TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TCSS 462/562:
(SOFTWARE ENGINEERING,
FOR) CLOUD COMPUTING ‘ S THIS WEEK

OFFICE HOURS - FALL 2024

=Tuesdays:
Containerization : =2:30 to 3:30 pm - CP 229

sThursday*:
[=6:00 pm to 7:00 pm - CP 229 and via Zoom* |
=0r email for appointment

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

> Office Hours set based on Student Demographics survey feedback
* - Four Friday faculty meetings have moved office hours to a 5pm starting time

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma ts2

OBJECTIVES - 11/14

ONLINE DAILY FEEDBACK SURVEY

| = OBJECTIVES - 11/12 | = Daily Feedback Quiz in Canvas - Take After Each Class
= Tutorials Questions = Extra Credit . .
= Class Presentations Schedule - for completing * Upcoming Assignments
Cloud Technology or Research Paper Review ity 1 - Implict vs. Explict Parslelism
= Quiz 1 :
. ¢ Totora 1 - Ui
= Tutorial 7 - S

= Containerization

i * Past Assigaments

= Container Profiler

N
|

4 TCS5 562 - Online Dalty Feedback Survey - 9/30

TCS5462/562:(Software Engineering for) Cloud Computing [Fall2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberdd 2028 School of Engineering and Technology, University of Washington - Tacoma. 13 Novemberds 12028 School of Engineering and Technology, University of Washington - Tacoma s

TCSS 562 - Online Daily Feedback Survey - 10/5
Startec Ot 7 at 1:13am
Quiz Instructions MATERIAL / PACE
Question 1 0.5pts
On a scale of 1 to 10, please classify your perspective on material covered in today's L Please CIaSSify your perspeCtive on material covered in tOdayvs
class class (42 respondents):
1 2 a 4 s 8 7 8 a 10 = 1-mostly review, 5-equal new/review, 10-mostly new
oy o ey = Average - 5.60 (! - previous 5.84
= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.42 ({ - previous 5.13)
Question 2 05pts
Please rate the pace of today's class: = Response rates:
s a s e s e e e wm = TCSS 462: 30/42 - 71.43%
. - st = TCSS 562: 12/20 - 60.00%
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
November 14, 2024 Pt AR A I KA L155 ‘ (UERERGHED School of Engineering and Technology, University of Washington - Tacoma e

Slides by Wes J. Lloyd L15.1

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

FEEDBACK FROM 11/12

TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024]
l (LA) S School of Engineering and Technology, University of Washington - Tacoma us7

AWS CLOUD CREDITS UPDATE

= AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS
462/562

= Credits provided on request with expiry of Sept 30, 2024

= Credit codes must be securely exchanged

= Request codes by sending an email with the subject
“AWS CREDIT REQUEST” to wlloyd@uw.edu

= Codes can also be obtained in person (or zoom), in the
class, during the breaks, after class, during office hours,
by appt
= 56 credit requests fulfilled as of Nov 13 @ 11:59p

= Codes not provided using discord

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
l EeenbeRo2y School of Engineering and Technology, University of Washington - Tacoma s

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
| = Tutorials Questions |

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

" Quiz 1
= Tutorial 7
= Containerization

= Container Profiler

‘TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
l Novemberdd 2028 School of Engineering and Technology, University of Washington - Tacoma. 19

Don't Forget to Terminate (Shutdown)
all EC2 instances for Tutorials 3

Spot instances:
c5d.large instance @ ~3.2 cents / hour

$0.78 / day
$5.48 / week
$23.78 / month
$285.42 / year

TUTORIAL SUBMISSION TIME

= Tutorials can now be submitted on the due date until the very
last minute of the day Anywhere-on-Earth (AOE)

= Equivalent to 4:59 AM Pacific Standard Time (PST)

= Anywhere-on-Earth timezone: Baker Island, Pacific Ocean
= https://www.timeanddate.com/time/zones/aoe

= Uninhabited island in Pacific Ocean

= Coordinates 0°11'45"N 176°28'45"W

= Area 2.1 km2 (0.81 sq mi)

= Length 1.81 km (1.125 mi)

= Width 1.13 km (0.702 mi)

= Coastline 4.8 km (2.98 mi)

= Highest elevation 8 m (26 ft)

= Population 0 (2000)

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

us.a1

l November 14, 2024

TUTORIAL 5 - DUE NOV 14

= |Introduction to Lambda Il: Working with Files in S3 and
CloudWatch Events

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_5.pdf

= Customize the Request object (add getters/setters)
= Why do this instead of HashMap ?

