERVICES

 Provides a “controller” of the controllers

▪ Implements background control loops to monitor cluster

and respond to events

▪ Control loops include: node controller, endpoints controller,

replicaset controller, etc…

 GOAL: ensure c luster current state matches desired state

 Control Loop Logic:

1. Obtain desired state (defined in manifest YAMLs)

2. Observe the current state

3. Determine dif ferences

4. Reconcile dif ferences

 Controllers are specialized to manage a specific resource type

▪ They are not aware/concerned with of other parts of the system

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

CONTROLLER MANAGER

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

MASTER SERVICES

 Scheduler’s job is to identify the best node to run a task

▪ Scheduler does not actually run tasks itself

 Assigns work tasks to appropriate healthy nodes

 Implements complex logic to filter out nodes incapable of

running specified task(s)

 Capable nodes are ranked

 Node with highest ranking is selected to run the task

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

TASK SCHEDULER

 Scheduler performs predicate (property) checks to verify

how/where to run tasks

▪ Is a node tainted?

▪ Does task have affinity (deploy together), anti-affinity

(separation) requirements?

▪ Is a required network port available on the node?

▪ Does node have sufficient free resources?

 Nodes incapable of running the task are eliminated as

candidate hosts

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

ENFORCING SCHEDULING PREDICATES

 Remaining nodes are ranked based on for example:

1. Does the node have the required images?

▪ Cached images will lead to faster deployment time

2. How much free capacity (CPU, memory) does the node have?

3. How many tasks is the node already running?

 Each criterion is worth points

 Node with most points is selected

 If there is no suitable node, task is not scheduled, but marked

as pending

 PROBLEM: There is no one-sized fits all solution to selecting

the best node. How weights are assigned to conditions may

not reflect what is best for the task

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

RANKING NODES

73 74

75 76

77 78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.14

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

MASTER SERVICES

 Abstracts and manages integration with specific cloud(s)

 Manages vendor specific cloud infrastructure to provide

instances (VMs), load balancing, storage, etc.

 Support for AWS, Azure, GCP, Digital Ocean, IBM, etc.

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

CLOUD CONTROLLER MANAGER

API Server

Cluster store

Controller

Manager

Scheduler

Cloud controller manager

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

MASTER SERVICES

 Nodes perform tasks (i.e. host containers & services)

 Three primary functions:

1. Wait for the scheduler to assign work

2. Execute work (host containers, etc.)

3. Report back state information, etc.

 Nodes are considerably simpler than masters

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

WORKER NODES

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

WORKER NODES

 Main Kubernetes agent

 Runs on every node

 Adding a new node installs the kubelet onto the node

 Kubelet registers the node with the cluster

 Monitors API server for new work assignments

 Maintains reporting back to control plane

 When a node can’t run a task, kubelet is NOT responsible

for finding an alternate node

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

KUBELET

79 80

81 82

83 84

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.15

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

WORKER NODES

 Each node requires a container runtime to run containers

 Early versions had custom support for a limited number of

container types, e.g. Docker

 Kubernetes now provides a standard Container Runtime

Interface (CRI)

 CRI exposes a clean interface for 3 rd party container

runtimes to plug-in to

 Popular container runtimes: Docker, containerd, Kata

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

CONTAINER RUNTIME(S)

Kubelet

Container

runtime

(Docker, etc.)

Kubernetes

Proxy

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

WORKER NODES

 Runs on every node in the cluster

 Responsible for managing the cluster’s networking

 Ensures each node obtains a unique IP address

 Implemented local IPTABLES and IPVS rules to route and load -

balance traffic

 IPTABLES (ipv4) – enables configuration of IP packet filtering

rules of the Linux kernel firewall

 IPVS – IP Vir tual Server: provides transport -layer (layer 4) load

balancing as part of the Linux kernel; Configured using

ipvsadm tool in Linux

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

KUBE-PROXY

Kubernetes DNS

Pods

Services

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

CORE KUBERNETES COMPONENTS

 Every Kubernetes cluster has an internal DNS service

 Accessed with a static IP

 Hard-coded so that every container can find it

 Every service is registered with the DNS so that all

components can find every Service on the cluster by

NAME

 Is based on CoreDNS (https://coredns.io)

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

KUBERNETES DNS

85 86

87 88

89 90

https://coredns.io/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.16

Kubernetes DNS

Pods

Services

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

CORE KUBERNETES COMPONENTS

 Pod – atomic unit of deployment & scheduling in Kubernetes

 A Kubernetes Pod is defined to run a containerized application

 Kubernetes manages Pods, not individual containers

 Cannot run a container directly on Kubernetes

 All containers run through Pods

 Pod comes from “pod of whales”

 Docker logo shows a whale with containers stacked on top

 Whale represents the Docker engine that runs on a single host

 Pods encapsulate the definition of a single

microservice for hosting purposes

 Pods can have a single container, or multiple

containers if the service requires more than one

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

PODS

 Examples of multi -container Pods:

▪ Service meshes

▪ Web containers with a helper container that pulls latest content

▪ Containers with a tightly coupled log scraper or profiler

 YAML manifest files are used to provide a declarative

description for how to run and manage a Pod

 To run a pod, POST a YAML to the API Server:

“kubectl run <NAME>” where NAME is the service

 A Pod runs on a single node (host)

 Pods share:

▪ Interprocess communication (IPC) namespace

▪ Memory, Volumes, Network stack

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

PODS - 2

 Pods provide a “fenced” environment to run containers

 Provide a “sandbox”

 Only tightly coupled containers are deployed with a single pod

 Best practice: decouple individual containers to separate pods

▪ What is the best container composition into pods? (1:1, 1:many)

