
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.1

 Clolud Enabling Technology
 & Containerization

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington – Tacoma

TCSS 462/562:

(SOFTWARE ENGINEERING

FOR) CLOUD COMPUTING

Thursdays:

▪6:00 to 7:00 pm - CP 229 & Zoom

Friday – *** THIS WEEK ***

▪11:00 am to 12:00 pm – ONLINE via Zoom

Or email for appointment

➢ Off ice Hours set based on Student Demographics sur vey feedback

➢ * - Fr iday of f ice hours may be adjusted or canceled due meeting conf l icts or

other obl igations. Adjustments wi l l be announced via Canvas.

OFFICE HOURS – FALL 2025

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

1

2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.2

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Ch. 5: Cloud Enabling Technology

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

OBJECTIVES – 11/20

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

ONLINE DAILY FEEDBACK SURVEY

3

4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.3

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L15.5

 Please classify your perspective on material covered in today’s

class (41 respondents, 27 in-person, 14 online):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.46 ( - previous 5 .64)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.29 ( - previous 4.96)

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

MATERIAL / PACE

5

6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.4

 Can a Vir tual Private Cloud (VPC) span region?

We saw it can span availability zone A and B, can it span

across regions like us -east-1 and us-east-2 ?

 No. Currently VPCs can only span across multiple availability

zones (Azs) within a single region

 This limitation forces deployments to be fully replicated in

distinct regions

 If one region fails, application hosting can fail -over to another

region

 This often involves Domain-Name-Server (DNS) level load

balancing

 Amazon Route 53 is a managed DNS service for this purpose

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

FEEDBACK FROM 11/18

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Ch. 5: Cloud Enabling Technology

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

OBJECTIVES – 11/20

7

8

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.5

 Introduction to Lambda II: Working with Files in S3, Cloud
Trail, and Amazon Event Bridge Rules

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_5.pdf

 Customize the Request object (add getters/setters)
▪ Why do this instead of HashMap ?

 Import dependencies (jar files) into project for AWS S3

 Create an S3 Bucket

 Give your Lambda function(s) permission to work with S3

 Write to the CloudWatch logs

 Use of CloudTrail to generate S3 events

 Creating Event Bridge rule to capture events from CloudTrail

 Have the Event Bridge rule trigger a Lambda function with a
static JSON input object (hard -coded filename)

 Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

TUTORIAL 5 – CLOSING NOV 21 4:59AM

 Introduction to Lambda III: Serverless Databases

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_6.pdf

 Create and use Sqlite databases using sqlite3

 Deploy Lambda function with Sqlite3 database under / tmp

 Compare in-memory vs. file-based Sqlite DBs on Lambda

 Create an Amazon Aurora “Serverless” v2 MySQL database

 Using the AWS CloudShell in the same VPC (Region +
availability zone) connect and interact your Aurora serverless
database using the mysql CLI app

 Deploy an AWS Lambda function that uses the MySQL
“serverless” database

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

TUTORIAL 6 – NOV 23

9

10

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.6

 Introduction to Docker

 https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_7.pdf

 Must complete using c7i -flex.large ec2 instance &
Ubuntu 24.04 (for cgroups v2)

 Use DOCX file for copying and pasting Docker install
commands

 Topics:

▪ Installing Docker

▪ Creating a container using a Dockerfile

▪ Using cgroups virtual filesystem to monitor CPU utilization of a
container

▪ Persisting container images to Docker Hub image repository

▪ Container vertical scaling of CPU/memory resources

▪ Testing container CPU and memory isolation

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

TUTORIAL 7 – DEC 4

 Docker CLI → Docker Engine (dockerd) → containerd → runc

 Working with the docker CLI:

 docker run create a container

 docker ps -a list containers, find CONTAINER ID

 docker exec --it run a process in an existing container

 docker stop stop a container

 docker kill kill a container

 docker help list available commands

 man docker Docker Linux manual pages

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

TUTORIAL COVERAGE

11

12

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.7

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L15.13

Docker CLI

 Tutorial introduces use of two common Linux performance

benchmark applications

 stress-ng

 100s of CPU, memory, disk, network stress tests

 Sysbench

 Used in tutorial for memory stress test

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

TUTORIAL 7

13

14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.8

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Ch. 5: Cloud Enabling Technology

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

OBJECTIVES – 11/20

 TWO OPTIONS:

 Cloud technology presentation

 Cloud research paper presentation

▪ Recent & suggested papers will be posted at:

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

 Submit presentation type and topics (paper or technology)

with desired dates of presentation via Canvas by:

