TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Clolud Enabling Technology
& Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

OFFICE HOURS - FALL 2025

=Thursdays:
"6:00 to 7:00 pm -CP 229 & Zoom

=Friday - *** THIS WEEK ***
| *11:00 am to 12:00 pm - ONLINE via Zoom |

=0r email for appointment

» Office Hours set based on Student Demographics survey feedback

» * - Friday office hours may be adjusted or canceled due meeting conflicts or
other obligations. Adjustments will be announced via Canvas.

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

November 20, 2025

Slides by Wes J. Lloyd L15.1

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/20

| = Questions from 11/18]
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Ch. 5: Cloud Enabling Technology
® Containerization
® Container Profiler

November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | 1153 |

School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
" EXtra Credit Announcements

fO rcom p I et | ng v Upcoming Assignments
Assignments

School of Engineering and Technology, University of Washington - Tacoma

Discussions [ClassActivity 1 - Implicit vs. Explicit Parallelism
Zoom Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts
Grades ¢ Tutorial 1-Linux
p | - Available until Oct 19 at 11:59pm | Due Oct 15 at 11:39pm | -/20 pts
eople
Pages
Files ~ Past Assignments
Quizzes
-« TCSS 562 - Online Daily Feedback Survey - 10/5
Collaborations “* Available until Dec 18 at 11:59pm | Due Oct 6 at &:59pm | -/1 pts
UW Libraries ¢ TCSS 562 - Online Daily Feedback Survey - 9/30
UW Resources - Available until Dec 18 at 11:5%pm Due Oct 4 at 8:59pm | -/1pts
November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | s |

Slides by Wes J. Lloyd L15.2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5

Started: Oct 7 at 1:13am

Quiz Instructions

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 4 b 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

[| Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 10

Slow Just Right Fast

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Dlokembeg2i32n2s School of Engineering and Technology, University of Washington - Tacoma L15.5

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (41 respondents, 27 in-person, 14 online):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.46 (T - previous 5.64)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.29 (T - previous 4.96)

November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | 156 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2025]

L15.3

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK FROM 11/18

® Can a Virtual Private Cloud (VPC) span region?
We saw it can span availability zone A and B, can it span
across regions like us-east-1 and us-east-2 ?

= No. Currently VPCs can only span across multiple availability
zones (Azs) within a single region

= This limitation forces deployments to be fully replicated in
distinct regions

= |f one region fails, application hosting can fail-over to another
region

= This often involves Domain-Name-Server (DNS) level load
balancing

= Amazon Route 53 is a managed DNS service for this purpose

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

| L15.7

OBJECTIVES - 11/20

® Questions from 11/18

= Tutorials Questions |

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Ch. 5: Cloud Enabling Technology
® Containerization
® Container Profiler

November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | s |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

[Fall 2025]

L15.4

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 5 - CLOSING NOV 21 4:59AM

= |ntroduction to Lambda IlI: Working with Files in S3, Cloud
Trail, and Amazon Event Bridge Rules

= https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462 562 _f2025_tutorial_5.pdf

= Customize the Request object (add getters/setters)
= Why do this instead of HashMap ?

= I[mport dependencies (jar files) into project for AWS S3

= Create an S3 Bucket

= Give your Lambda function(s) permission to work with S3

= Write to the CloudWatch logs

® Use of CloudTrail to generate S3 events

® Creating Event Bridge rule to capture events from CloudTrail

® Have the Event Bridge rule trigger a Lambda function with a
static JSON input object (hard-coded filename)

= Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | L15.9 |

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

TUTORIAL 6 - NOV 23

= Introduction to Lambda Ill: Serverless Databases

® https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462 562 f2025_tutorial 6.pdf

m Create and use Sqlite databases using sqlite3

® Deploy Lambda function with Sqlite3 database under /tmp
B Compare in-memory vs. file-based Sqlite DBs on Lambda

m Create an Amazon Aurora “Serverless” v2 MySQL database

m Using the AWS CloudShell in the same VPC (Region +
availability zone) connect and interact your Aurora serverless
database using the mysql CLI app

= Deploy an AWS Lambda function that uses the MySQL
“serverless” database

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

November 20, 2025

10

Slides by Wes J. Lloyd

[Fall 2025]

L15.5

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 7 - DEC 4

= Introduction to Docker

= https://faculty.washington.edu/wlloyd/courses/tcss562/
tutorials/TCSS462_562_f2025_tutorial_7.pdf

= Must complete using c7i-flex.large ec2 instance &
Ubuntu 24.04 (for cgroups v2)

= Use DOCX file for copying and pasting Docker install
commands

= Topics:
= Installing Docker
= Creating a container using a Dockerfile

= Using cgroups virtual filesystem to monitor CPU utilization of a
container

= Persisting container images to Docker Hub image repository
= Container vertical scaling of CPU/memory resources
= Testing container CPU and memory isolation