= Import dependencies (jar files) into project for AWS S3

= Create an S3 Bucket

= Give your Lambda function(s) permission to work with S3

= Write to the CloudWatch logs

= Use of CloudTrail to generate S3 events

= Creating CloudWatch rule to capture events from CloudTrail

= Have the CloudWatch rule trigger a target Lambda function with
a static JSON input object (hard-coded filename)

= Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

TCS5462/562(Software Engineering for) Cloud Computing [Fall 2024]
l (e School of Engineering and Technology, University of Washington - Tacoma e

11

Slides by Wes J. Lloyd

12

L15.2

mailto:wlloyd@uw.edu
https://www.timeanddate.com/time/zones/aoe
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

TUTORIAL 6 - NOV 23

® Introduction to Lambda Ill: Serverless Databases

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_6.pdf

= Create and use Sqlite databases using sqlite3 tool

= Deploy Lambda function with Sqlite3 database under /tmp

= Compare in-memory vs. file-based Sqlite DBs on Lambda

= Create an Amazon Aurora “Serverless” v2 MySQL database

= Using an ec2 instance in the same VPC (Region + availability

zone) connect and interact with the database using the mysql
CLI app

= Deploy an AWS Lambda function that uses the MySQL
“serverless” database

TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ (LA) 2 School of Engineering and Technology, University of Washington - Tacoma

usa3

13

GROUP PRESENTATION

= TWO OPTIONS:
= Cloud technology presentation
= Cloud research paper presentation

= Recent & suggested papers will be posted at:
http://f Ity.washington.. wll I 2, It

= Submit presentation type and topics (paper or technology)
with desired dates of presentation via Canvas by:

Sunday November 17" @ 11:59pm

" Presentation dates:
= Tuesday November 26
= Tuesday December 3*, Thursday December 5
* - day of quiz 2. only 1 presentation slot

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

November 14,2024 School of Engineering and Technology, University of Washington - Tacoma

us.1s

15

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
= Tutorials Questions
= Class Presentations Schedule -
Cloud Technology or Research Paper Review
= Quiz 1

= Tutorial 7

= Containerization
= Container Profiler

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

(T School of Engineering and Technology, University of Washington - Tacoma

us.19

[Fall 2024]

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
= Tutorials Questions

= Class Presentatlons Schedule -
Cloud Technology or Research Paper Revlew
= Quiz 1
= Tutorial 7
= Containerization
= Container Profiler

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma

us.s

14

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
= Tutorials Questions
= Class Presentations Schedule -
Cloud Technology or Research Paper Review
| =Quiz1 |
= Tutorial 7
= Containerization
= Container Profiler

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ Novemberi4,2024 School of Engineering and Technology, University of Washington - Tacoma

us.16

16

RESOURCE ISOLATION

TCSS462/562:(Software Engineering for) Cloud Computi
School of Engineering and Technology, University of Was!
racoma

November 14, 2024

19

Slides by Wes J. Lloyd

20

L15.3

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_6.pdf
http://faculty.washington.edu/wlloyd/courses/tcss562/papers/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

TUTORIAL 7 - DEC 1

" Introduction to Docker

= https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_7.pdf

= Complete tutorial using Ubuntu 24.04 (for cgroups v2)

= Complete using c6l.large ec2 Instance (for consistency)

= Use DOCX file for copying and pasting Docker install
commands

= Topics:
= Installing Docker
= Creating a container using a Dockerfile

= Using cgroups virtual filesystem to monitor CPU utilization of a
container

= Persisting container images to Docker Hub image repository
= Container vertical scaling of CPU/memory resources
= Testing container CPU and memory isolation

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (LA) S School of Engineering and Technology, University of Washington - Tacoma szt

21

WE WILL RETURN AT & -

~4:50 PM |

25

Slides by Wes J. Lloyd

TUTORIAL COVERAGE

= Docker CLI > Docker Englne (dockerd) > contalnerd - runc
= Working with the docker CLI:
create a container

list containers, find CONTAINER ID
= docker exec --it run a process in an existing container

