TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Clolud Enabling Technology
& Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

[Fall 2025]

OFFICE HOURS - FALL 2025

lThursdays:
=6:00 to 7:00 pm - CP 229 & Zoom

uFriday - *** THIS WEEK ***
| =11:00 am to 12:00 pm - ONLINE via Zoom |
=0r email for appointment

» Office Hours set based on Student Demographics survey feedback
> * - Friday office hours may be adjusted or canceled due meeting conflicts or
other obligations. Adjustments will be announced via Canvas.

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ (Y 25 School of Engineering and Technology, University of Washington - Tacoma ts2

OBJECTIVES - 11/20

| = Questions from 11/18 |
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Ch. 5: Cloud Enabling Technology
= Containerization

= Container Profiler

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2025]

‘ Novermber2072025 School of Engineering and Technology, University of Washington - Tacoma.

us3

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class
= Extra Credit
for completing

* Upcoming Assignments

o

1 - Implicit vs. Explicit Parallelism

5 Tl d ol

i * Past Assigaments

N
|

4 TCS5 562 - Online Dalty Feedback Survey - 9/30

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ [November20,12025 School of Engineering and Technology, University of Washington - Tacoma s

TCSS 562 - Online Daily Feedback Survey - 10/5
tatect Oct 73t :133m

Quiz Instructions

Question 1 05pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s & 7 8 9 1
mestay euar mostly
Question 2 osps

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ? 10

P et might Pt

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

MEEL T 20 School of Engineering and Technology, University of Washington - Tacoma

L155

Slides by Wes J. Lloyd

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (41 respondents, 27 in-person, 14 online):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.46 (1 - previous 5.64)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.29 (1 - previous 4.96)

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2025]
‘ (e School of Engineering and Technology, University of Washington - Tacoma e

L15.1

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK FROM 11/18 OBJECTIVES - 11/20

= Can a Virtual Private Cloud (VPC) span reglon? = Questions from 11/18
We saw it can span availability zone A and B, can it span = Tutorlals Questions]
across regions like us-east-1 and us-east-2 ? O s e i Seealo o

= No. Currently VPCs can only span across multiple availability Cloud Technology or Research Paper Review

zones (Azs) within a single region « Oh. 5: Cloud Enabli Technol
. 5: nablin n
= This limitation forces deployments to be fully replicated in ou abling Technology

distinct regions = Containerization
= If one region fails, application hosting can fail-over to another = Container Profiler
region
= This often involves Domain-Name-Server (DNS) level load
balancing

= Amazon Route 53 is a managed DNS service for this purpose

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ Beenbet20 202 School of Engineering and Technology, University of Washington - Tacoma us7 (Y 25 School of Engineering and Technology, University of Washington - Tacoma s

TUTORIAL 5 - CLOSING NOV 21 4:59AM TUTORIAL 6 - NOV 23

= |Introduction to Lambda Il: Working with Files in S3, Cloud Introduction to Lambda lll: Serverless Databases
Trail, and Amazon Event Bridge Rules

= https://faculty.washington.edu/wlloyd/courses/tcss562 L httos_: faculty.washington.edu wIIov_d courses/tcss562
tutorials/TCSS462 562 £2025 tutorial 5.pdf tutorials/TCSS462_562_f2025_tutorial_6.pdf
= Customize the Request object (add getters/setters)
= Why do this instead of HashMap ?
= I[mport dependencies (jar files) into project for AWS S3
= Create an S3 Bucket
= Give your Lambda function(s) permission to work with S3
= Write to the CloudWatch logs

Create and use Sqlite databases using sqlite3

Deploy Lambda function with Sqlite3 database under /tmp
Compare in-memory vs. file-based Sqlite DBs on Lambda
Create an Amazon Aurora “Serverless” v2 MySQL database
Using the AWS CloudShell in the same VPC (Region +

= Use of CloudTrail to generate S3 events availability zone) connect and interact your Aurora serverless
= Creating Event Bridge rule to capture events from CloudTrail database using the mysql CLI app
.

Have the Event Bridge rule trigger a Lambda function with a Deploy an AWS Lambda function that uses the MySQL
static JSON input object (hard-coded filename) “serverless” database

= Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] . November20, 2025 TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025] 510
School of Engineering and Technology, University of Washington - Tacoma b School of Engineering and Technology, University of Washington - Tacoma

November 20, 2025

TUTORIAL 7 - DEC 4 TUTORIAL COVERAGE

= |Introduction to Docker . .
= https://faculty.washington.edu/wlloyd/courses/tcss562 ® Docker CLI > Docker Engine (dockerd) > containerd = runc

tutorials/TCSS462_562_f2025_tutorial_7.pdf

= Must complete using c7i-flex.large ec2 instance & DG WD #ie Cosker EUE

Ubuntu 24.04 (for cgroups v2)