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.11

11

TUTORIAL COVERAGE

= Docker CLI = Docker Engine (dockerd) = containerd = runc

= Working with the docker CLI:

= docker run create a container

= docker ps -a list containers, find CONTAINER ID

= docker exec --it run a process in an existing container
®m docker stop stop a container

= docker Kkill kill a container

®m docker help list available commands

= man docker Docker Linux manual pages

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

115.12

12

Slides by Wes J. Lloyd

[Fall 2025]

L15.6

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

Lommanas:
attach Attach local standard input, output, and error streams to a running container
build Build an image from a Dockerfile
Create a new image from a container's changes
Copy files/folders between a container and the local filesystem
Create a new container
Deploy a new stack or update an existing stack
Inspect changes to files or directories on a container's filesystem
Get real time events from the server
Run a command in a running container
Export a container's filesystem as a tar archive
Show the history of an image
List images
Import the contents from a tarball to create a filesystem image
Display system-wide information
Return low-level information on Docker objects
Kill one or more running containers

Load an image from a tar archive or STDIN D k CLI
Log in to a Docker registry oc er
Log out from a Docker registry
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
Restart one or more containers
Remove one or more containers
Remove one or more images
Run a command in a new container
Save one or more images to a tar archive (streamed to STDOUT by default)
search Search the Docker Hub for images
start Start one or more stopped containers
stats Display a live stream of contailner(s) resource usage statistics
stop Stop one or more running containers
tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
top Display the running processes of a container
unpause Unpause all processes within one or more containers
update Update configuration of one or more containers
version Show the Docker version information
wait Block until one or more containers stop, then print their exit codes

TUTORIAL 7

Tutorial introduces use of two common Linux performance
benchmark applications

® stress-ng
100s of CPU, memory, disk, network stress tests

Sysbench

Used in tutorial for memory stress test

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November 20, 2025 School of Engineering and Technology, University of Washington - Tacoma

o]

14

Slides by Wes J. Lloyd L15.7

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/20

® Questions from 11/18
® Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Ch. 5: Cloud Enabling Technology
® Containerization
® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.15

15

GROUP PRESENTATION

= TWO OPTIONS:
= Cloud technology presentation
= Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

= Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:
Tuesday November 18" @ 11:59pm

= Presentation dates:
= Tuesday November 25

= Tuesday December 2*, Thursday December 4
* - day of quiz 2. only 1 presentation slot

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma ts16

November 20, 2025

16

Slides by Wes J. Lloyd L15.8

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

PRESENTATION SCHEDULE

= <Tuesday November 25>

1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu

Research paper: Serverless Replication of Object Storage across
Multi-Vendor Clouds and Regions

2. Team 1: William Hay

Cloud Technology: Amazon Athena

= <Tuesday December 2>

1. Team 5: Sparsha Jha, Chris Biju

Cloud Technology: Intelligent Optimization of Distributed
Pipeline Execution in Serverless Platforms: A Predictive Model
Approach

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma s

November 20, 2025

17

PRESENTATION SCHEDULE - 2

= <Thursday December 4>

1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett
Research paper: A Perfect Fit? - Towards Containers on
Microkernels

2. Team 2: Ruby Plangphatthanaphanit, Junjia Li, Ari Yin
Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud
Deploy)

3. Team 8: Aamena Suzzane, Dhruva Bhat

Research paper: CoFaaS: Automatic Transformation-based
Consolidation of Serverless Functions

4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao

Cloud Technology: AWS Amplify

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma Hs18

November 20, 2025

18

Slides by Wes J. Lloyd

[Fall 2025]

L15.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/20

® Questions from 11/18
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Ch. 5: Cloud Enabling Technology |

® Containerization
® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.19

19

CLOUD ENABLING TECHNOLOGY

EBroadband networks and internet architecture

®Data center technology

=Virtualization technology

® Multitenant technology

= Web/web services technology

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 L15.20

20

Slides by Wes J. Lloyd

[Fall 2025]

L15.10

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

VIRTUALIZATION MANAGEMENT

® Virtual infrastructure management (VIM) tools
= Tools that manage pools of virtual machines, resources, etc.