= docker run
= docker ps -a

= docker stop
= docker kill

= docker help
= man docker

stop a container

kill a container

list available commands
Docker Linux manual pages

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma ts22

22

TUTORIAL 7

= Tutorial introduces use of two common Linux performance
benchmark applications

= stress-ng
= 100s of CPU, memory, disk, network stress tests

= Syshench
= Used in tutorial for memory stress test

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberds 12028 School of Engineering and Technology, University of Washington - Tacoma 126

24

CONTAINERIZATION

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 20

orenbeg S 202 School of Engineering and Technology, University of Washington -

26

L15.4

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_7.pdf

TCSS 462: Cloud Computing [Fall 2024]
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

OBJECTIVES - 11/14 MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S

= OBJECTIVES - 11/12
virtualization provided by a VM hypervisor

= Tutorials Questions

= Class Presentations Schedule -
Cloud Technology or Research Paper Review

= Quiz 1
= Tutorial 7

= Containers C§n run op bare metal, or atop of VMs
It Container
= Container Profiler [[y VM
N 0 e

Hypervior cngine |
Host 05, ‘

= Containers do not provide a full “machine”

= Instead they use operating system constructs to provide
“sand boxes” for execution
= Linux cgroups, namespaces, etc.

Fes® | oontainers T [e
™ Hudware | Hypervisor/VM
TCS5462/562:(Software Engineering for) Cloud Computing [Fall2024] TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (LA) S School of Engineering and Technology, University of Washington - Tacoma 27 (I 2 School of Engineering and Technology, University of Washington - Tacoma

27 28

CONTAINER PERFORMANCE
- Y-CRUNCHER: Pl CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:

CONTAINER PERFORMANCE
- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

Vir

aKvM ‘ A Performance Comparison
170 | anocker
1700 BLXC

ENATIVE

7 s

N
Fig. 4. The value of Linpack results on each platform over 15 rns. This is 1300 //“\
the particular case of N=1000. Computation Time Total Time
[Novembertuas [TGStz il oot o ot Conpui ol) [novemberio oz [TGSt et o v om0

29 30

WHAT IS A CONTAINER?

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
isors vs. Li ight Virtualizati According to NIST (National Institute of Standards Technology)
= Virtuallzatlon: the simulation of the software and/or hardware
upon which other software runs. (800-125)

yp
250000 | APer c

@KVVM_HDOCKER HLXC ENATIVE

200000
= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

150000

ut (Kbs - higher is

100000

Operating System Virtuallzation (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

0000

0

Block Output Block Input = Application Virtualization (aka Application Containers): Same
Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB). shared kernel is exposed to multiple discrete instances (800-
Results for sequential writes and sequential read are shown. 180 draft). E.g., Docker (containerd), rkt
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] TCS$462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (EEEi AR) School of Engineering and Technology, University of Washington - Tacoma us3t ‘ (UERERGHED School of Engineering and Technology, University of Washington - Tacoma -

31 32

Slides by Wes J. Lloyd L15.5

TCSS 462:
TCSS 562:
School of E

Cloud Computing
Software Engineering for Cloud Computing
ngineering and Technology, UW-Tacoma

[Fall 2024]

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

= Examples: LXC,
OpenVzZ,
Linux Vserver,
BSD Jails,
Solaris zones

Different flavoured OS containers

Identical OS containers

+ Gredit: hitps://blog.risingstack
TCS5462/562:(Software Engineering for) Cloud Computing [Fa 2024]
(=oAL e School of Engineering and Technology, University of Washington - Tacoma. us33

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app

= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] s

‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma

33

APPLICATION CONTAINERS - 2

Container images are “layered”

= Base image: common for all components
Add layers that are specific
for components, services e
as needed parent

= Layering promotes reuse image

Reduces duplication of
data across images

November 14, 2024 TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024] 535

School of Engineering and Technology, University of Washington - Tacoma

35

DOCKER

Docker daemon “dockerd”

= Implements docker engine that interprets CLI requests
and creates/manages
containers using backend g
layered Docker architecture

Starting in 2017 version

numbering switches from g

1.x to YR.x
= 2017 releases: 17.03 - 17.12 -
= 2018 releases: 18.01 - 18.09 : .
]

2019 releases: 19.03.0 - 19.03.13 g

1 [1

+ credit: hutps://

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] 537

(T School of Engineering and Technology, University of Washington -Tacoma

i

37

Slides by Wes J. Lloyd

34

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

migrate workioads fa cloud enviranments

& dockar

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] L1536
School of Engineering and Technology, University of Washington - Tacoma