= Use DOCX file for copying and pasting Docker install f
CEMENLES = docker run create a container

= Topics: = docker ps -a list containers, find CONTAINER ID
= Installing Docker

= docker exec --it run a process in an existing container
= Creating a container using a Dockerfile

= Using cgroups virtual filesystem to monitor CPU utilization of a = docker stop stop a container
CEEI o)) = docker Kkill kill a container
= Persisting container images to Docker Hub image repository
= Container vertical scaling of CPU/memory resources = docker help list available commands
= Testing container CPU and memory isolation = man docker Docker Linux manual pages
[bt | ot s e ey o [bt | S e e ey -

11 12

Slides by Wes J. Lloyd L15.2

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_7.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

st o a run

local filesystem

Docker CLI

t their exit codes

[Fall 2025]

TUTORIAL 7

= Tutorial introduces use of two common Linux performance
benchmark applications

= stress-ng
= 100s of CPU, memory, disk, network stress tests

= Syshench
= Used in tutorial for memory stress test

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ (Y 25 School of Engineering and Technology, University of Washington - Tacoma s

OBJECTIVES - 11/20

= Questions from 11/18
= Tutorials Questions
= Class Presentations Schedule -
Cloud Technology or Research Paper Revlew
= Ch. 5: Cloud Enabling Technology
= Containerization
= Container Profiler

TCS5462/562:(Software Engineering for) Cloud Computing [Fal 2025]
‘ November 20,2025 School of Engineering and Technology, University of Washington - Tacoma. uss

14

GROUP PRESENTATION

= TWO OPTIONS:
= Cloud technology presentation
= Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://f: Ity.washington. wil r 2, I

= Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:
Tuesday November 18t @ 11:59pm

= Presentation dates:
= Tuesday November 25
= Tuesday December 2*, Thursday December 4
* - day of quiz 2. only 1 presentation slot

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ November20, 2025 School of Engineering and Technology, University of Washington - Tacoma Ls16

15

PRESENTATION SCHEDULE

= <Tuesday November 25>

1. Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu

Research paper: Serverless Replication of Object Storage across
Multi-Vendor Clouds and Regions

2. Team 1: William Hay

Cloud Technology: Amazon Athena

= <Tuesday December 2>

1. Team 5: Sparsha Jha, Chris Biju

Cloud Technology: Intelligent Optimization of Distributed
Pipeline Execution in Serverless Platforms: A Predictive Model
Approach

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ e sl School of Engineering and Technology, University of Washington - Tacoma w7

16

PRESENTATION SCHEDULE - 2

= <Thursday December 4>

1. Team 3: Jiameng Li, Naomi Nottingham, Headley Brissett
Research paper: A Perfect Fit? - Towards Containers on
Microkernels

2. Team 2: Ruby Plangphatthanaphanit, Junjia Li, Ari Yin
Cloud Technology: CI/CD In the Cloud (GItHub Actlons + Cloud
Deploy)

3. Team 8: Aamena Suzzane, Dhruva Bhat

Research paper: CoFaaS: Automatlic Transformation-based
Consolidation of Serverless Functions

4. Team 6: Han Zhang, Sahil Bhatt, Pengcheng Cao

Cloud Technology: AWS Amplify

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ November20, 2025 School of Engineering and Technology, University of Washington - Tacoma 1518

17

Slides by Wes J. Lloyd

18

L15.3

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

OBJECTIVES - 11/20

= Questions from 11/18
= Tutorials Questions
= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Ch. 5: Cloud Enabling Technology |
= Containerization

= Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ Beenbet20 202 School of Engineering and Technology, University of Washington - Tacoma

us19

CLOUD ENABLING TECHNOLOGY

= Broadband networks and internet architecture

= Data center technology

|l Virtualization technology

= Multitenant technology

= Web/web services technology

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ (I 225 School of Engineering and Technology, University of Washington - Tacoma

us.20

19

20

VIRTUALIZATION MANAGEMENT

= Virtual infrastructure management (VIM) tools

= Considerations:
= Performance overhead

special drivers

= Hardware compatibility for virtualization

cross-clouds

= Tools that manage pools of virtual machines, resources, etc.
= Private cloud software systems can be considered as a VIM

= Paravirtualization: custom OS kernels, 1/0 passed directly to HW w/

= Portability: virtual resources tend to be difficult to migrate

TCS3462/562: (Software Engineering for) Cloud Computing (Fall 2025]

‘ November 20,2025 School of Engineering and Technology, University of Washington - Tacoma

ua2

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

= Middleware to manage virtual machines and
infrastructure of laaS “clouds”

= Examples
=0OpenNebula
=Nimbus
=Eucalyptus
=0OpenStack

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ November20, 2025 School of Engineering and Technology, University of Washington - Tacoma

uaz

21

22

VIM FEATURES

= Create/destroy VM Instances

"Image repository
=Create/Destroy/Update images
=lmage persistence

= Contextualization of VMs
=Networking address assignment
DHCP / Static IPs
=Manage SSH keys