Private cloud software systems can be considered as a VIM

Considerations:
Performance overhead

= Paravirtualization: custom OS kernels, 1/0 passed directly to HW w/

special drivers

Hardware compatibility for virtualization

Portability: virtual resources tend to be difficult to migrate

cross-clouds

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L14.21

21

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

= Middleware to manage virtual machines and

infrastructure of laaS “clouds”

= Examples

*OpenNebula
*Nimbus
=Eucalyptus
=OpenStack

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

114.22

22

Slides by Wes J. Lloyd

[Fall 2025]

L15.11

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

VIM FEATURES

= Create/destroy VM Instances

®lmage repository
=Create/Destroy/Update images
*"Image persistence

= Contextualization of VMs
=" Networking address assighment
DHCP / Static IPs
*Manage SSH keys

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

114.23

23

VIM FEATURES - 2

= Virtual network configuration/management
*Public/Private IP address assighment
=Virtual firewall management

e Configure/support isolated VLANs (private
clusters)

= Support common virtual machine managers
(VMMs)

=XEN, KVM, VMware
=Support via libvirt library

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

| November 20, 2025

L14.24

24

Slides by Wes J. Lloyd

[Fall 2025]

L15.12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

VIM FEATURES - 3

= Shared “Elastic” block storage
=Facility to create/update/delete VM disk volumes
Amazon EBS
Eucalyptus SC
OpenStack Volume Controller

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L14.25

25

CONTAINER ORCHESTRATION

FRAMEWORKS

= Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)

® Considered Infrastructure-as-a-Service

= Opensource
® Kubernetes framework

® Docker swarm
= Apache Mesos/Marathon

= Proprietary
® Amazon Elastic Container Service

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L1426

November 20, 2025

26

Slides by Wes J. Lloyd

[Fall 2025]

L15.13

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER SERVICES

= Public cloud container cluster services

® Azure Kubernetes Service (AKS)

= Amazon Elastic Container Service for Kubernetes (EKS)
®m Google Kubernetes Engine (GKE)

= Container-as-a-Service

m Azure Container Instances (ACI - April 2018)

m AWS Fargate (November 2017)

® Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 1427

November 20, 2025

27

CLOUD ENABLING TECHNOLOGY

m Adapted from Ch. 5 from Cloud Computing
Concepts, Technology & Architecture

® Broadband networks and internet architecture
= Data center technology

®Virtualization technology

® Multitenant technology

= Web/web services technology

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L1428

| November 20, 2025

28

Slides by Wes J. Lloyd L15.14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

4. MULTITENANT APPLICATIONS

®m Each tenant (like in an apartment) has their own view of the
application

= Tenants are unaware of their neighbors @1}
= Tenants can only access their data, no access to m&”
data and configuration that is not their own % ﬁ
= =
= Customizable features
i
= Ul, business process, data model, access control

= Application architecture

= User isolation, data security, recovery/backup by tenant, scalability
for a tenant, for tenants, metered usage, data tier isolation

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L14.29

29

MULTITENANT APPS - 2

® Forms the basis for SaaS (applications)

Organization A Organization B

multitenant hosting -
appiication wirtual sarver |

o VAN

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 114.30

30

Slides by Wes J. Lloyd

[Fall 2025]

L15.15

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD ENABLING TECHNOLOGY

® Adapted from Ch. 5 from Cloud Computing
Concepts, Technology & Architecture

EBroadband networks and internet architecture
= Data center technology
= Virtualization technology

® Multitenant technology

= Web/web services technology

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L1431

| November 20, 2025

31

5. WEB SERVICES/WEB

= Web services technology is a key foundation of cloud
computing’s “as-a-service” cloud delivery model

® SOAP - “Simple” object access protocol
= First generation web services
= WSDL - web services description language
= UDDI - universal description discovery and integration
= SOAP services have their own unique interfaces

®m REST - instead of defining a custom technical interface
REST services are built on the use of HTTP protocol

= HTTP GET, PUT, POST, DELETE

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 114.32

32

Slides by Wes J. Lloyd

[Fall 2025]

L15.16

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

= An ASCll-based request/reply protocol for transferring
information on the web

® HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request

® HTTP response from server HTTP status codes:
= Protocol version & status code > 2xx — all s well
3xXX — resouice moved
= Response headers
4xx — access problem
= Response body SXX — server ervor

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

114.33

November 20, 2025

33

REST: REPRESENTATIONAL STATE TRANSFER

¢

® Web services protocol
®m Supersedes SOAP - Simple Object Access Protocol

® Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

® Requests are made to a URI

= Responses are most often in JSON, but can also be HTML,
ASCII text, XML, no real limits as long as text-based

® HTTP verbs: GET, POST, PUT, DELETE, ...