‘ November 14, 2024

36

ORIGINAL DOCKER ENGINE

IMPLEMENTATION

= (1) Original Docker engine relied on LXC

= LXC itself is a containerization tool predating Docker

= Original Docker API just called it

= LXC originally provided access $Docker client
to Linux kernel features:
namespaces and cgroups

= LXC was Linux specific - caused
issues if wanting to be multi-platform

= Docker implemented their own
replacement for LXC

Capabilities

Host Kernel
7CS5462/562(Software Engineering for) Cloud Computing [Fall 2024]
‘ (e School of Engineering and Technology, University of Washington - Tacoma us3

38

L15.6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

INTRODUCTION OF LIBCONTAINER

= Docker v0.9: llbcontalner introduced (~2014) to replace LXC
as the default Docker daemon

$Docker client

[libcontainer |

Capabilities

Host Kernel

‘ November 14, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] L1539

School of Engineering and Technology, University of Washington - Tacoma

39

CREATING A CONTAINER

$ docker run -it --rm tcss558client sh $Docker client
= Docker CLI posts request to Docker daemo

= Daemon calls containerd
= Containerd passes of request to runc
= Contalnerd converts docker image into

0OCI compliant bundle

containerd
= This step would allow any OCI compliant container

to be plugged into the back-end
= Runc interfaces with the Linux kernel
(namespaces, cgroups, etc.) to create container
= Shim: once a container is created, runc exits

= Shim remains as a daemonless stub to

implement the container Namespaces Capabilities
= Allows Docker to be upgraded w/o

cgroups
stopping the container !!! Host Kernel

TCS5462/562:(Software Engineering for) Cloud Computing [Fal 2024]
‘ November 14,2024 School of Engineering and Technology, University of Washington - Tacoma usat

41

SUPPORT FOR

ALTERNATE CONTAINER RUNTIMES

= Modularity of Docker implementation supports
“execution drivers concept”:

= Enables docker to support many *
alternate container backends Docker -
= OpenVZ, system-nspawn, libvirt-Ixc, * * prr
libvirt-sandbox, gemu/kvm, s e g
BSD Jails, Solaris Zones, and chroot | | |

Linux
cgroups namespaces netlink
selinux etfiter
capabiliies i
TCSS462/562:(Software Er for) Cloud C iting [Fall 2024]
‘ November14, 2024 | 5o f engincerng and Technology, Uivesty of Washington -Tacora usss

43

Slides by Wes J. Lloyd

OPEN CONTAINER INITIATIVE (OCI)

= OCI created container standards for:
= Image specification
= Container runtime specification
= Docker 1.1 (2016): Docker refactored the docker engine to be
compliant with OCI standards
= Essentially this introduced abstraction layers (i.e. generic interfaces
that map to the implementation) so that Docker’s design conformed
to the OCI standard
= Runc was added to implement the OCI container runtime spec
= Provides small, lightweight wrapper for libcontainer
= Can build and run OCI compliant containers directly using runc
provided in Docker, but it is “bare bones” and low-level.
The Docker API is much more user friendly
= Support for OCl compliant images was added to Contalnerd

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma a0

40

CREATING A CONTAINER - 2

Doeker CLIUI

Rune and oiher OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with contalnerd

= Contalnerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl - Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ Novemberi4,2024 School of Engineering and Technology, University of Washington - Tacoma usa2

42

LINUX KERNEL NAMESPACES

= 7 different namespaces in Linux
(cgroups not shown)
= pid, mnt, ipc, user, net, UTS

= Partitions kernel resources

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERGHED School of Engineering and Technology, University of Washington - Tacoma Lsa

44

L15.7

TCSS 462: Cloud Computing [Fall 2024]

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

NAMESPACES - 2

= Provides Isolatlon of 0S
entities for containers
= mnt: separate filesystems
= pld: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= user: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharing): provides separate host and domain

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024 Lisas
School of Engineering and Technology, University of Washington - Tacoma

‘ November 14, 2024

LINUX KERNEL NAMESPACES - 3

= Processes see only their set of resources
= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy

= Each process can only see resources associated
with the namespace, and descendent namespaces

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 School of Engineering and Technology, University of Washington - Tacoma L6

45

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk 1/0, network I/0
= Resource limiting
= Memory, disk cache
= Prioritizati
= CPU share
= Disk 1/0 throughput
= Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing > Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ November 14,2024 School of Engineering and Technology, University of Washington - Tacoma use7