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2025

ua2s

VIM FEATURES - 2

=Virtual network configuration/management
=Public/Private IP address assignment
=Virtual firewall management

* Configure/support isolated VLANs (private
clusters)

= Support common virtual machine managers
(VMMs)

=XEN, KVM, VMware
=Support via libvirt library

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

‘ (U EREIHEED ‘ School of Engineering and Technology, University of Washington - Tacoma

La2s

23

Slides by Wes J. Lloyd

24

L15.4

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing

School

of Engineering and Technology, UW-Tacoma

VIM FEATURES - 3

=Shared “Elastic” block storage

=Facility to create/update/delete VM disk volumes
Amazon EBS
Eucalyptus SC
OpenStack Volume Controller

‘ November 20, 2025 TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

ua2s

25

CONTAINER SERVICES

= Publlc cloud contalner cluster services
= Azure Kubernetes Service (AKS)

= Amazon Elastic Container Service for Kubernetes (EKS)
= Google Kubernetes Engine (GKE)

= Container-as- rvi

= Azure Container Instances (ACl - April 2018)

= AWS Fargate (November 2017)

= Google Kubernetes Engine Serverless Add-on (alpha-July 2018)

‘ A TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

ua27

2

7

4. MULTITENANT APPLICATIONS

= Each tenant (like in an apartment) has their own view of the
application

= Tenants are unaware of their neighbors

= Tenants can only access their data, no access to @t
data and configuration that is not their own

= Customizable features
= Ul, business process, data model, access control

= Application architecture

= User isolation, data security, recovery/backup by tenant, scalability
for a tenant, for tenants, metered usage, data tier isolation

November20, 2025 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

1429

29

Slides by Wes J. Lloyd

[Fall 2025]

CONTAINER ORCHESTRATION
FRAMEWORKS

= Middleware to manage Docker application container
deployments across virtual clusters of Docker hosts (VMs)
= Considered Infrastructure-as-a-Service

= Opensource

= Kubernetes framework

= Docker swarm

= Apache Mesos/Marathon

= Proprietary
= Amazon Elastic Container Service

‘ e et 201202 TC55462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

ua2s

2

6

CLOUD ENABLING TECHNOLOGY

= Adapted from Ch. 5 from Cloud Computing
Concepts, Technology & Architecture

= Broadband networks and internet architecture
= Data center technology

= Virtualization technology

|- Multitenant technology |

= Web/web services technology

TC55462/562:(Software Engineering for) Cloud Computing [Fal 2025]
November20, 2025 ‘ School of Engineering and Technology, University of Washington - Tacoma

L1428

28

MULTITENANT APPS - 2

= Forms the basis for SaaS (applications)

Orgmanein 4 po—

November20, 2025 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]

School of Engineering and Technology, University of Washington - Tacoma

e

30

L15.5

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CLOUD ENABLING TECHNOLOGY 5. WEB SERVICES/WEB >k
= Adapted from Ch. 5 from Cloud Computing = Web services technology is a key foundation of cloud
Concepts, Technology & Architecture computing’s “as-a-service” cloud delivery model
= Broadband networks and internet architecture = SOAP - “Simple” object access protocol

= First generation web services
u

Data center technology = WSDL - web services description language

= Virtualization technology =UDDI - universal description discovery and integration

= SOAP services have their own unique interfaces
= Multitenant technolo
gy = REST - instead of defining a custom technical interface

|- Web/web services technology | REST services are built on the use of HTTP protocol
= HTTP GET, PUT, POST, DELETE

‘ November 20, 2025

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025 s November 20, 2025 'TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] a3
School of Engineering and Technology, University of Washington - Tacoma 5 School of Engineering and Technology, University of Washington - Tacoma

31 32

HYPERTEXT TRANSPORT PROTOCOL (HTTP) REST: REPRESENTATIONAL STATE TRANSFER

= An ASCll-based request/reply protocol for transferring = Web services protocol
information on the web

HTTP request includes:

= request method (GET, POST, etc.) = Access and manipulate web resources with a predefined
= Uniform Resource Identifier (URI) set of stateless operations (known as web services)

= HTTP protocol version understood by the client
= headers—extra info regarding transfer request

= Supersedes SOAP - Simple Object Access Protocol

= Requests are made to a URI

= Responses are most often in JSON, but can also be HTML,

= HTTP response from server HTTP status codes:
) P 1 s well ASCII text, XML, no real limits as long as text-based

= Protocol version & status code > XX — aul 15 We

= Response headers ST e [T = HTTP verbs: GET, POST, PUT, DELETE, ...

dx access problem
= Response body Sxx — server ervor
TCSS462/562:(Software Engil ring for) Cloud Cc iting [Fall 2025) TCSS462/562:(Softy Er for) Cloud C uting [Fall 2025]
| ovemberaouas [TGStz loes et o i ompuin ol 20) [novemberzo s [TSttt et o v om0