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L34

November 20, 2025

34

Slides by Wes J. Lloyd

[Fall 2025]

L15.17

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November20,2025 School of Engineering and Technology, University of Washington - Tacoma

L14.35

35

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Noxember2032025 School of Engineering and Technology, University of Washington - Tacoma

L14.36

36

Slides by Wes J. Lloyd

[Fall 2025]

L15.18

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http: //www.roguewave .com/soapworx/examples/DayOfWeek . wsdl"
xmlns:tns="http: //www.roguewave.com/soapworx/examples/DayOfWeek .wsdl"
oap="http://schemas.xmlsoap.org/wsdl/soap/"
sd="http: //www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
name="DayO ">
<part name="dayOfWeek" type="xsd:string"/>
</message>
<portType name="DayOfWeekPortType">
ion nam y k">
<input message="tns:DayOfWeekInput" />
<output tns : DayO: />
</operation>
</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave .com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded"
namespace="http: //www.roguewave .com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date
</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek" />
</port>
</service>

November 20, 2025

Y TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

37

= USDA // REST/JSON

"value":47.2529
},

{
. "name": "longitude",
= Just provide "value":-122.4443

a Lat/Long i .

REST CLIMATE SERVICES EXAMPLE

Lat/Long // Request climate data for Washington
Climate {
Service "parameter": |[
{
Demo "name": "latitude",

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

| November 20, 2025

School of Engineering and Technology, University of Washington - Tacoma

114.38

38

Slides by Wes J. Lloyd

[Fall 2025]

L15.19

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

= App manipulates one or more types of resources.

= Everything the app does can be characterized as some
kind of operation on one or more resources.

® Frequently services are CRUD operations
(create/read/update/delete)
= Create a new resource
= Read resource(s) matching criterion
= Update data associated with some resource
= Destroy a particular a resource

® Resources are often implemented as objects in 00
languages

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L14.39 |

39

REST ARCHITECTURAL ADVANTAGES

= Performance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

= Scalability: to support large numbers of services and
interactions among them

= Simplicity: of the Uniform Interface

= Modifiability: of services to meet changing needs (even while the
application is running)

= Visibility: of communication between services

= Portability: of services by redeployment

Reliability: resists failure at the system level as redundancy of
infrastructure is easy to ensure

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L1440

November 20, 2025

40

Slides by Wes J. Lloyd

[Fall 2025]

L15.20

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WE WILL RETURN AT
~4:50 PM

OBJECTIVES - 11/20

® Questions from 11/18
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Ch. 5: Cloud Enabling Technology
| = Containerization |
® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

November 20, 2025

42

Slides by Wes J. Lloyd L15.21

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINERIZATION

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2048

MR At 20 School of Engineering and Technology, University of Washington -

OBJECTIVES - 11/20

® Questions from 11/18
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1
® Tutorial 7

= Containerization |

® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

L15.44

44

Slides by Wes J. Lloyd

[Fall 2025]

L15.22

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

MOTIVATION FOR CONTAINERIZATION*

® Containers provide “light-weight” alternative to full 0S
virtualization provided by a VM hypervisor

® Containers do not provide a full “machine”

® Instead they use operating system constructs to provide
“sand boxes” for execution

= Linux cgroups, namespaces, etc.
® Containers can run on bare metal, or atop of VMs

Container VM

NEEEEEE i
oljofo|ofol|o] ™
ninin|njn|nj ication , P 7 /
35 NEE M /\'Mm\m
Host OS's bins/libs) Hypervisor engine \‘\\ | Hypervisor engine
Containers engine Host OS
Host OS . Type 1 Hardware
Containers : :
Hypervisor’VM .

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025

45

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

530

528

526

‘n
=
=

MFlops (higher is bettery
n i
=

520

S18

I

KVM DOCKER LXC NATIVE sy

516

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] L1546

School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025

46

Slides by Wes J. Lloyd

[Fall 2025]

L15.23

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:

Hypervisors vs. Lightweight Virtualization:

1800 .
EKVM A Performance Comparison
50 -
0 BDOCKER
1700 | |BLXC
- BNATIVE
5 1650
i -
2 1600
3 1550
£
i
Z 1500 -
Z 1450 -
1400
1350 \
1300 k
Computation Time Total Time
November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] L1547

School of Engineering and Technology, University of Washington - Tacoma

47

CONTAINER PERFORMANCE - BONNIE++

250000

200000

150000

100000

S0000

Disk Throughput {Kb/s - higher is better)

(]

Performance data from IC2E 2015:

Hypervisors vs. Lightweight Virtualization:

A Performance Comparison

EKVM EDOCKER BLXC ENATIVE

Block Output

Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown.