47

OVERLAY FILE SYSTEMS

Docker leverages overlay filesystems
1st: AUFS - Advanced multi-layered unification filesystem
Now: overlay2

Unlon mount flle system: combine multiple directories into one that

appears to contain combined contents

= |dea: Docker uses layered file systems
= Only the top layer is writeable
= Other layers are read-only
= Layers are merged to present the notion of a real file system
= Copy-on-write- implicit sharing

= Implement duplicate copy

= https://medium.com/@nagarwal/docker-containers-filesystem-
demystified-b6ed8112a04a

= https://www.slideshare.net/jpetazzo/scaleldx-Ixc-talk-1,

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (T School of Engineering and Technology, University of Washington - Tacoma usé

49

Slides by Wes J. Lloyd

46

CGROUPS - 2

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts zsux;:ivs name | hierarchy | num_cgroups [enabled
for CPU usage pu
puacct
blkio
memory 8
= cgroup filesystem: Joevices
roezer
= /sys/fs/cgroup et cis
. . r_event T
= Can browse resource utilization et oo
. uget!
of containers... ids T
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ [November 12028 School of Engineering snd Technologys Unlversty of washingion -Tacoma L4

48

AYERED FS: BUILDING A CONTAINER

FROM ubuntu:18.04
= Dockerfile: copy . sapp
RUN make /app
CHD python /app/app.py

Thin RIW layer }e—— Container fayer

Python /app/app.py = | IR

Run make /app | 2R

Image lavers (R/0)

Copy . /app > [0s i)

Ubuntu base image > R EE

ubunti15.04
Container
TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERGHED ‘ School of Engineering and Technology, University of Washington - Tacoma 1s50

50

L15.8

https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://medium.com/@nagarwal/docker-containers-filesystem-demystified-b6ed8112a04a
https://www.slideshare.net/jpetazzo/scale11x-lxc-talk-1/

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

THREE-TIER ARCHITECTURE

OS containers App containers

= Meant o used as an 08 - run mulliple + Meant to run for a sing
. L

ples - LXC, OpenZ, Linux VSarver,
BSD Jails, Solaris Zones

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ (LA) S School of Engineering and Technology, University of Washington - Tacoma

uss

[Fall 2024]

CONTAINER ISOLATION

= |s the host isolated from application containers?

= Are application containers isolated from each
other?

Application
containers
Application
containers

VM kernel

TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (I 2 ‘ School of Engineering and Technology, University of Washington - Tacoma Ls52

51

LXC (LINUX CONTAINERS)

= Operating system level virtualization

using a single Linux kernel
= Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

= Linux namespaces
= Docker initially based on LXC

= Run multiple isolated Linux systems on a host

TCS462/562: (Software Engineering for) Cloud Computing [Fall 2024]

‘ November 14,2024 School of Engineering and Technology, University of Washington - Tacoma

uss3

52

OTHER DOCKER TOOLS

Docker Engine
(TN T
runC runC

Clusters multiple docker hosts together to manage as a
cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

= Docker Machine:
automatically provision
and manage sets of
docker hosts to
form a cluster

‘ November 14, 2024 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2024] s

School of Engineering and Technology, University of Washington - Tacoma

53

CONTAINER ORCHESTRATION
FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
= Similar to “private clusters”

= Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

infrastructure
= Generate to cost savings
= Reduce vendor lock-in

= Compact multiple apps onto shared public cloud

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

‘ (T School of Engineering and Technology, University of Washington -Tacoma

usss

54

KEY ORCHESTRATION FEATURES

= Management of container hosts
= Launching set of containers
= Rescheduling failed containers
= Linking containers to support workflows
= Providing connectivity to clients outside the container cluster
= Firewall: control network/port accessibility
= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers
= Load balancing over groups of containers
= Rolling upgrades of containers for application

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]
‘ (UERERGHED School of Engineering and Technology, University of Washington - Tacoma Lss

55

Slides by Wes J. Lloyd

56

L15.9

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

CONTAINER ORCHESTRATION
FRAMEWORKS - 2

= Docker swarm
= Apache mesos/marathon
= Kubernetes

= Many public cloud provides moving to offer Kubernetes-as-
a-service

= Amazon elastic container service (ECS)
= Apache aurora

= Container-as-a-Service
= Serverles containers without managing clusters
= Azure Container Instances, AWS Fargate...