33 34

// SOAP REQUEST
// SOAP RESPONSE

POST /InStock HTTP/1.1 POST /InStock HTTP/1.1
Host: www.bookshop.org Host: www.bookshop.org
Content-Type: application/soap+xml; charset=utf-8 Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn Content-Length: nnn
<?xml version="1.0"?> <?xml version="1.0"?>
<soap:Envelope <soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/scap-envelope" xmlns:soap="http://www.w3.0rg/2001/12/scap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap- soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding"> encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices"> <soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice> <m:GetBookPriceResponse>

<m:BookName>The Fleamarket</m:BookName> <m: Price>10.95</m: Price>

</m:GetBookPrice> </m:GetBookPriceResponse>
</soap:Body> </soap:Body>
</soap:Envelope> </soap:Envelope>

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma L1435

November 20, 2025 School of Engineering and Technology, University of Washington - Tacoma L14.38

November 20, 2025

35 36

Slides by Wes J. Lloyd L15.6

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

/4 Weon. sexvice petsnition
ncoding="UTE-8"2>
iafinitions name ='DayofWeek”
el S

:q: //::mn smls0ap . org/wsdl/soap/"
¥3-009/2001/01:Schema
date” type="xsd:date" />

<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

ype=
= mmng style="document"
="http: //sch 1 7>
<operation name="GetDayOfHeek">
Sgompioperation soaphetion="qetdayotvesk”/>
<is
Fnesy e
- p:/ /1
p://schy 1

</inpue>

<output>

<soap:body use="encoded"
pac p: / /1

h 2 >
</output>
</operation>
</bindin
<service name="DayOfWeekService" >

vy ng=
Lon="http:/. >
</ports
<Jservice>
</definitions> 2025 Cloud Computing [Fall 2025]

Semootof Engineering and Technology, University of Washington - Tacoma

L1437

37

= App manipulates one or more types of resources.

kind of operation on one or more resources.
= Frequently services are CRUD operations

(create/read/update/delete)

= Create a new resource

= Read resource(s) matching criterion

= Update data associated with some resource

= Destroy a particular a resource

= Resources are often implemented as objects in 00
languages

= Everything the app does can be characterized as some

Engineering for) Cloud Computing [Fall 2025]
Schoo\ of Engineering and Technology, University of Washington - Tacoma

‘), 2025

39

39

WE WILL RETURN AT

~4:50 PM

41

Slides by Wes J. Lloyd

[Fall 2025]

REST CLIMATE SERVICES EXAMPLE
= USDA // REST/JSON
Lat/Long // Request climate data for Washington
Climate {
Service "p{:aramet:er": [
Demo "name": "latitude",
"value":47.2529
Iy
{
0 "name": "longitude",
= Just provide nvalue":-122.4443
a Lat/Long])
}
[tovemberanazs [IStz st et o cud empans o

38

REST ARCHITECTURAL ADVANTAGES

= Performance: component interactions can be the dominant
factor in user-perceived performance and network efficiency

= Scalability: to support large numbers of services and
interactions among them

= Simplicity: of the Uniform Interface

= Modifiability: of services to meet changing needs (even while the
application is running)

= Visibility: of communication between services
= Portabllity: of services by redeployment

= Rellablllty: resists failure at the system level as redundancy of
infrastructure is easy to ensure

Engineering for) Cloud Computing [Fall 2025 e
Schml of Engineering and Technology, University of Washington - Tacoma

‘), 2025

40

OBJECTIVES - 11/20

= Questions from 11/18
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Ch. 5: Cloud Enabling Technology

= Container Profiler

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma e

42

L15.7

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

CONTAINERIZATION

TCS$462/562:(Software Engineering for) Cloud Computing [Fall 20}

otenber20i2028) School of Engineering and Technology, University of Washington -

OBJECTIVES - 11/20

= Questions from 11/18
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Quiz 1
= Tutorial 7

= Container Profiler

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025 Lsas

‘ (Y 25 School of Engineering and Technology, University of Washington - Tacoma

43

virtualization provided by a VM hypervisor
= Containers do not provide a full “machine”

“sand boxes” for execution
= Linux cgroups, nhamespaces, etc.
= Containers can run on bare metal, or atop of VMs

efe| Containcr

afo

aja) pplicaton
L —

[Cominers engine

Hest 08

Containers Hypervisor/VM

MOTIVATION FOR CONTAINERIZATION

*

= Containers provide “light-weight” alternative to full 0S

= |[nstead they use operating system constructs to provide

Host 05

[Hodware | Type 2
2025 TCS: Engineering for) Cloud Computing [Fall 2025] us.as
’ School of Engineering and Technology, University of Washington - Tacoma