November 20, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

115.48

48

Slides by Wes J. Lloyd

[Fall 2025]

L15.24

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WHAT IS A CONTAINER?) ¢

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025

L15.49 |

49

OPERATING SYSTEM CONTAINERS Y

= Virtual environments: share the host kernel
® Provide user space isolation
= Replacement for VMs: run multiple processes, services

® Mix different Linux distros on same host
Host OS Host OS

= Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 14,04 14.04 14,04 7 6.6
. Container Container Container Container Container Container
Linux Vserver,
BSD Jails,
Solaris zones

CentOS 6.6 image

RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.04 image

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack.com/operating-system-containers-vs-application-containers/

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 L15.50

50

Slides by Wes J. Lloyd L15.25

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

® 0S containers: run many OS services, for an entire 0S

m Create application containers for each component of an app
®m Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

® Supports horizontal and vertical scaling

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L1551

November 20, 2025

51

APPLICATION CONTAINERS - 2

= Container images are “layered”
= Base image: common for all components
= Add layers that are specific

for components, services FOTeranE o

as needed parent
image

= | ayering promotes reuse

® Reduces duplication of
data across images

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma Hs2

November 20, 2025

52

Slides by Wes J. Lloyd

[Fall 2025]

L15.26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% <

say Docker is part
of cloud strategy

() o,
60% M% 35+%
o want application want to avoid
plan to use Docker to portability across cloud vendor
migrate workloads to cloud environments lock-in

& docker

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.53

53

® 2019 releases: 19.03.0 - 19.03.13 g

DOCKER

= Docker daemon “dockerd”
= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

® Starting in 2017 version

numbering switches from g g
1.x to YR.X Lo
® 2017 releases: 17.03 - 17.12 Docker Dasmon

m 2018 releases: 18.01 - 18.09

Docker Clients

Credit: https://hackernoon.com/docker-containerd-standalone-runtimes- Dlockat Cllent:SerispArehitacnine

Docker Containers

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

115.54

54

Slides by Wes J. Lloyd

[Fall 2025]

L15.27

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

® (1) Original Docker engine relied on LXC
= | XC itself is a containerization tool predating Docker
= Original Docker API just called it

= | XC originally provided access
to Linux kernel features: 1
namespaces and cgroups

= LXC was Linux specific - caused | dockerd |
issues if wanting to be multi-platformI Lg(C |

= Docker implemented their own

replacement for LXC]
Capabilities

Host Kernel

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.55

55

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: libcontainer introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

| dockerd |
$

| libcontainer |

|

Capabilities

Host Kernel

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma 11536

November 20, 2025

56

Slides by Wes J. Lloyd

[Fall 2025]

L15.28

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OPEN CONTAINER INITIATIVE (OCI)

= OCI created container standards for:
= Image specification
= Container runtime specification

® Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard
® Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer

= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.

The Docker API is much more user friendly
= Support for OCI compliant images was added to Containerd

November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma Hss7

57

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
® Docker CLI posts request to Docker daemo

= Daemon calls containerd I
= Containerd passes of request to runc | dockerd |
= Containerd converts docker image into t
OCI compliant bundle containerd |
= This step would allow any OCI compliant container t
to be plugged into the back-end
= Runc interfaces with the Linux kernel m

(namespaces, cgroups, etc.) to create container m
= Shim: once a container is created, runc exits

= Shim remains as a daemonless stub to
Capabilities

implement the container
= Allows Docker to be upgraded w/o

cgroups

- Host Kernel
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

stopping the container !!!
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 L15.58

58

Slides by Wes J. Lloyd L15.29

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CREATING A CONTAINER - 2

s

H e Docker Engine Containerd

R

Docker CLIUI

Runc and other OCI untimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon
= Docker engine: dockerd daemon, interfaces with containerd
= Containerd: simple daemon, interfaces with runc to manage

containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl - Google RPC (gRPC) interface;

® runc: lightweight command-line tool for running containers;

Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.59 |

59

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports

“execution drivers concept”:

= Enables docker to support many _&
alternate container backends Docker
® OpenVZ, system-nspawn, libvirt-Ixc, l l Wlemd_
libvirt-sandbox, gemu/kvm, il e nspawn
BSD Jails, Solaris Zones, and chroot] [J
Linux

cgroups namespaces netlink

selinux netfilter n
capabilities apparmor A

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma L1560

November 20, 2025

60

Slides by Wes J. Lloyd

[Fall 2025]

L15.30

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LINUX KERNEL NAMESPACES

m 7 different namespaces in Linux
(cgroups not shown)

= pid, mnt, ipc, user, net, UTS

= Partitions kernel resources

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.61

61

6.6 ni,100.0 id, 6.6 wa, 0.8 hi,

NAMESPACES - 2 iy B T o '

= Provides isolation of OS
entities for containers

= mnt: separate filesystems

= pid: independent PIDs; first process in container is PID 1

® ipc: prevents processes in different IPC

namespaces from being able to establish shared

memory. Enables processes in different containers

to reuse the same identifiers without conflict.

... provides expected VM like isolation...

