TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING

Containerization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

OFFICE HOURS - FALL 2024

=THIS WEEK

=Tuesdays:
=2:30to 3:30 pm -CP 229

®Thursday*:
16:00 pm to 7:00 pm - CP 229 and via Zoom* |

=0r email for appointment

> Office Hours set based on Student Demographics survey feedback
* - Four Friday faculty meetings have moved office hours to a 5pm starting time

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

.2
School of Engineering and Technology, University of Washington - Tacoma s

November 14, 2024

Slides by Wes J. Lloyd L15.1

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing

School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/14

| = OBJECTIVES - 11/12

® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1
® Tutorial 7

® Containerization

® Container Profiler

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

| L15.3 |

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Take After Each Class

m Extra Credit

Announcements

for completing

Discussions
Zoom

Grades

People

Pages

Files

Quizzes
Collaborations
UW Libraries

UW Resources

v Upcoming Assignments

B Class Activity 1 - Implicit vs. Explicit Parallelism
Available until Oct 11 at 11:59pm | Due Oct 7 at 7:50pm | -/10 pts

-« Tutorial 1 - Linux

Available until Oct 19 at 11:59pm | Due Oct 15 at 11:59pm | /20 pts

v Past Assignments

-« TCSS 562 - Online Daily Feedback Survey - 10/5
“* Available until Dec 18 at 11:59pm | Due Oct 6 at &:59pm | -/1 pts

< TCSS 562 - Online Daily Feedback Survey - 9/30
“ Avalable until Dec 18 at 11:59pm | Due Oct 4 at &:5%pm | /1pts

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

| L15.4 |

Slides by Wes J. Lloyd

[Fall 2024]

L15.2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 562 - Online Daily Feedback Survey - 10/5

Started: Oct 7 at 1:13am

Quiz Instructions

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today's

class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 10

Slow Just Right Fast

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Dlokembepii202e School of Engineering and Technology, University of Washington - Tacoma L15.5

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (42 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.60 ({ - previous 5.84)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.42 ({ - previous 5.13)

= Response rates:
= TCSS 462: 30/42 - 71.43%

= TCSS 562: 12/20 - 60.00%

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 156
School of Engineering and Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd

[Fall 2024]

L15.3

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

FEEDBACK FROM 11/12

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.7

AWS CLOUD CREDITS UPDATE

= AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS
462/562

® Credits provided on request with expiry of Sept 30, 2024
= Credit codes must be securely exchanged

® Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

® Codes can also be obtained in person (or zoom), in the
class, during the breaks, after class, during office hours,
by appt
= 56 credit requests fulfilled as of Nov 13 @ 11:59p

® Codes not provided using discord

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024 L15.8

Slides by Wes J. Lloyd

[Fall 2024]

L15.4

mailto:wlloyd@uw.edu

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
| = Tutorials Questions |

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1

® Tutorial 7

= Containerization
= Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

Novemberi14,2024 School of Engineering and Technology, University of Washington - Tacoma

| L15.9

Don’t Forget to Terminate (Shutdown)
all EC2 instances for Tutorials 3

Spot instances:
c5d.large instance @ ~3.2 cents / hour

$0.78 / day
$5.48 / week
$23.78 / month
$285.42 / year

Slides by Wes J. Lloyd L15.5

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL SUBMISSION TIME

= Tutorials can now be submitted on the due date until the very
last minute of the day Anywhere-on-Earth (AOE)

= Equivalent to 4:59 AM Pacific Standard Time (PST)

= Anywhere-on-Earth timezone: Baker Island, Pacific Ocean
= https://www.timeanddate.com/time/zones/aoe
Uninhabited island in Pacific Ocean

= Coordinates 0°11'45”N 176°28'45"W
= Area 2.1 km2 (0.81 sq mi)

= Length 1.81 km (1.125 mi)

= Width 1.13 km (0.702 mi)

= Coastline 4.8 km (2.98 mi)

= Highest elevation 8 m (26 ft)

= Population 0 (2000)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

11

TUTORIAL 5 - DUE NOV 14

= |ntroduction to Lambda IlI: Working with Files in S3 and
CloudWatch Events

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_5.pdf

®m Customize the Request object (add getters/setters)

= Why do this instead of HashMap ?

