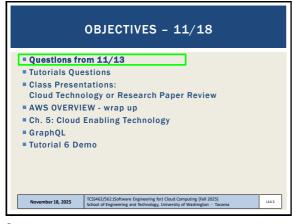


Thursdays:

6:00 to 7:00 pm - CP 229 & Zoom

Friday - *** THIS WEEK ***

11:00 am to 12:00 pm - ONLINE via Zoom

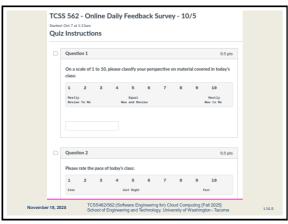

Or email for appointment

Office Hours set based on Student Demographics survey feedback

**- Friday office hours may be adjusted or canceled due meeting conflicts or other obligations. Adjustments will be announced via Canvas.

TCSS42/552/507tware Engineering for Cloud Computing [Fall 2025]
School of Engineering and Inchnology, University of Versibington—Incoma

1



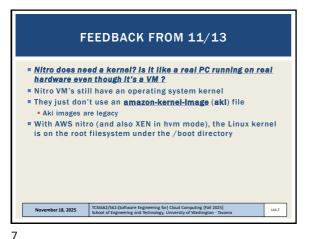
ONLINE DAILY FEEDBACK SURVEY

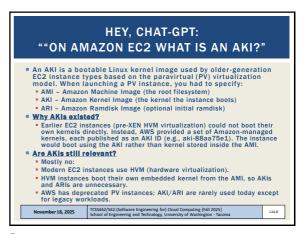
■ Daily Feedback Quiz in Canvas - Take After Each Class
■ Extra Credit
for completing

Accountments
Acco

3

5


MATERIAL / PACE


■ Please classify your perspective on material covered in today's class (41 respondents, 27 in-person, 14 online):
■ 1-mostly review, 5-equal new/review, 10-mostly new
■ Average - 5.46 (↓ - previous 5.64)

■ Please rate the pace of today's class:
■ 1-slow, 5-just right, 10-fast
■ Average - 5.07 (↑ - previous 4.96)

November18, 2025

| TCSS48/562:[Software Engineering for) Cloud Computing [Fall 2025]
| School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

**Quiz 2 only covers lecture 12-17?*

**Can you provide several Qs related to critical sections that may appear in quiz 2?*

**After each lecture, will repost slides:

**For L13-17: will remove slides we did not cover that day

**Will mark key slides with important content for quiz 2 with a green star:

**Tosk62/R62/Selfware Engineering for) Cloud Computing [fall 2025]

**Stood of Engineering and Schoology, University of Washinston - Taxons

OBJECTIVES - 11/18

= Questions from 11/13
= Tutorials Questions
= Class Presentations:
 Cloud Technology or Research Paper Review
= AWS OVERVIEW - wrap up
= Ch. 5: Cloud Enabling Technology
= GraphQL
= Tutorial 6 Demo

9

TUTORIAL 5 - DUE NOV 16

Introduction to Lambda II: Working with Files in S3, Cloud Trail, and Amazon Event Bridge Rules

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_5.pdf

Customize the Request object (add getters/setters)

Why do this instead of HashMap?

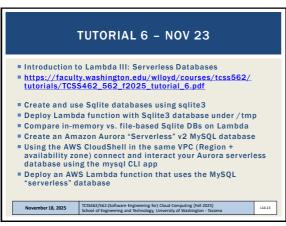
Import dependencies (jar files) into project for AWS S3

Create an S3 Bucket

Give your Lambda function(s) permission to work with S3

Write to the CloudWatch logs

Use of CloudTrail to generate S3 events


Creating Event Bridge rule to capture events from CloudTrail

Have the Event Bridge rule trigger a Lambda function with a static JSON input object (hard-coded filename)

Optional: for the S3 PutObject event, dynamically extract the name of the file put to the S3 bucket for processing