= user: user identification and privilege isolation
among separate containers

= net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 L15.62

62

Slides by Wes J. Lloyd L15.31

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LINUX KERNEL NAMESPACES - 3

= Processes see only their set of resources
= Provides isolation
= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= Each process can only see resources associated
with the namespace, and descendent namespaces

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.63 |

63

CONTROL GROUPS (CGROUPS)

® Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk 1/0, network 1/0
= Resource limiting

= Memory, disk cache
Prioritization

= CPU share

= Disk 1/0 throughput
Accounting

= Track resource utilization

= For resource management and/or billing purposes
Control

= Pause/resume processes

= Checkpointing > Checkpoint/Restore in Userspace (CRIU)

= https://criu.org

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025 L15.64

64

Slides by Wes J. Lloyd

[Fall 2025]

L15.32

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CGROUPS - 2

= Control groups are hierarchical

® Groups inherent limits from parent groups

B Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

“ ” #subsys name | hierarchy | num_cgroups | enabled
= “cpuacct” controller accounts o S £ .
for CPU usage cpu 5 o7 1
Icpuacct 5 97 1
blkio 8 97 1
memory 9 218 1
= cgroup filesystem: devices 6 97 1
freezer 4 2, 1
m /sys/fs/cgrou net_cls 2 2 1
/ y / / g P perf_event 10 2 1
= Can browse resource utilization net_prio 2 2 1
. hugetib 7 2 1
of containers... piis 1 98 1

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.65

65

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scaleddx-Ixc-talk-1/

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

L15.66

66

Slides by Wes J. Lloyd L15.33

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04

® Dockerfile: copy . sapp

RUN make /app

CMD python

/app/app.py

Thin R/W layer

! ! ! ! !

Python /app/app.py 2>

Run make /app 2>

Copy . /app >

Ubuntu base image >

~

91e54dfb1179

d74508fb6632 1.895KB

€22013c84729 194.5KB

EEMEELLERE] 188.1 MB

ubuntu:15.04

Container

i <—— Container layer

»— Image layers (R/O)

November 20, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

67

THREE-TIER ARCHITECTURE

*

Node.js
Postgres

Nginx

OS containers

Meant to used as an OS - run multiple
services

* No layered filesystems by default

+ Built on cgroups, namespaces, native
process resource isolation

* Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

App containers

Meant to run for a single service

Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

. s e

November 20, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

68

Slides by Wes J. Lloyd

[Fall 2025]

L15.34

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ISOLATION) ¢

®|s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

Application

App | App containers
Bins/libs Bins/libs

App App

Container - -

runtime Bins/libs Bins/libs

VM kernel

Container
runtime

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.69

69

LXC (LINUX CONTAINERS)

®EQperating system level virtualization

® Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
*|Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

®Linux hamespaces
® Docker initially based on LXC

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma Hs70

November 20, 2025

70

Slides by Wes J. Lloyd

[Fall 2025]

L15.35

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OTHER DOCKER TOOLS

= Docker Machine: Docker Engine
automatically provision
and manage sets of containerd
docker hosts to

form a cluster containerd-shim

containerd-shim

= Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.71

71

CONTAINER ORCHESTRATION Y

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
mSimilar to “private clusters”

® Reduce VM idle CPU time in public clouds

m Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

November 20, 2025

72

Slides by Wes J. Lloyd

[Fall 2025]

L15.36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

KEY ORCHESTRATION FEATURES

= Management of container hosts

= Launching set of containers

= Rescheduling failed containers

= Linking containers to support workflows

= Providing connectivity to clients outside the container cluster

= Firewall: control network/port accessibility

B Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers

= | oad balancing over groups of containers

Rolling upgrades of containers for application

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.73

73

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm
® Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-

a-service
® Amazon elastic container service (ECS)
® Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

L15.74

74

Slides by Wes J. Lloyd

[Fall 2025]

L15.37

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/20

® Questions from 11/18
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Ch. 5: Cloud Enabling Technology
® Containerization

[= Container Profiler |

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.75

75

h

ttps://github.com/wlloyduw/ContainerProfiler

CONTAINER
PROFILER

OXFORD

Container Profiler: Profiling resource utilization of
containerized big data pipelines

Varik Hoang T, Ling-Hong Hung ' t, David Perez, Huazeng Deng, Raymond Schooley , Niharika Arumilli, Ka Yee Yeung
and Wes Lloyd =*

School of Engineering and Technology. University of Washington, Tacoma, WA 98402, USA

*Correspondence address. Wes Lloyd, 1900 Commerce St #358426, Tacoma, WA 98402, USA. E-mail: wlloyd@uw edu
*Contributed equally.

Abstract

Backoround- This article ihe Contginer Prafiler o software tonlthat and recards the resource nsage of fany

(Glgél)gmﬁ

Tech Note

0B/ sdyy Woy papeojumoq

76

Slides by Wes J. Lloyd

[Fall 2025]

L15.38

https://github.com/wlloyduw/ContainerProfiler

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER

m Captures resource utilization metrics for containers

= Profiles CPU, memory, disk, and network utilization collecting
over 60 metrics available from the Linux OS

® Supports two types of profiling

= A “Delta” Resource Utilization: Records and calculates total resource
utilization from when an initial selection is provided before
implementation is verified.