 Scaling

▪ Pods are the unit of scaling

▪ Add and remove pods to scale up/down

▪ Do not add containers to a pod, add pod instances

▪ Pod instances can be scheduled on the same or different host

 Atomic Operation

▪ Pods are either fully up and running their service (i.e. port
open/exposed), or pods are down / offline

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

PODS - 3

 Pod Lifecycle

▪ An application should not be tightly bound or dependent on a

specific Pod instance

▪ Pods are designed to fail and be replaced

▪ Use of service objects in Kubernetes help decouple pods to offer

resiliency upon failure

 Deployments

▪ Higher level controllers often used to deploy pods

▪ Controllers implement a controller and watch loop:

▪ “Deployments” – offer scalability & rolling updates

▪ “DaemonSets” – run instance of service on every cluster node

▪ “StatefulSets” – used for stateful components

▪ “CronJobs” – for short lived tasks that need to run at specified times

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.95

PODS - 4

Kubernetes DNS

Pods

Services

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.96

CORE KUBERNETES COMPONENTS

91 92

93 94

95 96

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L16.17

 Pods managed with “Deployments” or “DameonSets”

controllers are automatically replaced when they die

▪ This provides resiliency for the application

 KEY IDEA: Pods are unreliable

 Services provide reliability by acting as a “GATEWAY”

to pods that implement the services

▪ They underlying pods can change over time

▪ The services endpoints remain and are always available

 Service objects provide an abstraction layer w/ a reliable

name and load balancing of requests to a set of pods

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.97

KUBERNETES “SERVICES”

 Provide reliable front-end with:

▪ Stable DNS name

▪ IP Address

▪ Port

 Services do not posses application intelligence

 No support for application-layer host and path routing

 Services have a “label selector” which is a set of lables

 Requests/traffic is only sent to Pods with matching labels

 Services only send traffic to healthy Pods

 KEY IDEA: Services bring stable IP addresses and DNS

names to unstable Pods

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.98

SERVICES

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.99

QUESTIONS

November 19, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.10
0

97 98

99 100

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2024
	Slide 3: OBJECTIVES – 11/19
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/14
	Slide 8: Feedback from 11/16
	Slide 9: AWS Cloud Credits update
	Slide 10
	Slide 11: Tutorial submission time
	Slide 12: OBJECTIVES – 11/19
	Slide 13: Tutorial 5 – due nov 14, late submissions until nov 19
	Slide 14: Tutorial 6 – nov 23
	Slide 15: Tutorial 7 – dec 1
	Slide 16: OBJECTIVES – 11/19
	Slide 17: Group presentations
	Slide 18: Group presentations
	Slide 19: Presentation schedule
	Slide 20: Presentation schedule - 2
	Slide 21: OBJECTIVES – 11/19
	Slide 22: Tutorial 8 – to be posted
	Slide 23: OBJECTIVES – 11/19
	Slide 24: Containerization
	Slide 25: Motivation for containerization
	Slide 26: Container performance – LU factorization performance
	Slide 27: Container performance – y-cruncher: pi calculator
	Slide 28: Container performance – bonnie++
	Slide 29: What is a container?
	Slide 30: Operating system containers
	Slide 31: Application containers
	Slide 32: Application containers - 2
	Slide 33: 2016 docker survey
	Slide 34: docker
	Slide 35: Original Docker engine implementation
	Slide 36: Introduction of libcontainer
	Slide 37: Open container initiative (OCI)
	Slide 38: Creating a container
	Slide 39: Creating a container - 2
	Slide 40: Support for alternate container runtimes
	Slide 41: We will return at ~4:50 pm
	Slide 42: Linux kernel namespaces
	Slide 43: Namespaces - 2
	Slide 44: Linux kernel namespaces - 3
	Slide 45: Control groups (cgroups)
	Slide 46: Cgroups - 2
	Slide 47: Overlay file systems
	Slide 48: Layered fs: Building a container
	Slide 49: Three-tier architecture
	Slide 50: Container isolation
	Slide 51: Lxc (linux containers)
	Slide 52: Other docker tools
	Slide 53: Container orchestration frameworks
	Slide 54: Key orchestration features
	Slide 55: Container orchestration frameworks - 2
	Slide 56: OBJECTIVES – 11/19
	Slide 57: Kubernetes
	Slide 58: kubernetes
	Slide 59: Kubernetes – 2
	Slide 60: Goals of kubernetes
	Slide 61: Cloud native applications
	Slide 62: What is a microservices app?
	Slide 63: Kubernetes - 3
	Slide 64: Kubernetes - 4
	Slide 65: Kubernetes - Cluster management
	Slide 66: Look ahead: Pods
	Slide 67: Declarative service approach
	Slide 68: Kubernetes masters
	Slide 69: Master services
	Slide 70: Api server
	Slide 71: Master services
	Slide 72: Cluster store
	Slide 73: Master services
	Slide 74: Controller manager
	Slide 75: Master services
	Slide 76: Task scheduler
	Slide 77: Enforcing Scheduling predicates
	Slide 78: Ranking nodes
	Slide 79: Master services
	Slide 80: Cloud controller manager
	Slide 81: Master services
	Slide 82: Worker nodes
	Slide 83: Worker nodes
	Slide 84: kubelet
	Slide 85: Worker nodes
	Slide 86: Container runtime(s)
	Slide 87: Worker nodes
	Slide 88: Kube-proxy
	Slide 89: Core kubernetes components
	Slide 90: Kubernetes dns
	Slide 91: Core kubernetes components
	Slide 92: Pods
	Slide 93: Pods - 2
	Slide 94: Pods - 3
	Slide 95: Pods - 4
	Slide 96: Core kubernetes components
	Slide 97: Kubernetes “Services”
	Slide 98: services
	Slide 99
	Slide 100: Questions