Tuesday November 18 th @ 11:59pm

 Presentation dates:

▪ Tuesday November 25

▪ Tuesday December 2*, Thursday December 4

▪ * - day of quiz 2. only 1 presentation slot

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

GROUP PRESENTATION

15

16

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.9

 <Tuesday November 25>

1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu

Research paper: Serverless Replication of Object Storage across

Multi-Vendor Clouds and Regions

2 . Team 1: William Hay

Cloud Technology: Amazon Athena

 <Tuesday December 2>

1. Team 5: Sparsha Jha, Chris Biju

Cloud Technology: Intelligent Optimization of Distributed

Pipeline Execution in Serverless Platforms: A Predictive Model

Approach

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

PRESENTATION SCHEDULE

 <Thursday December 4>

1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett

Research paper: A Perfect Fit? – Towards Containers on

Microkernels

2. Team 2: Ruby Plangphatthanaphanit, Junjia Li, Ari Yin

Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud

Deploy)

3. Team 8: Aamena Suzzane, Dhruva Bhat

Research paper: CoFaaS: Automatic Transformation -based

Consolidation of Serverless Functions

4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao

Cloud Technology: AWS Amplify

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

PRESENTATION SCHEDULE - 2

17

18

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.10

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Ch. 5: Cloud Enabling Technology

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

OBJECTIVES – 11/20

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

CLOUD ENABLING TECHNOLOGY

19

20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.11

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead

▪ Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for virtualization

 Portability: virtual resources tend to be dif ficult to migrate

cross-clouds

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

VIRTUALIZATION MANAGEMENT

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

Middleware to manage virtual machines and

infrastructure of IaaS “clouds”

Examples

▪OpenNebula

▪Nimbus

▪Eucalyptus

▪OpenStack

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

21

22

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.12

VIM FEATURES

Create/destroy VM Instances

 Image repository

▪Create/Destroy/Update images

▪Image persistence

Contextualization of VMs

▪Networking address assignment

▪DHCP / Static IPs

▪Manage SSH keys

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

VIM FEATURES - 2

Virtual network configuration/management

▪Public/Private IP address assignment

▪Virtual firewall management

 Configure/support isolated VLANs (private

clusters)

Support common virtual machine managers

(VMMs)

▪XEN, KVM, VMware

▪Support via libvirt library

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

23

24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.13

VIM FEATURES - 3

Shared “Elastic” block storage

▪Facility to create/update/delete VM disk volumes

▪Amazon EBS

▪Eucalyptus SC

▪OpenStack Volume Controller

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

 Middleware to manage Docker application container

deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

CONTAINER ORCHESTRATION

FRAMEWORKS

25

26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.14

 Public cloud container cluster services

 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service

 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

CONTAINER SERVICES

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

CLOUD ENABLING TECHNOLOGY

27

28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.15

 Each tenant (like in an apartment) has their own view of the

application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to

data and configuration that is not their own

 Customizable features

▪ UI, business process, data model, access control

 Application architecture

▪ User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

4. MULTITENANT APPLICATIONS

 Forms the basis for SaaS (applications)

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

MULTITENANT APPS - 2

29

30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.16

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

CLOUD ENABLING TECHNOLOGY

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

5. WEB SERVICES/WEB

31

32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.17

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text -based

 HTTP verbs: GET, POST, PUT, DELETE, …

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

REST: REPRESENTATIONAL STATE TRANSFER

33

34

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.18

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L14.35

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

 <m:GetBookPrice>

 <m:BookName>The Fleamarket</m:BookName>

 </m:GetBookPrice>

</soap:Body>

</soap:Envelope>

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L14.36

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

 <m:GetBookPriceResponse>

 <m: Price>10.95</m: Price>

 </m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

35

36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.19

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L14.37

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

 targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="DayOfWeekInput">

 <part name="date" type="xsd:date"/>

 </message>

 <message name="DayOfWeekResponse">

 <part name="dayOfWeek" type="xsd:string"/>

 </message>

 <portType name="DayOfWeekPortType">

 <operation name="GetDayOfWeek">

 <input message="tns:DayOfWeekInput"/>

 <output message="tns:DayOfWeekResponse"/>

 </operation>

 </portType>

 <binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetDayOfWeek">

 <soap:operation soapAction="getdayofweek"/>

 <input>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

 <service name="DayOfWeekService" >

 <documentation>

 Returns the day-of-week name for a given date

 </documentation>

 <port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

 <soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

 </port>

 </service>

</definitions>

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

 "parameter": [

 {

 "name": "latitude",

 "value":47.2529

 },

 {

 "name": "longitude",

 "value":-122.4443

 }

]