‘ (LA) S School of Engineering and Technology, University of Washington - Tacoma

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024] 557

OBJECTIVES - 11/14

= OBJECTIVES - 11/12
= Tutorials Questions
= Class Presentations Schedule -
Cloud Technology or Research Paper Review
= Quiz 1
= Tutorial 7
= Containerization

= Container Profiler

‘ November 14, 2024 TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] Lisss

School of Engineering and Technology, University of Washington - Tacoma

57

/lgithub.com/wlloyduw/ContainerProfiler

CONTAINER
PROFILER

GigaScience, 2023, 12, 1-11

Tech Note

Varik Hoang ", Ling-Hong Hung ", David Perez, Huazeng Deng, Raymond Schooley ©, Niharika Arumilki, Ka Yee Yeung
and Wes Lioyd ©*

58

CONTAINER PROFILER

= Captures resource utilization metrics for containers

= Profiles CPU, memory, disk, and network utilization collecting
over 60 metrics available from the Linux 0S

= Supports two types of profiling

= A “Delta” Resource Utllizatlon: Records and calculates total resource
utilization from when an initial selection is provided before
implementation is verified.

= Time series sampling: supports a configurable sampling interval for
continuous monitoring of resources consumed by containers
= Similar profiling techniques compared to SAAF
= Uses Linux proc filesystem “man procfs”

= Implemented with a combination of custom code and the
Python-based psutil library to obtain resource utilization data
rapidly

‘ November23, 2016 TCS3462/562:(Software Engineering for) Cloud Computing [Fall 2024] L1960

School of Engineering and Technology, University of Washington - Tacoma

59

60

= Profiling overhead (9,000 samples): = Process-level
= Use case: RNA-sequencing data i [= 99.95% of process level samples were collected under 100ms
processing pipeline (containerized) 1% | = All container-level samples collected under 74ms
= Hardware: IBM Cloud dual bx2d metal L3
96 VCPUs processors, 384 GB RAM ‘E l— = All host (VM-level) samples collected under 60ms
- :.rfgfggss;lebvghlzq peaks indicbalteh J il = UMI RNA-sequencing pipeline use case required 2.5 hours to
ifferent behavior presumably base " Container-level A
on the number of processes running %”“ o0 percentis execute with 1-second
inside the containerd cpuldle time. ot sampling at full Resoues
= Process level collects and reports all il verbosity (all CPU, docker "{ Sarvple.
available metrics i e T network 1/0, disk 1/0 tson)
= Other Supported Profiling Modes: profiling time (ms) ' S
= Container-level profiling $an Vitevel and memory metrics profilersh —sofing sgureni— nudataalpy
Does not collect process-level metrics fe B0th percenlile collected) T
Faster D) | J. “':l“"l“.‘:'“:ml J
= VM-level profiling: § o
Even faster 2 IgElsh e g E0EiA8 S
Only collects host-level metrics pre
TCSS462/562:(Software Engir ring for) Cloud Cor [Fall 2024] TCS5462/562:(Softy Ei for) Cloud C ing [Fall 2024]
‘ November 14, 2024 | 30 eeleg. Unfsiy o odungon Ttoma ‘ November 4, 2024 | 3G e, Uty of Wi Totema

61

Slides by Wes J. Lloyd

62

L15.10

https://github.com/wlloyduw/ContainerProfiler

TCSS 462: Cloud Computing

TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

CONTAINER PROFILER:

TIME SERIES ANALYSIS OF RESOURCE
UTILIZATION

B

Disk writes CPU usage
= CPU utilization by [——
g X L .
£ o .
= Memory g 8w |
PO £ &
utilization £ U
ol i
D ! 2 3 G o~ 3
. . a B
= Disk writes %‘% LN %“ % £ %“*
b Time () ' Tiwe (h)
= Network Network transfer Memory usage
transfer ’ -)
L . ®
o Ea
B B
H H

0, 1 2 3 0g 1 .2
gﬁi LN % % Xﬁ, G,
November 14, 2024 It £ Tme(h) , % Tima (h)

sc

[Fall 2024]

CONTAINER PROFILER:

METRICS

= Measures v
up to
~60 metrics

= Configurable

Verbosity
= Can rapidly
= Change
vebosity
TC55462/562:(Software Engineering for) Cloud Computing [Fall 2024]
l EeenbeRo2y School of Engineering and Technology, University of Washington - Tacoma L84