11 12

Slides by Wes J. Lloyd

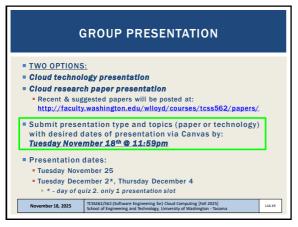
TUTORIAL 7 - DEC 4 Introduction to Docker https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2025_tutorial_7.pdf Must complete using c7i-flex.large ec2 instance & Ubuntu 24.04 (for cgroups v2) Use DOCX file for copying and pasting Docker install commands Topics: Installing Docker Creating a container using a Dockerfile Using cgroups virtual filesystem to monitor CPU utilization of a container Persisting container images to Docker Hub image repository Container vertical scaling of CPU/memory resources
 Testing container CPU and memory isolation ember 18, 2025 TCSS462/562: School of Eng L14.14

13 14

TUTORIAL COVERAGE ■ Docker CLI → Docker Engine (dockerd) → containerd → runc Working with the docker CLI: docker run create a container list containers, find CONTAINER ID docker ps -a docker exec --it run a process in an existing container docker stop stop a container kill a container docker help list available commands man docker Docker Linux manual pages TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac November 18, 2025 L14.15

ut, output, and error streams to a run kerfile container's changes n a container and the local filesystem or update an existing stack

files or directories on a container's filesystem ents from a tarball to create a filesystem image .em.wide information
level information on Docker objects
more running containers
pe from a tar archive or STDIN
Docker register. **Docker CLI** er registry container within one or more containers or a specific mapping for the container or a repository from a registry or a repository to a registry mages ew container ges to a tar archive (streamed to STDOUT by default) b for images ners er(s) resource usage statistics of container(s) resource con-ing containers
MAGE that refers to SOURCE_IMAGE
rottless of a container
of containers
of one or more containers
of one or more containers
on information
or information their exit cos
ore containers stop, then print their exit cos
ore containers stop, then print their exit cos

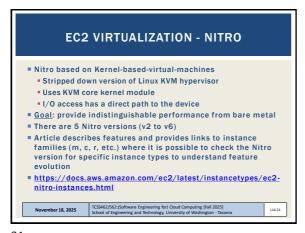

15

TUTORIAL 7 ■ Tutorial introduces use of two common Linux performance benchmark applications stress-ng ■ 100s of CPU, memory, disk, network stress tests Sysbench Used in tutorial for memory stress test November 18, 2025 L14.17 17

OBJECTIVES - 11/18 Questions from 11/13 ■ Tutorials Questions Class Presentations: **Cloud Technology or Research Paper Review** AWS OVERVIEW - wrap up Ch. 5: Cloud Enabling Technology GraphOL ■ Tutorial 6 Demo November 18, 2025 L14.18

Slides by Wes J. Lloyd L14.3

18

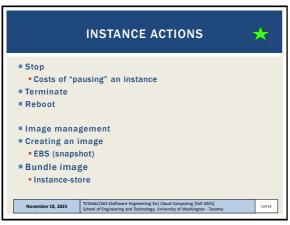

OBJECTIVES - 11/18

Questions from 11/13
Tutorials Questions
Class Presentations:
Cloud Technology or Research Paper Review

AWS OVERVIEW - wrap up
Ch. 5: Cloud Enabling Technology
GraphQL
Tutorial 6 Demo

TCSS462/562/Software Engineering for Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

19


EVOLUTION OF AWS VIRTUALIZATION

From: http://www.brendangregg.com/blog/2037-31-29/ews-ec2-virtualization-2037.html

AWS EC2 Virtualization Typos

Index professional Professio

21

EC2 INSTANCE: NETWORK ACCESS

Public IP address

Elastic IPs

Costs: in-use FREE, not in-use ~12 (/day

Not in-use (e.g. "paused" EBS-backed instances)