Import dependencies (jar files) into project for AWS S3

Create an S3 Bucket

Give your Lambda function(s) permission to work with S3

Write to the CloudWatch logs

Use of CloudTrail to generate S3 events

Creating CloudWatch rule to capture events from CloudTrail

Have the CloudWatch rule trigger a target Lambda function with

a static JSON input object (hard-coded filename)

= Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

ot e 1, 2 School of Engineering and Technology, University of Washington - Tacoma

115.12

12

Slides by Wes J. Lloyd

[Fall 2024]

L15.6

https://www.timeanddate.com/time/zones/aoe
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 6 - NOV 23

® |[ntroduction to Lambda Ill: Serverless Databases
= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori

als/TCSS462 562 _f2024 tutorial 6.pdf

m Create and use Sqlite databases using sqlite3 tool

= Deploy Lambda function with Sqlite3 database under /tmp
= Compare in-memory vs. file-based Sqlite DBs on Lambda

= Create an Amazon Aurora “Serverless” v2 MySQL database

= Using an ec2 instance in the same VPC (Region + availability
zone) connect and interact with the database using the mysql
CLI app

® Deploy an AWS Lambda function that uses the MySQL
“serverless” database

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.13

13

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
® Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1

= Tutorial 7

® Containerization
® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

L15.14

14

Slides by Wes J. Lloyd

[Fall 2024]

L15.7

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

GROUP PRESENTATION

= TWO OPTIONS:
= Cloud technology presentation
= Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

= Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:
Sunday November 17" @ 11:59pm

= Presentation dates:
= Tuesday November 26
= Tuesday December 3*, Thursday December 5
* - day of quiz 2. only 1 presentation slot

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.15

15

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

| " Quiz1 |
® Tutorial 7
® Containerization

® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

November 14, 2024

16

Slides by Wes J. Lloyd L15.8

http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1
= Containerization
® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.19

19

TUTORIAL #7

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS462/562:(Software Engineering for) Cloud ComputingliFall 2024]
November 14, 2024 School of Engineering and Technology, University of Wasijllgton -
Tacoma

20

Slides by Wes J. Lloyd L15.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 7 - DEC 1

= |ntroduction to Docker

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_7.pdf

= Complete tutorial using Ubuntu 24.04 (for cgroups v2)

= Complete using c6i.large ec2 instance (for consistency)

= Use DOCX file for copying and pasting Docker install
commands

= Topics:
= Installing Docker
= Creating a container using a Dockerfile

= Using cgroups virtual filesystem to monitor CPU utilization of a
container

= Persisting container images to Docker Hub image repository
= Container vertical scaling of CPU/memory resources
= Testing container CPU and memory isolation

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.21

21

TUTORIAL COVERAGE

= Docker CLI = Docker Engine (dockerd) = containerd = runc

= Working with the docker CLI:

= docker run create a container

= docker ps -a list containers, find CONTAINER ID

= docker exec --it run a process in an existing container
®m docker stop stop a container

= docker Kkill kill a container

®m docker help list available commands

= man docker Docker Linux manual pages

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

115.22

22

Slides by Wes J. Lloyd

[Fall 2024]

L15.10

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

Lommanas:
attach Attach local standard input, output, and error streams to a running container
build Build an image from a Dockerfile
Create a new image from a container's changes
Copy files/folders between a container and the local filesystem
Create a new container
Deploy a new stack or update an existing stack
Inspect changes to files or directories on a container's filesystem
Get real time events from the server
Run a command in a running container
Export a container's filesystem as a tar archive
Show the history of an image
List images
Import the contents from a tarball to create a filesystem image
Display system-wide information
Return low-level information on Docker objects
Kill one or more running containers

