

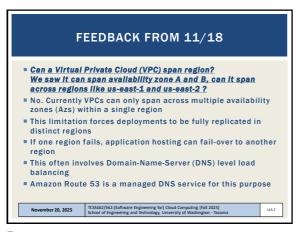
1

3

5

MATERIAL / PACE

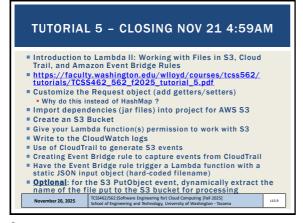
Please classify your perspective on material covered in today's class (41 respondents, 27 in-person, 14 online):


1-mostly review, 5-equal new/review, 10-mostly new

Average - 6.46 (↑- previous 5.64)

Please rate the pace of today's class:

1-slow, 5-just right, 10-fast


Average - 5.29 (↑- previous 4.96)

OBJECTIVES - 11/20

- Questions from 11/18
- Tutorials Questions
- Class Presentations Schedule - Cloud Technology or Research Paper Review
- Ch. 5: Cloud Enabling Technology
- Containerization
- Container Profiler

- TCSS62/562/56/Ware Engineering for Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

TUTORIAL 6 - NOV 23

Introduction to Lambda III: Serverless Databases

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf

Create and use Sqlite databases using sqlite3

Deploy Lambda function with Sqlite3 database under / tmp

Compare in-memory vs. file-based Sqlite DBs on Lambda

Create an Amazon Aurora "Serverless" v2 MySQL database

Using the AWS CloudShell in the same VPC (Region + availability zone) connect and interact your Aurora serverless database using the mysql CLI app

Deploy an AWS Lambda function that uses the MySQL "serverless" database

November 20, 2025

TCSS42/S62/Software Engineering for Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington-Tacoma

9

TUTORIAL 7 - DEC 4

Introduction to Docker

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TcSs462_562_f2025_tutorial_7.pdf

Must complete using c7i-flex.large ec2 instance & Ubuntu 24.04 (for cgroups v2)

Use DOCX file for copying and pasting Docker install commands

Topics:
Installing Docker

Creating a container using a Dockerfile

Using cgroups virtual filesystem to monitor CPU utilization of a container

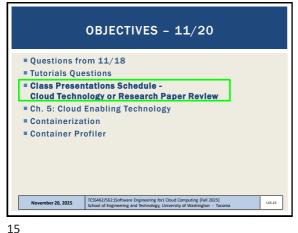
Persisting container images to Docker Hub image repository
Container vertical scaling of CPU/memory resources

Testing container CPU and memory isolation

November 20, 2025

TCSS462/S62:Eoftware Engineering byl Gloud Computing [Fall 2025]
School of Engineering and Technology, University of Mashington—Tacoma

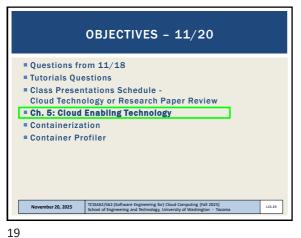
TUTORIAL COVERAGE ■ Docker CLI → Docker Engine (dockerd) → containerd → runc Working with the docker CLI: docker run create a container list containers, find CONTAINER ID docker ps -a docker exec -- it run a process in an existing container docker stop stop a container docker kill kill a container docker help list available commands Docker Linux manual pages man docker TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 20, 2025

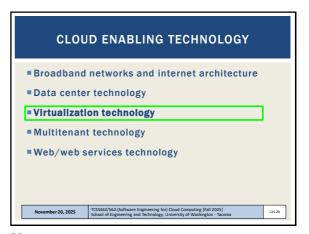

11 12

Slides by Wes J. Lloyd L15.2

TUTORIAL 7 Tutorial introduces use of two common Linux performance benchmark applications stress-ng ■ 100s of CPU, memory, disk, network stress tests Used in tutorial for memory stress test vember 20, 2025 L15.14

14 13


GROUP PRESENTATION ■ TWO OPTIONS: Cloud technology presentation Cloud research paper presentation Recent & suggested papers will be posted at: $\underline{http://faculty.washington.edu/wlloyd/courses/tcss562/papers/}$ Submit presentation type and topics (paper or technology) with desired dates of presentation via Canvas by: Tuesday November 18th @ 11:59pm Presentation dates: Tuesday November 25 Tuesday December 2*, Thursday December 4 * - day of quiz 2. only 1 presentation slot TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Taco November 20, 2025