}

37

38

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.20

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪ Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

REST - 2

 Per formance: component interactions can be the dominant

factor in user-perceived performance and network ef ficiency

 Scalabil ity : to support large numbers of services and

interactions among them

 Simplicity: of the Uniform Interface

 Modif iabil ity : of services to meet changing needs (even while the

application is running)

 Visibility : of communication between services

 Portability: of services by redeployment

 Reliability : resists failure at the system level as redundancy of

infrastructure is easy to ensure

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

REST ARCHITECTURAL ADVANTAGES

39

40

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.21

WE WILL RETURN AT

~4:50 PM

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Ch. 5: Cloud Enabling Technology

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

OBJECTIVES – 11/20

41

42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.22

CONTAINERIZATION

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L15.43

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Quiz 1

 Tutorial 7

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

OBJECTIVES – 11/20

43

44

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.23

 Containers provide “light -weight” alternative to full OS

virtualization provided by a VM hypervisor

 Containers do not provide a full “machine”

 Instead they use operating system constructs to provide

“sand boxes” for execution

▪ Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

CONTAINER PERFORMANCE

– LU FACTORIZATION PERFORMANCE

 Solve linear equations – matrix algebra
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

45

46

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.24

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

CONTAINER PERFORMANCE

– Y-CRUNCHER: PI CALCULATOR
Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

CONTAINER PERFORMANCE – BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Performance Comparison

47

48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.25

According to NIST (National Institute of Standards Technology)

 Vir tualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

 System Vir tual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800 -180 draft)

 Operating System Vir tualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800 -
190). E.g., Solaris Zone, FreeBSD Jails, LXC

 Application Vir tualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800 -
180 draft). E.g., Docker (containerd), rkt

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

WHAT IS A CONTAINER?

 Virtual environments: share the host kernel

 Provide user space isolation

 Replacement for VMs: run multiple processes, services

 Mix different Linux distros on same host

 Examples: LXC,

OpenVZ,

Linux Vserver,

BSD Jails,

Solaris zones

 C r e d i t : h t t p s : / / b l o g . r i s i n g s t a c k . c o m / o p e r a t i n g - s y s t e m - c o n t a i n e r s - v s - a p p l i c a t i o n - c o n t a i n e r s /

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

OPERATING SYSTEM CONTAINERS

49

50

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.26

 Designed to package and run a single service

 All containers share host kernel

 Subtle dif ferences from operating system containers

 Examples: Docker, Rocket

 Docker: runs a single process on creation

 OS containers: run many OS services, for an entire OS

 Create application containers for each component of an app

 Supports a micro-services architecture

 DevOPS: developers can package their own components in

application containers

 Supports horizontal and vertical scaling

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

APPLICATION CONTAINERS

 Container images are “layered”

 Base image: common for all components

 Add layers that are specific

for components, services

as needed

 Layering promotes reuse

 Reduces duplication of

data across images

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

APPLICATION CONTAINERS - 2

51

52

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.27

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

2016 DOCKER SURVEY

 Docker application containers

▪ Leading containerization vehicle

 Docker daemon “dockerd”

▪ Implements docker engine that interprets CLI requests
and creates/manages
containers using backend
layered Docker architecture

 Starting in 2017 version
numbering switches from
1.x to YR.x

 2017 releases: 17.03 – 17.12

 2018 releases: 18.01 – 18.09

 2019 releases: 19.03.0 – 19.03.13

 C r e d i t : h t t p s : / / h a c k e r n o o n . c o m / d o c k e r - c o n t a i n e r d - s t a n d a l o n e - r u n t i m e s - h e r e s - w h a t - y o u - s h o u l d - k n o w - b 8 3 4 e f 1 5 5 4 2 6

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

DOCKER

53

54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.28

 (1) Original Docker engine relied on LXC

▪ LXC itself is a containerization tool predating Docker

▪ Original Docker API just called it

▪ LXC originally provided access

to Linux kernel features:

namespaces and cgroups

▪ LXC was Linux specific – caused

issues if wanting to be multi-platform

▪ Docker implemented their own

replacement for LXC

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

$Docker client

dockerd

LXC

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

 Docker v0.9: l ibcontainer introduced (~2014) to replace LXC

as the default Docker daemon

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

INTRODUCTION OF LIBCONTAINER

$Docker client

dockerd

libcontainer

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

55

56

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.29

 OCI created container standards for:

▪ Image specification

▪ Container runtime specification

 Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

▪ Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

 Runc was added to implement the OCI container runtime spec

▪ Provides small, lightweight wrapper for libcontainer

▪ Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low -level.