Load an image from a tar archive or STDIN D k CLI
Log in to a Docker registry oc er
Log out from a Docker registry
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Push an image or a repository to a registry
Rename a container
Restart one or more containers
Remove one or more containers
Remove one or more images
Run a command in a new container
Save one or more images to a tar archive (streamed to STDOUT by default)
search Search the Docker Hub for images
start Start one or more stopped containers
stats Display a live stream of contailner(s) resource usage statistics
stop Stop one or more running containers
tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
top Display the running processes of a container
unpause Unpause all processes within one or more containers
update Update configuration of one or more containers
version Show the Docker version information
wait Block until one or more containers stop, then print their exit codes

TUTORIAL 7

Tutorial introduces use of two common Linux performance
benchmark applications

® stress-ng
100s of CPU, memory, disk, network stress tests

Sysbench

Used in tutorial for memory stress test

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November 14, 2024 School of Engineering and Technology, University of Washington - Tacoma

o]

24

Slides by Wes J. Lloyd L15.11

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

WE WILL RETURN AT
~4:50 PM

CONTAINERIZATION

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2018

November 14, 2024 School of Engineering and Technology, University of Washington -

26

Slides by Wes J. Lloyd L15.12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1
® Tutorial 7

| = Containerization |
® Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma Ls.27

27

MOTIVATION FOR CONTAINERIZATION

® Containers provide “light-weight” alternative to full 0OS
virtualization provided by a VM hypervisor

® Containers do not provide a full “machine”

® |[nstead they use operating system constructs to provide
“sand boxes” for execution

= Linux cgroups, namespaces, etc.
® Containers can run on bare metal, or atop of VMs

(o [A(3/ (][] L'L Container VM e
ooooooo .,
HHHREHB e Applcsion | o v

Host OS 5 bins/libs Hypervisor engine \\\\ /'/ Hypervisor engine

Containers engine
[Foet0s] Containers Typel
Hypervisor'VM vy

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

| November 14, 2024

28

Slides by Wes J. Lloyd

[Fall 2024]

L15.13

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

A Performance Comparison

530

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

MFlops (higher is better)
n wn n o
= i i

+] = &

wn
=

I

DOCKER XC NATIVE 0sy

516

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024

L15.29

29

CONTAINER PERFORMANCE

- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:

1800 :
GKVM A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

z0) -
el ODOCKER

1700

5 1650

1600

1550

1500

Seconds (smaller is better)

1450 -
1400

1350 k

1300

Computation Time Total Time

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024

115.30

30

Slides by Wes J. Lloyd

[Fall 2024]

L15.14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:

25000 A Performance Comparison

Hypervisors vs. Lightweight Virtualization:

EKVM EDOCKER BLXC ENATIVE

200000

150000

100000

S0000

Disk Throughput (Kb/s - higher is better)

L]
Block Output Block Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown.

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024 L15.31

31

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Application Virtualization (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma Hs32

November 14, 2024

32

Slides by Wes J. Lloyd

[Fall 2024]

L15.15

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel
® Provide user space isolation
= Replacement for VMs: run multiple processes, services

® Mix different Linux distros on same host
Host OS Host OS

= Examples: LXC,
Ubuntu Ubuntu Ubuntu Ubuntu RHEL CentOS
OpenVZ, 14.04 14.04 14.04 14,04 7 6.6
. Container Container Container Container Container Container
Linux Vserver,
BSD Jails,
Solaris zones

CentOS 6.6 image
RHEL 7 image

Ubuntu 14.04 image Ubuntu 14.04 image

Identical OS containers Different flavoured OS containers

= Credit: https://blog.risingstack.com/operating-system-containers-vs-application-containers/

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma 11533

November 14, 2024

33

APPLICATION CONTAINERS

= Desighed to package and run a single service

= All containers share host kernel

m Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

®m 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
® Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