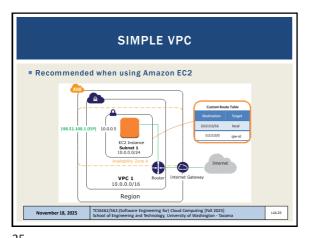
Security groups

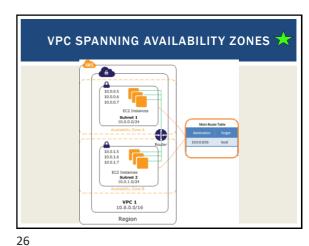
E.g. firewall

Identity access management (IAM)

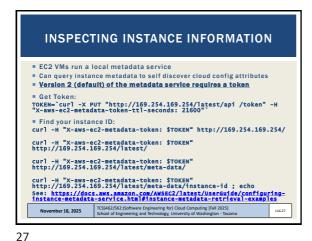
AWS accounts, groups

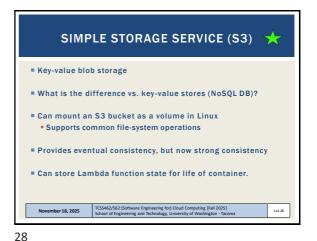
VPC / Subnet / Internet Gateway / Router

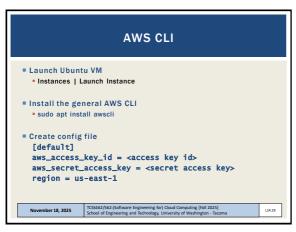

NAT-Gateway


TCSS4G2/S62-(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoms

23 24

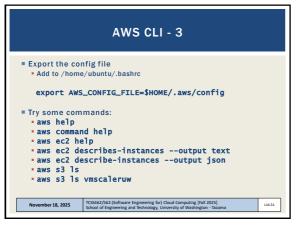

Slides by Wes J. Lloyd L14.4


20



25 26

21



Creating access keys: IAM | Users | Security Credentials |

Access Keys | Create Access Keys

| Total | Tot

29 30

31 32

33

PRIVATE KEY, CERTIFICATE FILE

These files, combined with your AWS_ACCESS_KEY and AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to publish new images from the CLI

Objective:
Configure VM with software stack
Burn new image for VM replication (horizontal scaling)

An alternative to bundling volumes and storing in S3 is to use a containerization tool such as Docker...

Create image script ...

Create image script ...

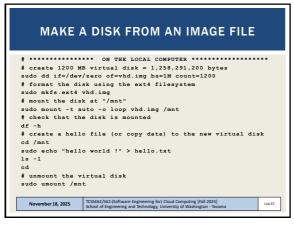

SCRIPT: CREATE A NEW INSTANCE STORE

IMAGE FROM LIVE DISK VOLUME

Image=\$1
echo "surn image \$1mage"
echo "\$1mage" > image.1d
mkdir /mnt/temp
AWS_KEY_DIXR~/home/ubuntu/.aws
export eC2_UNL=http://ec2.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export aWS_DEXR_DF_(Vour account 1d)
export AWS_ACCESS_KEY={your aws access key}
export AWS_ACCESS_KEY={your account fd}
export AWS_ACCESS_KEY={your aws access key}
export AWS_ACCESS_KEY={your aws access key}
export AWS_ACCESS_KEY={your account fd}
export AWS_ACCESS_KEY={your aws access key}
export AWS_ACCESS_ACY={your aws access key}
export AWS_ACCESS_ACY={your aws access key}
export AWS_ACCESS_ACY={your aws access key}
export AWS_ACCESS_ACY

35 36

Slides by Wes J. Lloyd L14.6

compress the disk
bzip2 vhd.img
push the disk image to S3
aws s3 cp vhd.img.bz2 s3://tcss562-f21-images

37

 Welcome to fdisk (util-linux 2.34).