PRESENTATION SCHEDULE <Tuesday November 25> 1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu Research paper: Serveriess Replication of Object Storage across **Multi-Vendor Clouds and Regions** 2. Team 1: William Hav Cloud Technology: Amazon Athena <Tuesday December 2> 1. Team 5: Sparsha Jha, Chris Biju Cloud Technology: Intelligent Optimization of Distributed Pipeline Execution in Serveriess Platforms: A Predictive Model Approach November 20, 2025 L15.17

PRESENTATION SCHEDULE - 2 <Thursday December 4> 1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett Research paper: A Perfect Fit? - Towards Containers on **Microkernels** 2. Team 2: Ruby Plangphatthanaphanit, Junjia Li, Ari Yin Cloud Technology: CI/CD in the Cloud (GitHub Actions + Cloud Deploy) 3. Team 8: Aamena Suzzane, Dhruva Bhat Research paper: CoFaaS: Automatic Transformation-based **Consolidation of Serverless Functions** 4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao Cloud Technology: AWS Amplify TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 20, 2025

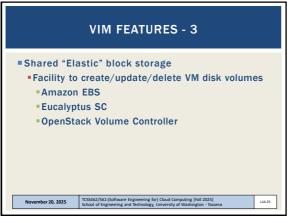
17 18

Slides by Wes J. Lloyd L15.3

20

VIRTUALIZATION MANAGEMENT ■ Virtual infrastructure management (VIM) tools ■ Tools that manage pools of virtual machines, resources, etc. Private cloud software systems can be considered as a VIM Considerations: ■ Performance overhead Paravirtualization: custom OS kernels, I/O passed directly to HW w/ special drivers Hardware compatibility for virtualization Portability: virtual resources tend to be difficult to migrate TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac November 20, 2025 L14.21

VIRTUAL INFRASTRUCTURE **MANAGEMENT (VIM)** • Middleware to manage virtual machines and infrastructure of laaS "clouds" Examples OpenNebula Nimbus Eucalyptus OpenStack November 20, 2025


21

VIM FEATURES Create/destroy VM Instances Image repository Create/Destroy/Update images Image persistence ■ Contextualization of VMs Networking address assignment DHCP / Static IPs Manage SSH keys November 20, 2025

VIM FEATURES - 2 ■ Virtual network configuration/management Public/Private IP address assignment Virtual firewall management • Configure/support isolated VLANs (private clusters) Support common virtual machine managers *XEN, KVM, VMware Support via libvirt library

23 24

Slides by Wes J. Lloyd L15.4

CONTAINER ORCHESTRATION
FRAMEWORKS

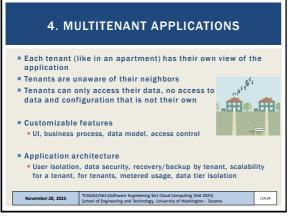
Middleware to manage Docker application container deployments across virtual clusters of Docker hosts (VMs)
Considered Infrastructure-as-a-Service

Opensource
Kubernetes framework
Docker swarm
Apache Mesos/Marathon

Proprietary
Amazon Elastic Container Service

INSSER/ISSE/SER/ISSE

25 26



CLOUD ENABLING TECHNOLOGY

Adapted from Ch. 5 from Cloud Computing Concepts, Technology & Architecture
Broadband networks and internet architecture
Data center technology
Virtualization technology
Multitenant technology
Web/web services technology

TCSS462/562-(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington-Tacoma

27

MULTITENANT APPS - 2

Forms the basis for SaaS (applications)

Operators

Operators

Operators

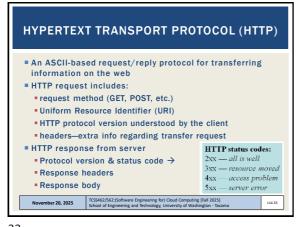
TCSS402/S02-(Software Engineering for) Cloud Computing [Fall 2022]
School of Engineering and Technology, University of Washington - Tacoma

29 30

Slides by Wes J. Lloyd L15.5

Sources technology is a key foundation of cloud computing's "as-a-service" cloud delivery model

Soap - "Simple" object access protocol
First generation web services
WSDL - web services description language
UDDI - universal description discovery and integration
Soap services have their own unique interfaces


REST - instead of defining a custom technical interface REST services are built on the use of HTTP protocol
HTTP GET, PUT, POST, DELETE

November 20, 2025

Tics462/562/566/bare Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington Taccoma

114.32

31 32

REST: REPRESENTATIONAL STATE TRANSFER

Web services protocol

Supersedes SOAP – Simple Object Access Protocol

Access and manipulate web resources with a predefined set of stateless operations (known as web services)

Requests are made to a URI

Responses are most often in JSON, but can also be HTML, ASCII text, XML, no real limits as long as text-based

HTTP verbs: GET, POST, PUT, DELETE, ...