®m Supports horizontal and vertical scaling

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

3.
School of Engineering and Technology, University of Washington - Tacoma Hs34

November 14, 2024

34

Slides by Wes J. Lloyd

[Fall 2024]

L15.16

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

= Container images are “layered”

= Base image: common for all components

= Add layers that are specific
for components, services
as needed

= | ayering promotes reuse

= Reduces duplication of
data across images

APPLICATION CONTAINERS - 2

references
parent
image

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.35 |

35

= Docker application containers
= Leading containerization vehicle

80% <~

say Docker is part
of cloud strategy

60%

plan to use Docker to
migrate workloads to cloud

41%

want application
portability across
environments

2016 DOCKER SURVEY

35+%

want to avoid
cloud vendor
lock-in

‘Pdocl:er

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.36 |

36

Slides by Wes J. Lloyd

[Fall 2024]

L15.17

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

DOCKER

Docker daemon “dockerd”

= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

Starting in 2017 version
numbering switches from g &N @
1.x to YR.x

2017 releases: 17.03 - 17.12 Docker Dacmon
2018 releases: 18.01 - 18.09
2019 releases: 19.03.0 - 19.03.13 g

Docker Clients Docker Containers

Docker Client-Server Architecture
= Credit: https://hackernoon.com/docker-containerd-standalone-runtimes-

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma L1537

November 14, 2024

37

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

® (1) Original Docker engine relied on LXC
= LXC itself is a containerization tool predating Docker
= Original Docker API just called it

= LXC originally provided access $Docker client
to Linux kernel features: 1
namespaces and cgroups | dockerd |

= L XC was Linux specific - caused o? er
issues if wanting to be muIti-pIatformI LXC |

= Docker implemented their own

replacement for LXC]
cgroups
Host Kernel

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024 L15.38

38

Slides by Wes J. Lloyd

[Fall 2024]

L15.18

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: libcontainer introduced (~2014) to replace LXC
as the default Docker daemon

!
| dockerd |
$
|

libcontainer |

Capabilities

Host Kernel

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.39

39

OPEN CONTAINER INITIATIVE (OCI)

= OCI created container standards for:
= Image specification
= Container runtime specification

= Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards

= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard

= Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer

= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.

The Docker APl is much more user friendly
= Support for OCl compliant images was added to Containerd

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

L15.40

40

Slides by Wes J. Lloyd

[Fall 2024]

L15.19

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo

!

= Daemon calls containerd |

= Containerd passes of request to runc dockerd |
= Containerd converts docker image into t
OCI compliant bundle containerd |
= This step would allow any OCI compliant container t
to be plugged into the back-end
= Runc interfaces with the Linux kernel m

(namespaces, cgroups, etc.) to create container m
= Shim: once a container is created, runc exits

= Shim remains as a daemonless stub to
Capabilities

implement the container

Host Kernel

= Allows Docker to be upgraded w/o
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

stopping the container !!!
. X o > 115.41
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024

41

CREATING A CONTAINER - 2

—_—

H =—— Docker Engine Containerd

—_—

Docker CLILI

Runc and other OCI runtimes

Containerd Integration Architecture

Docker CLI: interfaces with dockerd daemon

Docker engine: dockerd daemon, interfaces with containerd
Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;
runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma s

November 14, 2024

42

Slides by Wes J. Lloyd

[Fall 2024]

L15.20

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

= Enables docker to support many
alternate container backends

&

|

systemd-
nspawn

J

Docker
libcontainer
® OpenVZ, system-nspawn, libvirt-Ixc, 1 l
libvirt-sandbox, gemu/kvm, Gl =
BSD Jails, Solaris Zones, and chroot l l
Linux
cgroups namespaces netlink
selinux netfilter
capabilities apparmor

A

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.43

43

LINUX KERNEL NAMESPACES

m 7 different namespaces in Linux
(cgroups not shown)

= pid, mnt, ipc, user, net, UTS

= Partitions kernel resources

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

L15.44

44

Slides by Wes J. Lloyd

[Fall 2024]

L15.21

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

root@3sbfcadfocse: /

NAMESPACES - 2

PID USER PR_NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1 root] ent

= Provides isolation of OS

entities for containers
= mnt: separate filesystems
= pid: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC

namespaces from being able to establish shared

memory. Enables processes in different containers

to reuse the same identifiers without conflict.