CONTAINER PERFORMANCE
- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:

GrvM
170 | lanocker
1 | |BLXC

ENATIVE

1600

550

1500

Secunds (smaller Is better)

1450

1400

1350

1300

Computation Time Total Time

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2025

usa7

47

Slides by Wes J. Lloyd

44

CONTAINER PERFORMANCE
- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:
" Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:
A Per Comparison

MFleps thizher is brster)

[0 BOCKER LAC NATIVE asv

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TC: Engineering for) Cloud Computing [Fall 2025 L1546
School of Engineering and Technology, University of Washington - Tacoma

), 2025

46

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
A Comparison

250000 |

@KVVM _HDOCKER HLXC ENATIVE

200000

150000

100000

0000

Disk Throughput (Kbfs - higher is better)

o
Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown.

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] Lisas

School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2025

48

L15.8

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

WHAT IS A CONTAINER?) ¢

According to NIST (National Institute of Standards Technology)
= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

Applicatlon Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ Beenbet20 202 School of Engineering and Technology, University of Washington - Tacoma a9

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

= Examples: LXC,
OpenVZ,
Linux Vserver,
BSD Jails,
Solaris zones

Different flavoured OS containers

Identical OS containers
= Credit: https://blog.risi

‘ November20, 2025 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2025] 11550

School of Engineering and Technology, University of Washington - Tacoma

49

APPLICATION CONTAINERS) ¢

Designed to package and run a single service
= All containers share host kernel

Subtle differences from operating system containers

Examples: Docker, Rocket
= Docker: runs a single process on creation

0S containers: run many OS services, for an entire 0S

Create application containers for each component of an app
= Supports a micro-services architecture

DevOPS: developers can package their own components in
application containers

Supports horizontal and vertical scaling

TCS5462/562:(Software Engineering for) Cloud Computing [Fal 2025]
‘ Novermber2072025 School of Engineering and Technology, University of Washington - Tacoma 1ost

50

APPLICATION CONTAINERS - 2

Container images are “layered”

Base image: common for all components
= Add layers that are specific
for components, services e
as needed parent
Layering promotes reuse image

= Reduces duplication of
data across images

51

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

60%. Pk PR

portailly acrazs
migrate workioads fa cloud enviranments

& dockar

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ (EriEa e School of Engineering and Technology, University of Washington -Tacoma uss

53

Slides by Wes J. Lloyd

TCS5462/562:(Soft: Er for) Cloud C uting [Fall 2025]
\ Noveniera0) 2025 B o Eraineeing e moion L mverity o Washinion<Tacema us=2
= Docker daemon “dockerd”
= Implements docker engine that interprets CLI requests
and creates/manages =
containers using backend g
layered Docker architecture
= Starting in 2017 version =
numbering switches from g E
1.x to YR.x E
® 2017 releases: 17.03 - 17.12 Bk
= 2018 releases: 18.01 - 18.09 -
= 2019 releases: 19.03.0 - 19.03.13 g
1
TCS5462/562:(Soft: Er for) Cloud C uting [Fall 2025]
‘ November20,2025 | oo f engneeing and Technoloy, Universityof Washington - Tacoma usst

L15.9

TCSS 462: Cloud Computing [Fall 2025]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

ORIGINAL DOCKER ENGINE INTRODUCTION OF LIBCONTAINER

IMPLEMENTATION
= (1) Original Docker engine relied on LXC = Docker v0.9: Ilibcontalner introduced (~2014) to replace LXC
= LXC itself is a containerization tool predating Docker as the default Docker daemon

= Original Docker API just called it

= LXC originally provided access $Docker client $Docker client

to Linux kernel features:

namespaces and cgroups

. o r

= LXC was Linux specific - caused ocke

issues if wanting to be multi-platform | libcontainer |
= Docker implemented their own

replacement for LXC

Capabilities

Host Kernel

cgroups
Host Kernel

‘ November20, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] usss ‘ November 20, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] L6

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

55 56

OPEN CONTAINER INITIATIVE (OCI) CREATING A CONTAINER
= OCI created container standards for: $ docker run -it --rm tcss558client Sh
= Image specification = Docker CLI posts request to Docker daemo
= Container runtime specification = Daemon calls containerd
= Docker 1.1 (2016): Docker refactored the docker engine to be = Containerd passes of request to runc
compliant with OCI standards = Contalnerd converts docker image into
= Essentially this introduced abstraction layers (i.e. generic interfaces OCl compliant bundle containerd
that map to the implementation) so that Docker's design conformed = This step would allow any OCI compliant coLl—‘—,n amer
to the OCI standard to be plugged into the back-end
= Runc was added to implement the OCI container runtime spec = Runc interfaces with the Linux kernel
= Provides small, lightweight wrapper for libcontainer (namespaces, cgroups, etc.) to create container
= Can build and run OCI compliant containers directly using runc = Shim: once a container is created, runc exits
provided in Docker, but it is “bare bones” and low-level. = Shim remains as a daemonless stub to