33

```
// SOAP REQUEST

POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Boody xmlns:m="http://www.w3.org/2001/12/soap-encoding">
<m:GetBookPrice>
<m:GetBookPrice>
</m:GetBookPrice>
</m:GetBookPrice>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Sody>
</soap:Sody>

TCSS462/So2(Sohware Engineering Bot) Cloud Computing [Fail 2025]
School of Engineering and Technology, University of Washington-Tacoma
```

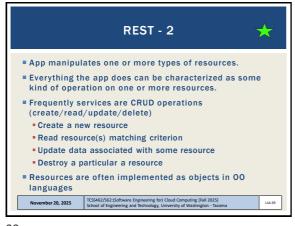
// SOAP RESPONSE
POST /InStock HTTP/1.1
Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encoding*byle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body xmlns:sm="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</soap:Body
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Envelope>

TCSS462562:Gothware Engineering for) Cloud Computing [Fail 2025]
School of Engineering and Technology, University of Weahington-Tacoma

35 36

Slides by Wes J. Lloyd L15.6


```
// WEDL farvice Definition

"real western".0° encodings*UTF-0*7)

Charles and the control of the component component paramples [DayOffmak.wail*
miliar its="http://www.nogueses.com/ongeners/acamples/DayOffmak.wail*
miliar its="http://www.nogueses.com/ongeners/acamples/DayOffmak.wail*
miliar its="http://www.nogueses.com/ongeners/acamples/DayOffmak.wail*
miliar its="http://www.nogueses.com/ongeners/payOffmak.wail*

Charles and the component of the control of the control
```

37 38

REST ARCHITECTURAL ADVANTAGES

Performance: component interactions can be the dominant factor in user-perceived performance and network efficiency

Scalability: to support large numbers of services and interactions among them

Simplicity: of the Uniform Interface

Modifiability: of services to meet changing needs (even while the application is running)

Visibility: of communication between services

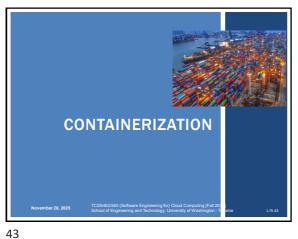
Portability: of services by redeployment

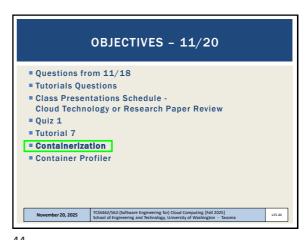
Reliability: resists failure at the system level as redundancy of infrastructure is easy to ensure

November 20, 2025

TOSA/6/9/S12-Software Engineering for) Cloud Computing [Fail 2025]
School of Engineering and Technology, University of Washington - Tacoma

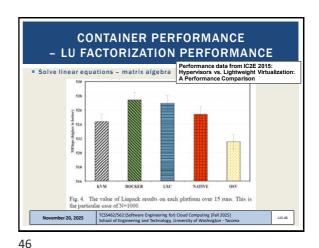
39

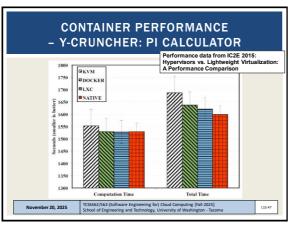

OBJECTIVES - 11/20


Questions from 11/18
Tutorials Questions
Class Presentations Schedule Cloud Technology or Research Paper Review
Ch. 5: Cloud Enabling Technology
Containerization
Container Profiler