... provides expected VM like isolation...

= user: user identification and privilege isolation
among separate containers

® net: network stack virtualization. Multiple loopbacks (lo)
= UTS (UNIX time sharing): provides separate host and domain

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma LS4

November 14, 2024

45

LINUX KERNEL NAMESPACES - 3

m Processes see only their set of resources
= Provides isolation
= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= Each process can only see resources associated
with the namespace, and descendent namespaces

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma L1546

November 14, 2024

46

Slides by Wes J. Lloyd

[Fall 2024]

L15.22

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

® Collection of Linux processes

= Resource limiting

= Memory, disk cache
Prioritization

= CPU share

= Disk I/0 throughput
= Accounting

= Track resource utilization

Control
= Pause/resume processes

= https://criu.org

= For resource management and/or billing purposes

CONTROL GROUPS (CGROUPS)

= Checkpointing > Checkpoint/Restore in Userspace (CRIU)

= Group-level resource allocation: CPU, memory, disk 1/0, network 1/0

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

47

= Control groups are hierarchical

= |s /proc/cgroups

® “cpuacct” controller accounts
for CPU usage

= cgroup filesystem:

= /sys/fs/cgroup

= Can browse resource utilization
of containers...

CGROUPS - 2

= Groups inherent limits from parent groups
® Linux has multiple cgroup controllers (subsystems)

= “memory” controller limits memory use

#subsys _name | hierarchy | num_cgroups | enabled
cpuset 3 2 1
cpu 5 97 1
cpuacct 5 97 1
blkio [:] 97 1
memory 9 218 1!
Jdevices 3] 97 1.
freezer 4 2 1.
net_cls 2 2 1.
perf_event 10 2 1
net prio 2 2 1
hugetib 7 2 1
pids 13 93 1

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

115.48

48

Slides by Wes J. Lloyd

[Fall 2024]

L15.23

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Union mount file system: combine multiple directories into one that
appears to contain combined contents

Idea: Docker uses layered file systems

Only the top layer is writeable

Other layers are read-only

Layers are merged to present the notion of a real file system
Copy-on-write- implicit sharing

= Implement duplicate copy

https://medium.com/@nagarwal/docker-containers-filesystem-

demystified-b6ed8112a04a

https://www.slideshare.net/jpetazzo/scaledlix-Ixc-talk-1/

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.49

49

LAYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.84

= Dockerfile: copy . sapp

RUN make /app
CMD python /app/app.py

| Thin R/W layer

| | ! ! !
Python /app/app.py 2> FEECEEEERRE

| e Container layer

~

Run make /app 2| BB Er 1.895 kB

»— Image layers (R/O)

Copy . /app | | ZEUEE L 194.5 KB

Ubuntu base image > [UEEEE 188.1 MB

ubuntu:15.04

Container

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

115.50

50

Slides by Wes J. Lloyd

[Fall 2024]

L15.24

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

THREE-TIER ARCHITECTURE

Node.js
Postgres
Nginx

OS containers App containers

Meant to used as an OS - run multiple
services

* No layered filesystems by default

* Built on cgroups, namespaces, native
process resource isolation

+ Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

Meant to run for a single service

Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

.o

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.51

51

CONTAINER ISOLATION

®|s the host isolated from application containers?