63

CONTAINER PROFILER:
USE CASE

s [T ——
w T

— -

sy [T

WOOR WOON WORON 10100 10Z00%

= Four state: download, split, align, merge

= Profiling overhead for jobs profiled by the ContainerProfiler:

= Use case: Uniform Molecular Identifier (UMI) RNA-seq pipeline

‘TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024]

l Novemberdd 2028 School of Engineering and Technology, University of Washington - Tacoma

usss

64

CONTAINER PROFILER:
DELTA PROFILING

el L%
= Delta profiling 1o0% Tt -
supports viewing

total resource

utilization (CPU, disk, T 0564
network) for a
containerized task or
mutli-stage pipeline
Task = 1 container
Pipeline = many
containers

Delta captures the 1.06%
perceived system g -
resources used by
the task

797

s SRS 6207

.
Time Percentage
H

Download Split Align Merge
m cpuSHIntSrvct m cpuloWait % s cpuldie % - cpukm %m cpullsr %

= Here is the delta profiling graph for resource utilization:
Four tasks: Download, Split, Align, Merge
Graph shows % time in different CPU modes (cpuUsr, cpuKrn, cpuldle, etc.)

TCS5462/562:(Software Engineering for) Cloud Computing [Fall 2024] L1ses
School of Engineering and Technology, University of Washington - Tacoma

l November 14, 2024

65

QUESTIONS

TCS$462/562:(Software Engineering for) Cloud Computing [Fall 20}
School of Engineering and Technology, University of Washington -

November 14, 2024

67

Slides by Wes J. Lloyd

66

L15.11

	Slide 1: TCSS 462/562: (Software Engineering for) Cloud Computing
	Slide 2: Office hours – Fall 2024
	Slide 3: OBJECTIVES – 11/14
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 11/12
	Slide 8: AWS Cloud Credits update
	Slide 9: OBJECTIVES – 11/14
	Slide 10
	Slide 11: Tutorial submission time
	Slide 12: Tutorial 5 – due nov 14
	Slide 13: Tutorial 6 – nov 23
	Slide 14: OBJECTIVES – 11/14
	Slide 15: Group presentation
	Slide 16: OBJECTIVES – 11/14
	Slide 19: OBJECTIVES – 11/14
	Slide 20: Tutorial #7 Docker, CGROUPS, resource isolation
	Slide 21: Tutorial 7 – dec 1
	Slide 22: Tutorial coverage
	Slide 23
	Slide 24: Tutorial 7
	Slide 25: We will return at ~4:50 pm
	Slide 26: Containerization
	Slide 27: OBJECTIVES – 11/14
	Slide 28: Motivation for containerization
	Slide 29: Container performance – LU factorization performance
	Slide 30: Container performance – y-cruncher: pi calculator
	Slide 31: Container performance – bonnie++
	Slide 32: What is a container?
	Slide 33: Operating system containers
	Slide 34: Application containers
	Slide 35: Application containers - 2
	Slide 36: 2016 docker survey
	Slide 37: docker
	Slide 38: Original Docker engine implementation
	Slide 39: Introduction of libcontainer
	Slide 40: Open container initiative (OCI)
	Slide 41: Creating a container
	Slide 42: Creating a container - 2
	Slide 43: Support for alternate container runtimes
	Slide 44: Linux kernel namespaces
	Slide 45: Namespaces - 2
	Slide 46: Linux kernel namespaces - 3
	Slide 47: Control groups (cgroups)
	Slide 48: Cgroups - 2
	Slide 49: Overlay file systems
	Slide 50: Layered fs: Building a container
	Slide 51: Three-tier architecture
	Slide 52: Container isolation
	Slide 53: Lxc (linux containers)
	Slide 54: Other docker tools
	Slide 55: Container orchestration frameworks
	Slide 56: Key orchestration features
	Slide 57: Container orchestration frameworks - 2
	Slide 58: OBJECTIVES – 11/14
	Slide 59: Container profiler
	Slide 60: Container profiler
	Slide 61: Container profiler: Profiling overhead
	Slide 62: Container profiler: Profiling overhead example
	Slide 63: Container profiler: time series analysis of resource utilization
	Slide 64: Container profiler: metrics
	Slide 65: Container profiler: use case
	Slide 66: Container profiler: delta profiling
	Slide 67: Questions