▪ The Docker API is much more user friendly

 Support for OCI compliant images was added to Containerd

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

OPEN CONTAINER INITIATIVE (OCI)

$ docker run -it --rm tcss558client sh

 Docker CLI posts request to Docker daemon

 Daemon calls containerd

 Containerd passes of request to runc

▪ Containerd converts docker image into
OCI compliant bundle

▪ This step would allow any OCI compliant container
to be plugged into the back-end

 Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container

 Shim: once a container is created, runc exits

▪ Shim remains as a daemonless stub to
implement the container

▪ Allows Docker to be upgraded w/o
stopping the container !!!

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

CREATING A CONTAINER

$Docker client

dockerd

containerd

Host Kernel

NamespacesNamespaces CapabilitiesCapabilities

cgroupscgroups

shim

runc

57

58

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.30

 Docker CLI: interfaces with dockerd daemon

 Docker engine: dockerd daemon, interfaces with containerd

 Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP API → Google RPC (gRPC) interface;

 runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

CREATING A CONTAINER - 2

 Modularity of Docker implementation supports

“execution drivers concept”:

 Enables docker to support many

alternate container backends

 OpenVZ, system-nspawn, libvirt-lxc,

libvirt-sandbox, qemu/kvm,

BSD Jails, Solaris Zones, and chroot

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

59

60

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.31

 7 different namespaces in Linux

(cgroups not shown)

▪ pid, mnt, ipc, user, net, UTS

 Partitions kernel resources

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

LINUX KERNEL NAMESPACES

pid mnt

ipc

user net

UTS

 Provides isolation of OS

entities for containers

 mnt: separate filesystems

 pid: independent PIDs; first process in container is PID 1

 ipc: prevents processes in dif ferent IPC

namespaces from being able to establish shared

memory. Enables processes in dif ferent containers

to reuse the same identifiers without conflict.

… provides expected VM like isolation…

 user: user identification and privilege isolation

among separate containers

 net: network stack virtualization. Multiple loopbacks (lo)

 UTS (UNIX time sharing) : provides separate host and domain

names
November 20, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

NAMESPACES - 2

61

62

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.32

 Processes see only their set of resources

 Provides isolation

 Namespaces are hierarchical

 Parent processes can see down the hierarchy

 Each process can only see resources associated

with the namespace, and descendent namespaces

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

LINUX KERNEL NAMESPACES - 3

pid mnt

ipc

user net

UTS

 Collection of Linux processes

 Group-level resource allocation: CPU, memory, disk I/O, network I/O

 Resource l imiting

▪ Memory, disk cache

 Priorit ization

▪ CPU share

▪ Disk I/O throughput

 Accounting

▪ Track resource utilization

▪ For resource management and/or billing purposes

 Control

▪ Pause/resume processes

▪ Checkpointing → Checkpoint/Restore in Userspace (CRIU)

▪ https://criu.org

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

CONTROL GROUPS (CGROUPS)

63

64

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.33

 Control groups are hierarchical

 Groups inherent limits from parent groups

 Linux has multiple cgroup controllers (subsystems)

 ls /proc/cgroups

 “memory” controller limits memory use

 “cpuacct” controller accounts

for CPU usage

 cgroup fi lesystem:

 /sys/fs/cgroup

 Can browse resource utilization

of containers…

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

CGROUPS - 2

 Docker leverages overlay filesystems

 1st: AUFS - Advanced multi - layered unification f ilesystem

 Now: overlay2

 Union mount f i le system: combine multiple directories into one that
appears to contain combined contents

 Idea: Docker uses layered file systems

 Only the top layer is writeable

 Other layers are read-only

 Layers are merged to present the notion of a real file system

 Copy-on-write- implicit sharing
▪ Implement duplicate copy

 https://medium.com/@nagarwal/docker -containers -fi lesystem-
demystified-b6ed8112a04a

 https://www.slideshare.net/jpetazzo/scale11x -lxc -talk-1/

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

OVERLAY FILE SYSTEMS

65

66

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.34

 Dockerfile:

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

LAYERED FS: BUILDING A CONTAINER

Ubuntu base image →

Copy . /app →

Run make /app →

Python /app/app.py →

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

THREE-TIER ARCHITECTURE

67

68

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.35

 Is the host isolated from application containers?