Capabilities

Namespaces

The Docker APl is much more user friendly implement the container
= Support for OCl compliant images was added to Containerd = Allows Docker to be upgraded w/o
stopping the container !!! Host Kernel
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ November 20,2025 School of Engineering and Technology, University of Washington - Tacoma uss? ‘ November20, 2025 School of Engineering and Technology, University of Washington - Tacoma L1558

57 58

SUPPORT FOR

CREATING A CONTAINER - 2

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

Docker CLII
= Enables docker to support many *
T alternate container backends Docker =
Containerd Integration Architecture e
= OpenVZ, system-nspawn, libvirt-Ixc, * * :
- i i o . [
gocl;er CLI..|nterfaL;(es w:h doeke.rd dafemon - : libvirt-sandbox, qemu/kvm, s ! o
L] N . .
ocker engm(-:. dockerd aen[mn, inter ac.es with contalnerd BSD Jails, Solaris Zones, and chroot | | |
= Contalnerd: simple daemon, interfaces with runc to manage .
containers; CRUD interface for containers, images, volumes, Linux
networks, builds; HTTP APl - Google RPC (gRPC) interface; cgroups namespaces netlink
= runc: lightweight command-line tool for running containers; selinux netfiiter
Interfaces with Linux cgroups, namespaces; Runs an OCI e apparmor
container e
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] TCS$462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ e sl School of Engineering and Technology, University of Washington -Tacoma L ‘ (e School of Engineering and Technology, University of Washington - Tacoma e

59 60

Slides by Wes J. Lloyd L15.10

TCSS 462:
TCSS 562:

Cloud Computing
Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

[Fall 2025]

LINUX KERNEL NAMESPACES

= 7 different namespaces in Linux
(cgroups not shown)
= pid, mnt, ipc, user, net, UTS

= Partitions kernel resources

November20, 2025 TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] Lser

School of Engineering and Technology, University of Washington - Tacoma

NAMESPACES - 2

= Provides Isolatlon of 0OS
entities for containers
= mnt: separate filesystems
= pld: independent PIDs; first process in containeris PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharing): provides separate host and domain
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] us.e2

School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2025

61

62

LINUX KERNEL NAMESPACES - 3

= Processes see only their set of resources
= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= Each process can only see resources associated
with the namespace, and descendent namespaces

November 20, 2025 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] 56

School of Engineering and Technology, University of Washington - Tacoma

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk I/0, network I/0
= Resource limiting
= Memory, disk cache
= Prioritizati
= CPU share
= Disk 1/0 throughput
= Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] U564

School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2025

63

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

“ ” #subsys_name | hierarchy | num roups_| enabled
= “cpuacct” controller accounts et
for CPU usage pu
puacct
blkio
memory 8
= cgroup filesystem: jdevices
roezer
= /sys/fs/cgroup net_cls
. . r_event T
= Can browse resource utilization et oo
. uget!
of containers... ids T

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] s

(EriEa e School of Engineering and Technology, University of Washington - Tacoma

65

Slides by Wes J. Lloyd

64

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Unlon mount flle system: combine multiple directories into one that

appears to contain combined contents

= |dea: Docker uses layered file systems
= Only the top layer is writeable
= Other layers are read-only
= Layers are merged to present the notion of a real file system
= Copy-on-write- implicit sharing
* Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scaleldx-Ixc-talk-1,

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] L1566

School of Engineering and Technology, University of Washington - Tacoma

‘ November 20, 2025

66

L15.11

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.e4
= Dockerfile: copy . sapp
RUN make /app
CMD python /app/app.py

Thin RAW layer

Container layer

Python /app/app.py = IR

Run make /app > FEZE

Image lavers (R/0)

Copy . fapp > [=20s i)

Ubuntu base image = [FERTEEES

ubuntu:15.04
Container
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ Beenbet20 202 School of Engineering and Technology, University of Washington - Tacoma U&7

67

CONTAINER ISOLATION) ¢

® |s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

App | App
[

Container
runtime

VM kernel

TCS8462/562:(Software Engineering for) Cloud Computing [Fall 2025 L6
School of Engineering and Technology, University of Washington - Tacoma

Application
containers

‘ November 20, 2025

69

OTHER DOCKER TOOLS

= Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

Docker Engine
(TN T
runC runC

Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container

application; Describes how to deploy and configure multiple
containers

‘ November 20, 2025 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] 57

School of Engineering and Technology, University of Washington - Tacoma

[Fall 2025]

THREE-TIER ARCHITECTURE

OS containers

= Meant to used as ar run multiple

App containers

+ Meant fo run for a single
s

LXC. OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] L1568

‘ (Y 25 School of Engineering and Technology, University of Washington - Tacoma

68

LXC (LINUX CONTAINERS)