®m Are application containers isolated from each

other?
Application
containers
Application
App | App containers
Bins/libs Bins/libs
App App
. Bins/libs Bins/libs
runtime
runtime
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma Hs2

52

Slides by Wes J. Lloyd L15.25

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

LXC (LINUX CONTAINERS)

®mQOperating system level virtualization

® Run multiple isolated Linux systems on a host
using a single Linux kernel

= Control groups(cgroups)
*|Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

®ELinux namespaces
= Docker initially based on LXC

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.53

53

OTHER DOCKER TOOLS

= Docker Machine: Docker Engine
automatically provision
and manage sets of containerd
docker hosts to

form a cluster containerd-shim

containerd-shim

= Docker Swarm:
Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container

application; Describes how to deploy and configure multiple

containers

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

115.54

54

Slides by Wes J. Lloyd

[Fall 2024]

L15.26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
=Similar to “private clusters”

® Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
® Reduce vendor lock-in

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.55

55

KEY ORCHESTRATION FEATURES

= Management of container hosts

= Launching set of containers

®m Rescheduling failed containers

= Linking containers to support workflows

Providing connectivity to clients outside the container cluster
Firewall: control network/port accessibility

® Dynamic scaling of containers: horizontal scaling

= Scale in/out, add/remove containers

Load balancing over groups of containers

Rolling upgrades of containers for application

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2024 L15.56

56

Slides by Wes J. Lloyd

[Fall 2024]

L15.27

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER ORCHESTRATION

FRAMEWORKS - 2

® Docker swarm
® Apache mesos/marathon
® Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-

a-service
® Amazon elastic container service (ECS)
®m Apache aurora

® Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.57

57

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
® Tutorials Questions

® Class Presentations Schedule -
Cloud Technology or Research Paper Review

® Quiz 1
= Tutorial 7
® Containerization
| = Container Profiler |

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

115.58

58

Slides by Wes J. Lloyd

[Fall 2024]

L15.28

TCSS 462: Cloud Com

puting

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

https://github.com/wlloyduw/ContainerProfiler

CONTAINER
PROFILER

(Glgéngih E . GigaScience, 2023, 12, 1-11

OXFORD Tech Note

Container Profiler: Profiling resource utilization of
containerized big data pipelines

Varik Hoang T, Ling-Hong Hung ' t, David Perez, Huazeng Deng, Raymond Schooley , Niharika Arumilli, Ka Yee Yeung
and Wes Lloyd ="

School of Engineering a
rrespondence a
buted equally

Technology, University of W
. Wes Lloyd, 1900 Com

shington, Tacoma, WA 98402, USA
it #358426, Tacoma, WA 98402, USA. E-mail: wlloyd@uw.edu

tCon

Abstract

Back i- Thisarticls the Contginer Profiler_a software tanlthat ndrecorde the usageofany

o)/ sd)jy WOl papeo|umog

59

CONTAINER PROFILER

m Captures resource utilization metrics for containers

= Profiles CPU, memory, disk, and network utilization collecting
over 60 metrics available from the Linux OS

® Supports two types of profiling

= A “Delta” Resource Utilization: Records and calculates total resource
utilization from when an initial selection is provided before
implementation is verified.

= Time series sampling: supports a configurable sampling interval for
continuous monitoring of resources consumed by containers

= Similar profiling techniques compared to SAAF
® Uses Linux proc filesystem “man procfs”

= Implemented with a combination of custom code and the
Python-based psutil library to obtain resource utilization data
rapidly

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

9.60
School of Engineering and Technology, University of Washington - Tacoma e

November 23, 2016

60

Slides by Wes J. Lloyd

[Fall 2024]

L15.29

https://github.com/wlloyduw/ContainerProfiler

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER:

PROFILING OVERHEAD

= Profiling overhead (9,000 samples):

Use case: RNA-sequencing data

processing pipeline (containerized)

Hardware: IBM Cloud dual bx2d metal

96 vCPUs processors, 384 GB RAM

= Process-level: 3 peaks indicate profiling time (ms)
different behavior presumably based Container-level
on the number of processes running
inside the containerd cpuldle time.