Are application containers isolated from each

other?

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.69

CONTAINER ISOLATION

Host kernel

Container

runtime

VM kernel

Host kernel

Container

runtime

Application
containers

App

Bins/libs

App

Bins/libs

App

Bins/libs

App

Bins/libs

Application
containers

Operating system level virtualization

Run multiple isolated Linux systems on a host

using a single Linux kernel

Control groups(cgroups)

▪ Including in Linux kernels => 2.6.24

▪Limit and prioritize sharing of CPU, memory,

block/network I/O

Linux namespaces

Docker initially based on LXC

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.70

LXC (LINUX CONTAINERS)

69

70

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.36

 Docker Machine:

automatically provision

and manage sets of

docker hosts to

form a cluster

 Docker Swarm:

Clusters multiple docker hosts together to manage as a

cluster.

 Docker Compose: Config file (YAML) for multi -container

application; Describes how to deploy and configure multiple

containers

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.71

OTHER DOCKER TOOLS

Framework(s) to deploy multiple containers

Provide container clusters using cloud VMs

Similar to “private clusters”

Reduce VM idle CPU time in public clouds

Better leverage “sunk cost” resources

Compact multiple apps onto shared public cloud
infrastructure

Generate to cost savings

Reduce vendor lock-in

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

CONTAINER ORCHESTRATION

FRAMEWORKS

71

72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.37

 Management of container hosts

 Launching set of containers

 Rescheduling failed containers

 Linking containers to support workflows

 Providing connectivity to clients outside the container cluster

 Firewall: control network/port accessibility

 Dynamic scaling of containers: horizontal scaling

▪ Scale in/out, add/remove containers

 Load balancing over groups of containers

 Rolling upgrades of containers for application

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.73

KEY ORCHESTRATION FEATURES

 Docker swarm

 Apache mesos/marathon

 Kubernetes

▪Many public cloud provides moving to offer Kubernetes-as-

a-service

 Amazon elastic container service (ECS)

 Apache aurora

 Container-as-a-Service

▪ Serverles containers without managing clusters

▪ Azure Container Instances, AWS Fargate…

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.74

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

73

74

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.38

 Questions from 11/18

 Tutorials Questions

 Class Presentations Schedule -

Cloud Technology or Research Paper Review

 Ch. 5: Cloud Enabling Technology

 Containerization

 Container Profiler

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.75

OBJECTIVES – 11/20

CONTAINER

 PROFILER

L15.76

from: “The Kubernetes Book”, Nigel Poulton and
Pushkar Joglekar, Version 7.0, September 2020

https://github.com/wlloyduw/ContainerProfiler

75

76

https://github.com/wlloyduw/ContainerProfiler

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.39

 Captures resource utilization metrics for containers

 Profiles CPU, memory, disk, and network utilization collecting
over 60 metrics available from the Linux OS

 Supports two types of profiling

▪  “Delta” Resource Utilization: Records and calculates total resource
utilization from when an initial selection is provided before
implementation is verified.

▪ Time series sampling: supports a configurable sampling interval for
continuous monitoring of resources consumed by containers

 Similar profiling techniques compared to SAAF

 Uses Linux proc filesystem “man procfs”

 Implemented with a combination of custom code and the
Python-based psutil library to obtain resource utilization data
rapidly

November 23, 2016
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L19.77

CONTAINER PROFILER

 Profiling overhead (9,000 samples) :

 Use case: RNA-sequencing data
processing pipeline (containerized)

 Hardware: IBM Cloud dual bx2d metal
96 vCPUs processors, 384 GB RAM

▪ Process-level: 3 peaks indicate
different behavior presumably based
on the number of processes running
inside the containerd cpuIdle time.

▪ Process level collects and reports all
available metrics

 Other Supported Profiling Modes:

▪ Container-level profiling
▪ Does not collect process-level metrics

▪ Faster

▪ VM-level profiling:
▪ Even faster

▪ Only collects host-level metrics

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.78

CONTAINER PROFILER:

PROFILING OVERHEAD

77

78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.40

 99.95% of process level samples were collected under 100ms

 All container-level samples collected under 74ms

 All host (VM-level) samples collected under 60ms

 UMI RNA-sequencing pipeline use case required 2.5 hours to

execute with 1-second

sampling at full

verbosity (all CPU,

network I/O, disk I/O,

and memory metrics

collected)

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.79

CONTAINER PROFILER:

PROFILING OVERHEAD EXAMPLE

 CPU utilization

 Memory

utilization

 Disk writes

 Network

transfer

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.80

CONTAINER PROFILER:
TIME SERIES ANALYSIS OF RESOURCE

UTILIZATION

79

80

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.41

 Measures

up to

~60 metrics

 Configurable

Verbosity

 Can rapidly

 Change

vebosity

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.81

CONTAINER PROFILER:

METRICS

 Profiling overhead for jobs profiled by the ContainerProfiler:

 Use case: Uniform Molecular Identifier (UMI) RNA -seq pipeline

 Four state: download, split, align, merge

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.82

CONTAINER PROFILER:

USE CASE

81

82

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

Slides by Wes J. Lloyd L15.42

 Delta profiling
supports viewing
total resource
utilization (CPU, disk,
network) for a
containerized task or
mutli-stage pipeline

 Task = 1 container

 Pipeline = many
containers

 Delta captures the
perceived system
resources used by
the task

 Here is the delta prof i l ing graph for resource uti l ization:

 Four tasks: Download, Split , Align, Merge

 Graph shows % time in dif ferent CPU modes (cpuUsr, cpuKrn, cpuIdle, etc.)

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.83

CONTAINER PROFILER:

DELTA PROFILING

QUESTIONS

November 20, 2025
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L15.84

83

84

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2025
	Slide 3: OBJECTIVES – 11/20
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/18
	Slide 8: OBJECTIVES – 11/20
	Slide 9: Tutorial 5 – closing NOV 21 4:59am
	Slide 10: Tutorial 6 – nov 23
	Slide 11: Tutorial 7 – dec 4
	Slide 12: Tutorial coverage
	Slide 13
	Slide 14: Tutorial 7
	Slide 15: OBJECTIVES – 11/20
	Slide 16: Group presentation
	Slide 17: Presentation schedule
	Slide 18: Presentation schedule - 2
	Slide 19: OBJECTIVES – 11/20
	Slide 20: Cloud enabling technology
	Slide 21: Virtualization management
	Slide 22: Virtual Infrastructure Management (VIM)
	Slide 23: VIM features
	Slide 24: VIM Features - 2
	Slide 25: VIM Features - 3
	Slide 26: Container orchestration frameworks
	Slide 27: Container services
	Slide 28: Cloud enabling technology
	Slide 29: 4. Multitenant applications
	Slide 30: Multitenant apps - 2
	Slide 31: Cloud enabling technology
	Slide 32: 5. Web services/web
	Slide 33: Hypertext transport protocol (http)
	Slide 34: Rest: representational state transfer
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Rest climate services example
	Slide 39: Rest - 2
	Slide 40: REST architectural advantages
	Slide 41: We will return at ~4:50 pm
	Slide 42: OBJECTIVES – 11/20
	Slide 43: Containerization
	Slide 44: OBJECTIVES – 11/20
	Slide 45: Motivation for containerization
	Slide 46: Container performance – LU factorization performance
	Slide 47: Container performance – y-cruncher: pi calculator
	Slide 48: Container performance – bonnie++
	Slide 49: What is a container?
	Slide 50: Operating system containers
	Slide 51: Application containers
	Slide 52: Application containers - 2
	Slide 53: 2016 docker survey
	Slide 54: docker
	Slide 55: Original Docker engine implementation
	Slide 56: Introduction of libcontainer
	Slide 57: Open container initiative (OCI)
	Slide 58: Creating a container
	Slide 59: Creating a container - 2
	Slide 60: Support for alternate container runtimes
	Slide 61: Linux kernel namespaces
	Slide 62: Namespaces - 2
	Slide 63: Linux kernel namespaces - 3
	Slide 64: Control groups (cgroups)
	Slide 65: Cgroups - 2
	Slide 66: Overlay file systems
	Slide 67: Layered fs: Building a container
	Slide 68: Three-tier architecture
	Slide 69: Container isolation
	Slide 70: Lxc (linux containers)
	Slide 71: Other docker tools
	Slide 72: Container orchestration frameworks
	Slide 73: Key orchestration features
	Slide 74: Container orchestration frameworks - 2
	Slide 75: OBJECTIVES – 11/20
	Slide 76: Container profiler
	Slide 77: Container profiler
	Slide 78: Container profiler: Profiling overhead
	Slide 79: Container profiler: Profiling overhead example
	Slide 80: Container profiler: time series analysis of resource utilization
	Slide 81: Container profiler: metrics
	Slide 82: Container profiler: use case
	Slide 83: Container profiler: delta profiling
	Slide 84: Questions