= Operating system level virtualization

= Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network I/0

= Linux namespaces
= Docker initially based on LXC

‘ [November20,12025 School of Engineering and Technology, University of Washington - Tacoma

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] w570

70

CONTAINER ORCHESTRATION

FRAMEWORKS *

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
= Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
= Reduce vendor lock-in

‘ November20, 2025 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2025] 572

School of Engineering and Technology, University of Washington - Tacoma

71

Slides by Wes J. Lloyd

72

L15.12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

KEY ORCHESTRATION FEATURES

= Management of container hosts

Launching set of containers

Rescheduling failed containers

Linking containers to support workflows

Providing connectivity to clients outside the container cluster
Firewall: control network/port accessibility

Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
Load balancing over groups of containers

Rolling upgrades of containers for application

‘ Beenbet20 202 School of Engineering and Technology, University of Washington - Tacoma

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2025] 573

73

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

‘ November20, 2025 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2025] L1578

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 11/20

= Questions from 11/18
= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Ch. 5: Cloud Enabling Technology
= Containerization

74

‘ Novermber2072025 School of Engineering and Technology, University of Washington - Tacoma.

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2025] s s

//github.com/wlloyduw/ContainerProfiler

CONTAINER
PROFILER

n
(Glgc GigaScence, 2023, 12, 1-11

EN<E
RD Tech Note

Varik Hoang ", Ling-Hong Hung ", David Perez, Huazeng Deng, Raymond Schooley ©, Niharika Arumilki, Ka Yee Yeung
and Wes Lioyd ©*

75

CONTAINER PROFILER

= Captures resource utilization metrics for containers
= Profiles CPU, memory, disk, and network utilization collecting
over 60 metrics available from the Linux 0S
= Supports two types of profiling
= A “Delta” Resource Utllizatlon: Records and calculates total resource
utilization from when an initial selection is provided before
implementation is verified.

= TIme series sampling: supports a configurable sampling interval for
continuous monitoring of resources consumed by containers
= Similar profiling techniques compared to SAAF
= Uses Linux proc filesystem “man procfs”

= Implemented with a combination of custom code and the
Python-based psutil library to obtain resource utilization data
rapidly

76

‘ (TR School of Engineering and Technology, University of Washington -Tacoma

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] .

77

Slides by Wes J. Lloyd

CONTAINER PROFILER:

PROFILING OVERHEAD

= Profiling overhead (9,000 samples): Process-level
= Use case: RNA-sequencing data
processing pipeline (containerized)
= Hardware: IBM Cloud dual bx2d metal
96 vCPUs processors, 384 GB RAM
=P |l I: 3 peaks indi
different behavior presumably based
on the number of processes running
inside the containerd cpuldle time.
= Process level collects and reports all
available metrics
= Other Supported Profiling Modes:
= Container-level profiling
Does not collect process-level metrics
Faster
= VM-level profiling:
Even faster
Only collects host-level metrics

-
|

uezEE

b of samples

Container-level
o0 parcantia

i E

Number of samples
. u B

EE]
profiling time (ms)
Vh-level

]

201h percentie

B E

number af sampies

- B

EEEEERE FELE T
profiling ime (ms)

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] L1578

‘ e School of Engineering and Technology, University of Washington - Tacoma

78

L15.13

https://github.com/wlloyduw/ContainerProfiler

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2025]

CONTAINER PROFILER:

PROFILING OVERHEAD EXAMPLE

= 99.95% of process level samples were collected under 100ms
= All container-level samples collected under 74ms

= All host (VM-level) samples collected under 60ms

= UMI RNA-sequencing pipeline use case required 2.5 hours to

execute with 1-second
“— . Resource:
docker Sameing]
(87) (S0N)

sampling at full
profilersh -t apureris—+ rudataal gy T

network /0, disk 1/0,
and memory metrics

verbosity (all CPU,
collected)

inalsh —somwe spmerrs @u6cite S

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025]
‘ Beenbet20 202 School of Engineering and Technology, University of Washington - Tacoma 79

CONTAINER PROFILER:
TIME SERIES ANALYSIS OF RESOURCE
UTILIZATION

Disk writes CPU usage

ruu—dn—.-ud—u.

g

= CPU utilization

o “
§ Foll |
= Memory g 2 w- |
utilization i “a |
i = EREEEL)
D ! NS 3
]) 4 : % %
. o,
Disk writes N\ % V%
= Network Network transfer Memory usage
transfer "] - AS
L . ®
2o 2
L3 2 HetwarkBy v LS »n » K
. —— L e
o~ 7 3 o T Y 3
® % i%, % %
y G L) LY d »
November20, 2025] % W o 3 W e

79

80

CONTAINER PROFILER:
METRICS

= Measures
up to
~60 metrics

= Configurable

Verbosity
= Can rapidly
= Change
vebosity
‘ ;2025 ;f;oo\ of Engineering an?%ie':\iﬁrgzﬂ!rﬂs:gitc:gmgﬁ:stgnz?gloma st