TCSS462/562:[Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

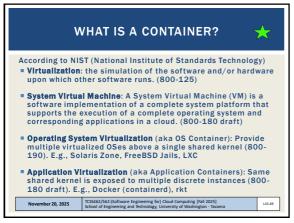
41 42

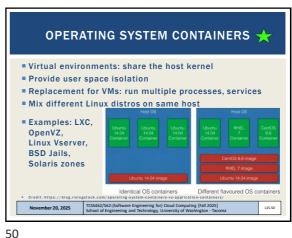

Slides by Wes J. Lloyd L15.7

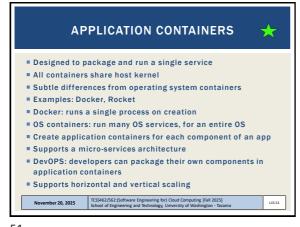


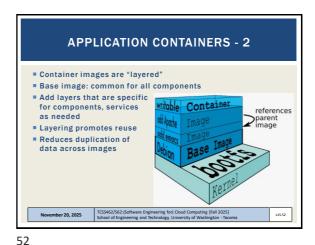
44

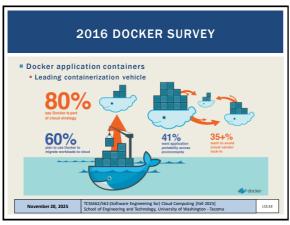
MOTIVATION FOR CONTAINERIZATION Containers provide "light-weight" alternative to full OS virtualization provided by a VM hypervisor Containers do not provide a full "machine" Instead they use operating system constructs to provide "sand boxes" for execution Linux cgroups, namespaces, etc. Containers can run on bare metal, or atop of VMs Contains Hypervisor/VM nber 20, 2025 L15.45




45


CONTAINER PERFORMANCE - BONNIE++ Performance data from IC2E 2015: Hypervisors vs. Lightweight Virtualization: A Performance Comparison □KVM □DOCKER □LXC ■NATIVE Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB). Results for sequential writes and sequential read are shown. TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac November 20, 2025


47 48



49

51

DOCKER

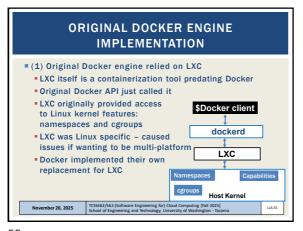
Docker daemon "dockerd"

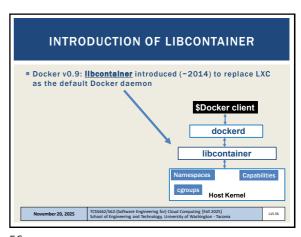
Implements docker engine that interprets CLI requests and creates/manages containers using backend layered Docker architecture

Starting in 2017 version numbering switches from 1.x to YR.x

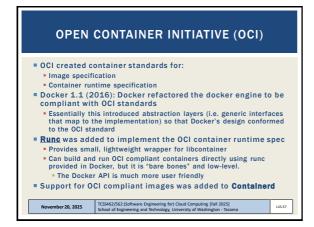
2017 releases: 17.03 - 17.12

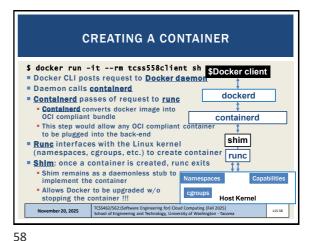
2018 releases: 18.01 - 18.09

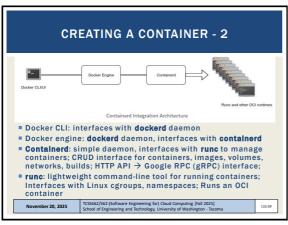

2019 releases: 19.03.0 - 19.03.13


Coule Clamb Serve Architecture

Coule Clamb Serve Architecture


TCCS462/562/562/567/504/ware Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington-Taxoonal


53 54

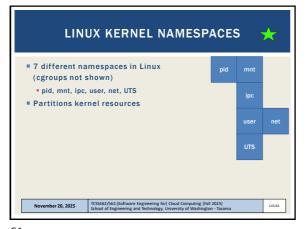


55 56

57

SUPPORT FOR
ALTERNATE CONTAINER RUNTIMES

Modularity of Docker implementation supports
"execution drivers concept":


Enables docker to support many
alternate container backends

OpenVZ, system-nspawn, libvirt-lxc,
libvirt-sandbox, qemu/kvm,
BSD Jails, Solaris Zones, and chroot

Linux

cgroups namespaces netlink
samespaces netlink
sam

59 60

Provides Isolation of OS entitles for containers

mnt: separate filesystems

pid: independent PIDs; first process in container is PID 1

pig: prevents processes in different IPC namespaces from being able to establish shared memory. Enables processes in different containers to reuse the same identifiers without conflict.