= Time series sampling: supports a configurable sampling interval for
continuous monitoring of resources consumed by containers

= Similar profiling techniques compared to SAAF
® Uses Linux proc filesystem “man procfs”

= Implemented with a combination of custom code and the
Python-based psutil library to obtain resource utilization data
rapidly

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;23,2016 School of Engineering and Technology, University of Washington - Tacoma

L19.77

77

CONTAINER PROFILER:

PROFILING OVERHEAD

® Profiling overhead (9,000 samples):

Process-level

® Use case: RNA-sequencing data é;;: 90th percentile
processing pipeline (containerized) %'EE
= Hardware: IBM Cloud dual bx2d metal 3 2
96 vCPUs processors, 384 GB RAM § CoTTEERRneRAYSoPAUERRREERIsETENS
= Process-level: 3 peaks indicate Profling Mms (s)
different behavior presumably based 2 Container-level
on the number of processes running 2 90th percentile
inside the containerd cpuldle time. e
= Process level collects and reports all E =
available metrics E "STENERNRAAAYSORAGERNRNEEISEEEAG
= Other Supported Profiling Modes: 3 profiing time (ms)
VM-level

= Container-level profiling
Does not collect process-level metrics
Faster
= VM-level profiling:
Even faster
Only collects host-level metrics

g

90th percentile

I

number of samples
8 8

profiling time (ms)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

Rolemben20R2025 School of Engineering and Technology, University of Washington - Tacoma

115.78

78

Slides by Wes J. Lloyd

[Fall 2025]

L15.39

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER:

PROFILING OVERHEAD EXAMPLE

m 99.95% of process level samples were collected under 100ms
m All container-level samples collected under 74ms
m All host (VM-level) samples collected under 60ms

= UMI RNA-sequencing pipeline use case required 2.5 hours to
execute with 1-second

School of Engineering and Technology, University of Washington - Tacoma

sampling at full Sampie I Resource
- Interval docker Sampling Ughzalwun
verbosity (all CPU, (a1 (an Sampe
network 1/0, disk 1/0, f
and memory metrics |
» profilersh —profiing arguments—» rudataall.py -
collected))
Argument l check if execute.sh
s still running
Argument
Aot install.sh —sottware arguments® execute.sh
November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] 11579

79

® CPU utilization

[}

g

2

= Memory g

apgs . o
utilization

® Disk writes

CONTAINER PROFILER:

TIME SERIES ANALYSIS OF RESOURCE

CPU usage

— cDiskWriteBytes
— VDiskWriteBytes

Percentage

Memory usage

100 PR T R T ol
BOJ
60

0 ————— .
i %\
%5,

7

Percentage

2 cMemoryUsed
— vMemoryUsed

= Network Network transfer
100
transfer
80
[
g
% 60
5 40
B e | — GNetworkBytesRecvd
— vNetworkBytesRecvd
November 20, 2025

o

20
0 — . - 0 : :
0 1 2 3 0 %) 1 2
TC % Time (h)) Time (h)
Sc

80

Slides by Wes J. Lloyd

[Fall 2025]

L15.40

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

= Measures
up to
~60 metrics

= Configurable
Verbosity

= Can rapidly

CONTAINER PROFILER:

METRICS

pNumThreads
PCpUTImeUserode
pCpUTImeKemelMode
pChildrenUserMode
oC CPU Memory Disk Network
pVoluntaryContextSwitches p—
pNonvoluntaryContextSuitches ﬁ :N: IE';I EVirtualMemoryBytes
pBlockiODelays = H |
- | pPageFaults
cCpuTime: pProcesses pMajPageFaults
cProcessorstats (5}
CCPUSOITIME —
cNumProcessors | — c""'I‘D'"” — cDiskSectorl0
cCpuTimeUserMode N i T coiskReadeytes
cCpuTimeKernelMode
Host or VM
viD
cMemoryUsed / f \ \ vioadAvg

cMemoryMaxUsed

cPageFaults
® Chan ge chalPageFaults _ chetworkBytesRecvd
cNetworkBytesSent
vebosit puTime
y vCpuTimeUserMode VDsKSectoeads
vCpuTimeKernelMode =
vCpuldieTime gl Fpiiar e
VOpUTimelOWait R e b \NetworkytesRecvd
vCouTimelntSrvc wMemoryCached e VNetworkBytesSent
vCpuTimeSoftiniSve vPageFaults = .
R — DiskWriteTime
wCpuNice
vCpuSteal
vCpuType
vCpuMhz
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025
November 20, 2025 ! .(. E g for) P b g.[] 115.81
School of Engineering and Technology, University of Washington - Tacoma