= Process level collects and reports all
available metrics
® Other Supported Profiling Modes: profiling time (ms)
= Container-level profiling Vi-evel
Does not collect process-level metrics
Faster
= VM-level profiling:
Even faster
Only collects host-level metrics

Process-level

120 90th percentile

number of samples

8

90th percentile

g § B

o

Number of samples

g

90th percentile

]

number of samples
o 8

profiling time (ms)

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

November14,2024 School of Engineering and Technology, University of Washington - Tacoma

L15.61 |

61

CONTAINER PROFILER:

PROFILING OVERHEAD EXAMPLE

® 99.95% of process level samples were collected under 100ms
® All container-level samples collected under 74ms
= All host (VM-level) samples collected under 60ms

= UMI RNA-sequencing pipeline use case required 2.5 hours to
execute with 1-second

sampling at full sampie | | S ekt | Resource

. Interval docker Sampling Ué"g'ﬁfglg”
verbosity (all CPU, @mn @mn prriied
network 1/0, disk 1/0, f

and memory metrics \

h » profilersh —profiing arguments—» rudataall.py -
collected) i \
Argument l check if executesh

s stil running

Argument

Argument install.sh —sottware aguments» execute.sh

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

RolEmbeLt202 School of Engineering and Technology, University of Washington - Tacoma

L15.62

62

Slides by Wes J. Lloyd L15.30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER:

TIME SERIES ANALYSIS OF RESOURCE
UTILIZATION

CPU utilization

= Memory
utilization

Disk writes

= Network
transfer

Percentage

November 14, 2024

Disk writes

CPU usage

— cDiskWriteBytes
— VDiskWriteBytes

Network transfer

Percentage

Memory usage

100 100 7
o 30 o 80
g g
g 60 E 601
5 5w
o — cNetworkBytesRecvd o — cMemoryUsed
20 20
| = vNetworkBytesRecvd — vMemoryUsed
o J

0 h)

é°u

A 1 2
oY o
) Time (h)

e

63

CONTAINER PROFILER:

= Measures
up to
~60 metrics

= Configurable
Verbosity

= Can rapidly
= Change
vebosity

METRICS

phumThreads
pCpuTimeUserMode
pCpuTimekemelMode
pChildrenUserMode

pCl CPU Memory Disk Network

pVoluntaryContextSwitches
Ty {:;
pBlockiODelays

cCpuTime:
cProcessorStals
cCpuSITIME
chumProcessors
cCpuTimeUserMode
cCpuTimeKerneMode

cMemoryUsed / f

AR

pVirtualMemoryBytes

Container ——]
D

pPageFaults
phiajPageFaults

5
pProcesses
5]

| eDiskSectorlO
T chiskReadBytes

pll
pNumProcess

| —
AN
\

Host or VM
i
vioadAvg

cMemoryMaxUsed
cPageFaults
cMajPageFaults

vCpuTime
vCpuTimeUserMode

cNetworkBylesRecvd
cNetworkBytesSent

DI

vDiskSectorReads

vCpuTimeKernelMode

VCpuldieTime
viemoryF
vCpuTimelOWait vMe;uryBu::rs

wCpuTimelntSrve wMemaryCached

VDiskMergedReads
VDiskReadTime:

wiNetworkBytesRecvd
vNetworkBytesSent

Cpu ag

o

vCpuCor ajPags

wCpuNice
vCpuSteal
VCpuType.
vCpuMhz

VDiskWriteTime

November 14, 2024

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

64

Slides by Wes J. Lloyd

[Fall 2024]

L15.31

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER:

USE CASE

w T
VM + Container

98.00% 99.00% 100.00% 101.00% 102.00%

= Four state: download, split, align, merge

= Profiling overhead for jobs profiled by the ContainerProfiler:

m Use case: Uniform Molecular Identifier (UMI) RNA-seq pipeline

November 14, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma

L15.65

65

CONTAINER PROFILER:

DELTA PROFILING

resources used by
the task

= Here is the delta profiling graph for resource utilization:
Four tasks: Download, Split, Align, Merge

m cpuSftintSrvc% m cpuloWait % » cpuldle %

. fl‘/ﬁf‘ OB ﬁi’{‘ﬁ’ A%
= Delta profiling Lo GiEEy “eatath
supports viewing
total resource 29.51%
utilization (CPU, disk, 8% oo
network) for a §= 68.62% :
containerized task or g o o
mutli-stage pipeline s .
. o
= Task = 1 container g
= Pipeline = many F oo EEN
containers a0
= Delta captures the 1.06%
A 0% i e —
pencelvedisystem Download Split Align Merge

cpuKrn %mcpulUsr %

Graph shows % time in different CPU modes (cpuUsr, cpuKrn, cpuldle, etc.)

November 14, 2024 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

School of Engineering and Technology, University of Washington - Tacoma

L15.66

66

Slides by Wes J. Lloyd

[Fall 2024]

L15.32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

QUESTIONS

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2048

R ik 20 School of Engineering and Technology, University of Washington -

67

Slides by Wes J. Lloyd

[Fall 2024]

L15.33

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2024
	Slide 3: OBJECTIVES – 11/14
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/12
	Slide 8: AWS Cloud Credits update
	Slide 9: OBJECTIVES – 11/14
	Slide 10
	Slide 11: Tutorial submission time
	Slide 12: Tutorial 5 – due nov 14
	Slide 13: Tutorial 6 – nov 23
	Slide 14: OBJECTIVES – 11/14
	Slide 15: Group presentation
	Slide 16: OBJECTIVES – 11/14
	Slide 19: OBJECTIVES – 11/14
	Slide 20: Tutorial #7 Docker, CGROUPS, resource isolation
	Slide 21: Tutorial 7 – dec 1
	Slide 22: Tutorial coverage
	Slide 23
	Slide 24: Tutorial 7
	Slide 25: We will return at ~4:50 pm
	Slide 26: Containerization
	Slide 27: OBJECTIVES – 11/14
	Slide 28: Motivation for containerization
	Slide 29: Container performance – LU factorization performance
	Slide 30: Container performance – y-cruncher: pi calculator
	Slide 31: Container performance – bonnie++
	Slide 32: What is a container?
	Slide 33: Operating system containers
	Slide 34: Application containers
	Slide 35: Application containers - 2
	Slide 36: 2016 docker survey
	Slide 37: docker
	Slide 38: Original Docker engine implementation
	Slide 39: Introduction of libcontainer
	Slide 40: Open container initiative (OCI)
	Slide 41: Creating a container
	Slide 42: Creating a container - 2
	Slide 43: Support for alternate container runtimes
	Slide 44: Linux kernel namespaces
	Slide 45: Namespaces - 2
	Slide 46: Linux kernel namespaces - 3
	Slide 47: Control groups (cgroups)
	Slide 48: Cgroups - 2
	Slide 49: Overlay file systems
	Slide 50: Layered fs: Building a container
	Slide 51: Three-tier architecture
	Slide 52: Container isolation
	Slide 53: Lxc (linux containers)
	Slide 54: Other docker tools
	Slide 55: Container orchestration frameworks
	Slide 56: Key orchestration features
	Slide 57: Container orchestration frameworks - 2
	Slide 58: OBJECTIVES – 11/14
	Slide 59: Container profiler
	Slide 60: Container profiler
	Slide 61: Container profiler: Profiling overhead
	Slide 62: Container profiler: Profiling overhead example
	Slide 63: Container profiler: time series analysis of resource utilization
	Slide 64: Container profiler: metrics
	Slide 65: Container profiler: use case
	Slide 66: Container profiler: delta profiling
	Slide 67: Questions