provides expected VM like isolation...

user: user identification and privilege isolation among separate containers

net: network stack virtualization. Multiple loopbacks (lo)

utself: user identification and privilege separate host and domain

| November 20, 2025 | Tissage and Technology, University of Washington - Tacoma | Ussage | Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma | Ussage | Cloud Computing [Fall 2025] | Cloud Computi

61 62

CONTROL GROUPS (CGROUPS) ■ Collection of Linux processes Group-level resource allocation: CPU, memory, disk I/O, network I/O Resource limiting Memory, disk cache Prioritization CPU share Disk I/O throughput Accounting Track resource utilization • For resource management and/or billing purposes Pause/resume processes Checkpointing → Checkpoint/Restore in Userspace (CRIU) https://criu.org November 20, 2025 L15.64

63

CGROUPS - 2

Control groups are hierarchical
Groups inherent limits from parent groups
Linux has multiple cgroup controllers (subsystems)

Is / proc/cgroups
"memory" controller limits memory use
"cpuacet" controller accounts
for CPU usage

cgroup fllesystem:

cgroup fllesystem:

/sys/fs/cgroup

Can browse resource utilization of containers...

November 20, 2025

TCSS462/562: Software Engineering for I Goud Computing [fall 2025]
khool of Engineering and Technology, University of Washington - Tacoma

OVERLAY FILE SYSTEMS

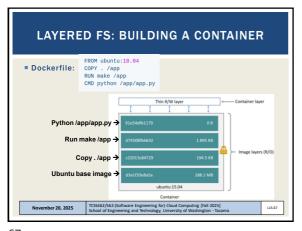
Docker leverages overlay filesystems

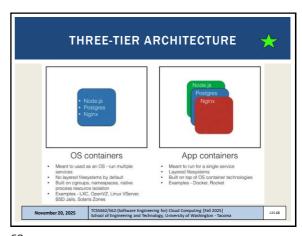
1*: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that appears to contain combined contents

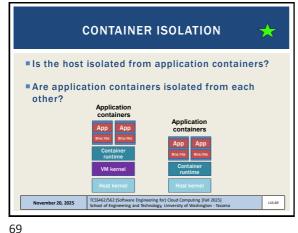
Idea: Docker uses layered file systems
Only the top layer is writeable
Other layers are read-only
Layers are merged to present the notion of a real file system
Copy-on-write-implicit sharing
Implement duplicate copy

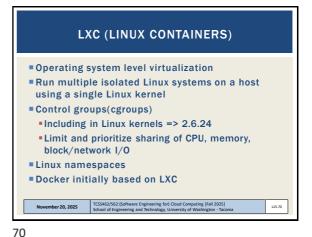
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a

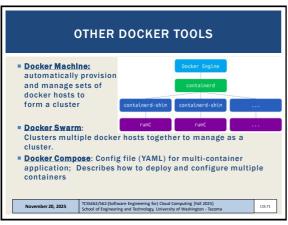

https://www.slideshar.net/jpetazzo/scale11x-lxc-talk-1/


November 20, 2025

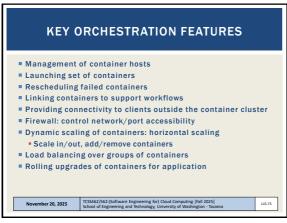
TCS446/562/56/sforware Engineering for/ Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington: Tacoma


65 66


Slides by Wes J. Lloyd L15.11



67 68



CONTAINER ORCHESTRATION FRAMEWORKS Framework(s) to deploy multiple containers ■ Provide container clusters using cloud VMs ■ Similar to "private clusters" Reduce VM idle CPU time in public clouds ■ Better leverage "sunk cost" resources Compact multiple apps onto shared public cloud infrastructure ■ Generate to cost savings Reduce vendor lock-in November 20, 2025

71 72

CONTAINER ORCHESTRATION
FRAMEWORKS - 2


Docker swarm
Apache mesos/marathon
Kubernetes
Many public cloud provides moving to offer Kubernetes-as-a-service
Amazon elastic container service (ECS)
Apache aurora

Container-as-a-Service
Serverles containers without managing clusters
Azure Container Instances, AWS Fargate...