Command (m for help): n
Partition type
p primary (0 primary, 0 extended, 4 free)
e extended (container for logical partitions)

Select (default p): p
Partition number (1.4, default 1): 1
First sector (2048-97656249, default 2048): 2048
Last sector, +/-sectors or +/-size(K,M,G,T,P) (2048-97656249, default 97656249): 2459848

Created a new partition 1 of type 'Linux' and of size 1.2 GiB.

Command (m for help): Selected partition 1
Hex code (type L to list all codes): 83
Changed type of partition 'Linux' to 'Linux'.

Command (m for help): W (to write and exit)

November 18, 2025

November 18, 2025

TCS482/362-[Software Engineering for) Cloud Computing [fall 2025]
School of Engineering and Technology, University of Wainington - Tacoma

39

now check if the partition has been created.
it should be listed as /dev/nymelnlp1:
ls /dev/nymeln1*

now copy the data to the partition
sudo dd if=vhd.img of=/dev/nymelnlp1

mount the disk
sudo mount /dev/nymelnlp1 /mnt

and check if the hello file is there
cat /mnt/hello.txt

we were able to copy the disk image to the cloud
and we never had to format the cloud disk
this examples copies a filesystem from a local disk
to the cloud disk

| TCSM62/562/Software Engineering for) Cloud Computing [Fall 2025]
| School of Engineering and Technology, University of Washington-Taccoma

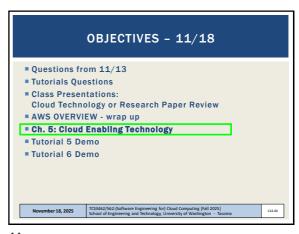
FOR MORE INFORMATION

Example script:

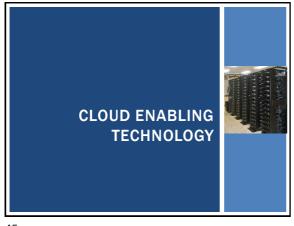
https://faculty.washington.edu/wlloyd/courses/tcss562/examples/copy-disk-to-cloud.sh

URLs:
https://help.ubuntu.com/community/Drivelmaging
https://www.tecmint.com/create-virtual-harddisk-volume-in-linux/

November 18, 2025


TCSS462/S62:[Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington-Tacoma

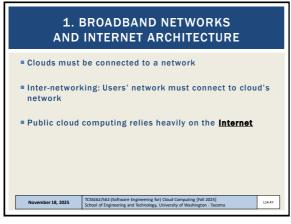
41 42

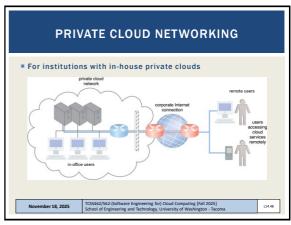

Slides by Wes J. Lloyd L14.7

38

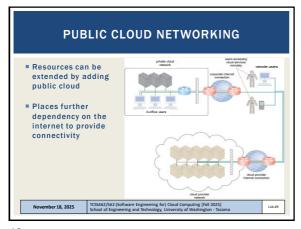
43 44

CLOUD ENABLING TECHNOLOGY


Adapted from Ch. 5 from Cloud Computing Concepts, Technology & Architecture
Broadband networks and internet architecture


Data center technology
Virtualization technology
Multitenant technology
Web/web services technology

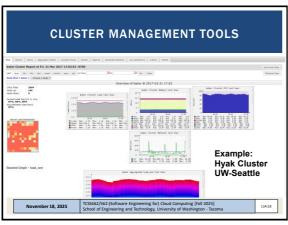
November 18, 2025


MINISTRUCTURE Significance Engineering for Court Computing [fall 2025]
Movember 18, 2025