81

CONTAINER PROFILER:

USE CASE

. —
VM + Container

98.00% 99.00% 100.00% 101.00% 102.00%

= Profiling overhead for jobs profiled by the ContainerProfiler:

= Use case: Uniform Molecular Identifier (UMI) RNA-seq pipeline
= Four state: download, split, align, merge

November 20, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

115.82

82

Slides by Wes J. Lloyd

[Fall 2025]

L15.41

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER:

DELTA PROFILING

= Delta profiling 100%
supports viewing
total resource
utilization (CPU, disk, %
network) for a
containerized task or
mutli-stage pipeline

= Task = 1 container

= Pipeline = many

Time Percentage

26%

containers
= Delta captures the
. o 5
I")ee srgﬁ:,‘ézg .'a)gt; T; Download Split Align Merge
the task y mcpuSftintSrvc%m cpuloWait % w cpuldle % cpuKrn %mcpuUsr %

= Here is the delta profiling graph for resource utilization:
= Four tasks: Download, Split, Align, Merge
= Graph shows % time in different CPU modes (cpuUsr, cpuKrn, cpuldle, etc.)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November;20;,2025 School of Engineering and Technology, University of Washington - Tacoma

L15.83 |

83

QUESTIONS

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2018

November 20, 2025 School of Engineering and Technology, University of Washington -

84

Slides by Wes J. Lloyd L15.42

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2025
	Slide 3: OBJECTIVES – 11/20
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/18
	Slide 8: OBJECTIVES – 11/20
	Slide 9: Tutorial 5 – closing NOV 21 4:59am
	Slide 10: Tutorial 6 – nov 23
	Slide 11: Tutorial 7 – dec 4
	Slide 12: Tutorial coverage
	Slide 13
	Slide 14: Tutorial 7
	Slide 15: OBJECTIVES – 11/20
	Slide 16: Group presentation
	Slide 17: Presentation schedule
	Slide 18: Presentation schedule - 2
	Slide 19: OBJECTIVES – 11/20
	Slide 20: Cloud enabling technology
	Slide 21: Virtualization management
	Slide 22: Virtual Infrastructure Management (VIM)
	Slide 23: VIM features
	Slide 24: VIM Features - 2
	Slide 25: VIM Features - 3
	Slide 26: Container orchestration frameworks
	Slide 27: Container services
	Slide 28: Cloud enabling technology
	Slide 29: 4. Multitenant applications
	Slide 30: Multitenant apps - 2
	Slide 31: Cloud enabling technology
	Slide 32: 5. Web services/web
	Slide 33: Hypertext transport protocol (http)
	Slide 34: Rest: representational state transfer
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Rest climate services example
	Slide 39: Rest - 2
	Slide 40: REST architectural advantages
	Slide 41: We will return at ~4:50 pm
	Slide 42: OBJECTIVES – 11/20
	Slide 43: Containerization
	Slide 44: OBJECTIVES – 11/20
	Slide 45: Motivation for containerization
	Slide 46: Container performance – LU factorization performance
	Slide 47: Container performance – y-cruncher: pi calculator
	Slide 48: Container performance – bonnie++
	Slide 49: What is a container?
	Slide 50: Operating system containers
	Slide 51: Application containers
	Slide 52: Application containers - 2
	Slide 53: 2016 docker survey
	Slide 54: docker
	Slide 55: Original Docker engine implementation
	Slide 56: Introduction of libcontainer
	Slide 57: Open container initiative (OCI)
	Slide 58: Creating a container
	Slide 59: Creating a container - 2
	Slide 60: Support for alternate container runtimes
	Slide 61: Linux kernel namespaces
	Slide 62: Namespaces - 2
	Slide 63: Linux kernel namespaces - 3
	Slide 64: Control groups (cgroups)
	Slide 65: Cgroups - 2
	Slide 66: Overlay file systems
	Slide 67: Layered fs: Building a container
	Slide 68: Three-tier architecture
	Slide 69: Container isolation
	Slide 70: Lxc (linux containers)
	Slide 71: Other docker tools
	Slide 72: Container orchestration frameworks
	Slide 73: Key orchestration features
	Slide 74: Container orchestration frameworks - 2
	Slide 75: OBJECTIVES – 11/20
	Slide 76: Container profiler
	Slide 77: Container profiler
	Slide 78: Container profiler: Profiling overhead
	Slide 79: Container profiler: Profiling overhead example
	Slide 80: Container profiler: time series analysis of resource utilization
	Slide 81: Container profiler: metrics
	Slide 82: Container profiler: use case
	Slide 83: Container profiler: delta profiling
	Slide 84: Questions