November 20, 2025

TCSS462/S62:Software Engineering for Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington Taccoma

73 74

CONTAINER
PROFILER

Gigscience, 2003, 12, 1-11
DOI: 10.1095/gigscience/gido09
Tech Note

Container Profiler: Profiling resource utilization of
containerized big data pipelines

Varik Honge **Line Hong Hong Hong Hong Reymond Schooley** On Nharika Arumilli, Ka Yee Yeung **
stand for Engineering and Dicknooling University of Whilainene, Tourne, 30, 1882, U.S. & mail wiley@weeds

**Companions address Week Liny, 1800 Commerce in 870450, Tecoma, 30, 1882, U.S. & mail wiley@weeds

**Companions address Week Liny, 1800 Commerce in 870450, Tecoma, 30, 1882, U.S. & mail wiley@weeds

**Companions address Week Liny, 1800 Commerce in 870450, Tecoma, 30, 1882, U.S. & mail wiley@weeks

**Companions address Week Liny, 1800 Commerce in 870450, Tecoma, 30, 1882, U.S. & mail wiley@weeks

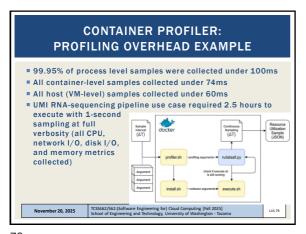
**Companions address Week Liny, 1800 Commerce in 870450, Tecoma, 30, 1882, U.S. & mail wiley@weeks

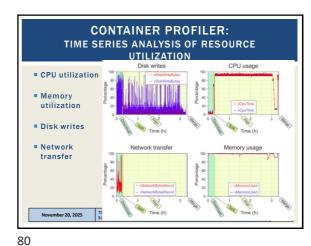
75

CONTAINER PROFILER

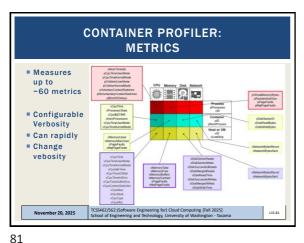
Captures resource utilization metrics for containers
Profiles CPU, memory, disk, and network utilization collecting over 60 metrics available from the Linux OS
Supports two types of profiling
A *Delta* Resource Utilization: Records and calculates total resource utilization from when an initial selection is provided before implementation is verified.

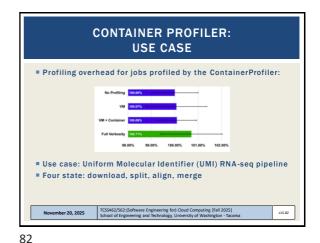
Time series sampling: supports a configurable sampling interval for continuous monitoring of resources consumed by containers
Similar profiling techniques compared to SAAF
Uses Linux proc filesystem "man procfs"
Implemented with a combination of custom code and the Python-based psutil library to obtain resource utilization data rapidly


November 23, 2016


TCSS462/662/Software Engineering for) Cloud Computing [fail 2025]
School of Engineering and Technology, University of Washington -Tacoma

CONTAINER PROFILER: PROFILING OVERHEAD Profiling overhead (9,000 samples):
 Use case: RNA-sequencing data processing pipeline (containerized)
Hardware: IBM Cloud dual bx2d metal
96 vCPUs processors, 384 GB RAM Process-level: 3 peaks indicate different behavior presumably based on the number of processes running inside the containerd cpuldle time. Process level collects and reports all available metrics Other Supported Profiling Modes: Container-level profiling
 Does not collect process-level metrics Faster VM-level profiling: 23322248844288885288882933331 Even faster
Only collects host-level metrics TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Taco November 20, 2025 L15.78


77 78


Slides by Wes J. Lloyd L15.13

79

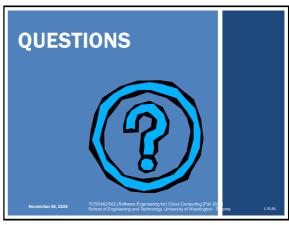
01

CONTAINER PROFILER:
DELTA PROFILING

Delta profiling supports viewing total resource utilization (CPU, disk, network) for a containerized task or mutili-stage pipeline **Task = 1 container

Pipeline = many container

Pipeline = many container


**Delta captures the perceived system resources used by the task

**Here is the delta profiling graph for resource utilization:

**Four tasks: Download, Split, Align, Merge **Graph shows % time in different CPU modes (cpuUsr, cpuKrn, cpuIdle, etc.)

**November 20, 2025*

**INSSEAT/Se2/ScHWave Engineering for Cloud Computing [fail 2025] School of Engineering and Technology, University of Washington - Tascona 115.53

83