CONTAINER PROFILER:
USE CASE

= Profiling overhead for jobs profiled by the ContainerProfiler:

s [T ——
- T
— -
sy [T

WOOR WOON WORON 10100 10Z00%

= Use case: Uniform Molecular Identifier (UMI) RNA-seq pipeline
= Four state: download, split, align, merge

2025 TC Engineering for) Cloud Computing [Fall 2025 Lse2
g School of Engineering and Technology, University of Washington - Tacoma

81

CONTAINER PROFILER:
DELTA PROFILING

[

o
= Delta profiling oo Tmm—
supports viewing
total resource
utilization (CPU, disk, b 0365
network) for a
containerized task or
mutli-stage pipeline
Task = 1 container
Pipeline = many
containers
= Delta captures the 1060

perceived system g e
resources used by
the task

é‘m 79T
!
:

s 6207

Download Split Align Merge
m cpuSHIntSrvct m cpuloWait % s cpuldie % - cpukm %m cpullsr %

Here is the delta profiling graph for resource utilization:
Four tasks: Download, Split, Align, Merge
= Graph shows % time in different CPU modes (cpuUsr, cpukrn, cpuldle, etc.)

‘ A TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2025] s

School of Engineering and Technology, University of Washington - Tacoma

83

Slides by Wes J. Lloyd

82

QUESTIONS

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 20f

o Enbes 20,2028 School of Engineering and Technology, University of Washington -

84

L15.14

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2025
	Slide 3: OBJECTIVES – 11/20
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/18
	Slide 8: OBJECTIVES – 11/20
	Slide 9: Tutorial 5 – closing NOV 21 4:59am
	Slide 10: Tutorial 6 – nov 23
	Slide 11: Tutorial 7 – dec 4
	Slide 12: Tutorial coverage
	Slide 13
	Slide 14: Tutorial 7
	Slide 15: OBJECTIVES – 11/20
	Slide 16: Group presentation
	Slide 17: Presentation schedule
	Slide 18: Presentation schedule - 2
	Slide 19: OBJECTIVES – 11/20
	Slide 20: Cloud enabling technology
	Slide 21: Virtualization management
	Slide 22: Virtual Infrastructure Management (VIM)
	Slide 23: VIM features
	Slide 24: VIM Features - 2
	Slide 25: VIM Features - 3
	Slide 26: Container orchestration frameworks
	Slide 27: Container services
	Slide 28: Cloud enabling technology
	Slide 29: 4. Multitenant applications
	Slide 30: Multitenant apps - 2
	Slide 31: Cloud enabling technology
	Slide 32: 5. Web services/web
	Slide 33: Hypertext transport protocol (http)
	Slide 34: Rest: representational state transfer
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Rest climate services example
	Slide 39: Rest - 2
	Slide 40: REST architectural advantages
	Slide 41: We will return at ~4:50 pm
	Slide 42: OBJECTIVES – 11/20
	Slide 43: Containerization
	Slide 44: OBJECTIVES – 11/20
	Slide 45: Motivation for containerization
	Slide 46: Container performance – LU factorization performance
	Slide 47: Container performance – y-cruncher: pi calculator
	Slide 48: Container performance – bonnie++
	Slide 49: What is a container?
	Slide 50: Operating system containers
	Slide 51: Application containers
	Slide 52: Application containers - 2
	Slide 53: 2016 docker survey
	Slide 54: docker
	Slide 55: Original Docker engine implementation
	Slide 56: Introduction of libcontainer
	Slide 57: Open container initiative (OCI)
	Slide 58: Creating a container
	Slide 59: Creating a container - 2
	Slide 60: Support for alternate container runtimes
	Slide 61: Linux kernel namespaces
	Slide 62: Namespaces - 2
	Slide 63: Linux kernel namespaces - 3
	Slide 64: Control groups (cgroups)
	Slide 65: Cgroups - 2
	Slide 66: Overlay file systems
	Slide 67: Layered fs: Building a container
	Slide 68: Three-tier architecture
	Slide 69: Container isolation
	Slide 70: Lxc (linux containers)
	Slide 71: Other docker tools
	Slide 72: Container orchestration frameworks
	Slide 73: Key orchestration features
	Slide 74: Container orchestration frameworks - 2
	Slide 75: OBJECTIVES – 11/20
	Slide 76: Container profiler
	Slide 77: Container profiler
	Slide 78: Container profiler: Profiling overhead
	Slide 79: Container profiler: Profiling overhead example
	Slide 80: Container profiler: time series analysis of resource utilization
	Slide 81: Container profiler: metrics
	Slide 82: Container profiler: use case
	Slide 83: Container profiler: delta profiling
	Slide 84: Questions