45 46



47 48

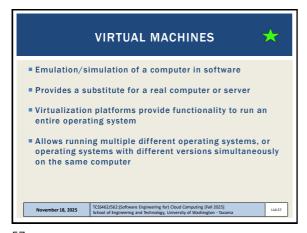


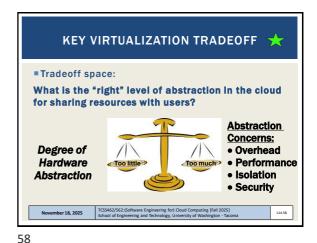
INTERNETWORKING KEY POINTS Cloud consumers and providers typically communicate via the internet Decentralized provisioning and management model is not controlled by the cloud consumers or providers ■ Inter-networking (internet) relies on connectionless packet switching and route-based interconnectivity Routers and switches support communication Network bandwidth and latency influence QoS, which is heavily impacted by network congestion ember 18, 2025

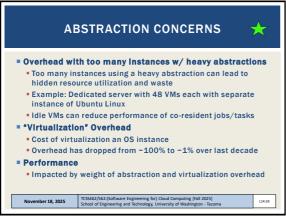
49 50

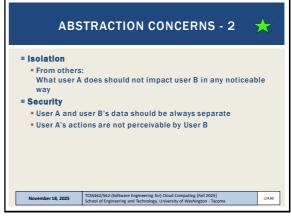
2. DATA CENTER TECHNOLOGY • Grouping servers together (clusters): Enables power sharing Higher efficiency in shared IT resource usage (less duplication of effort) Improved accessibility and organization Key components: Virtualized and physical server resources Standardized, modular hardware Automation support: enable server provisioning configuration, patching, monitoring without supervision... tool/API support is desirable November 18, 2025

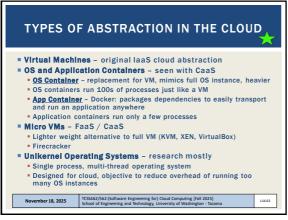
DATA CENTER TECHNOLOGY -**KEY COMPONENTS** ■ Remote operation / management ■ High availability support: **redundant everything** Includes: power supplies, cabling, environmental control systems, communication links, duplicate warm replica HW Secure design: physical and logical access control ■ Servers: rackmount, etc. ■ Storage: hard disk arrays (RAID) storage area network (SAN): disk array w/ multiple servers (individual nodes w/ disks) and a dedicated network network attached storage (NAS): inexpensive single node with collection of disks, provides shared filesystems, for NFS, etc. ■ Network hardware: backbone routers (WAN to LAN connectivity), firewalls, VPN gateways, managed switches/routers TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tar November 18, 2025


53 54


Slides by Wes J. Lloyd L14.9

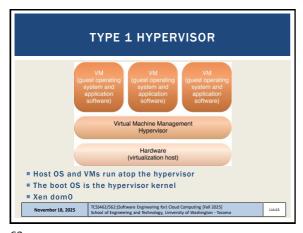



55 56

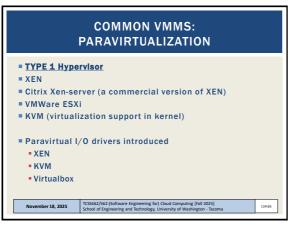


57

59 60



Type 1 hypervisor
Typically involves a special virtualization kernel that runs directly on the system to share the underlying machine with many guest VMs
Paravirtualization introduced to directly share system resources with guests bypassing full emulation
White becomes equal participant in sharing the network card for example
Type 2 hypervisor
Typically involves the Full Virtualization of the guest, where everything is simulated/emulated

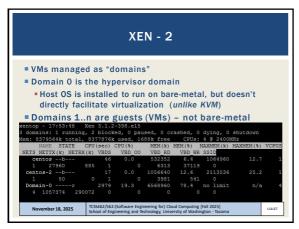

Hardware level support (i.e. features introduced on CPUs) have made virtualization faster in all respects shrinking virtualization overhead

TCSS462/562/562/562/562/561/561/601/Coud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

61 62

63

XEN


■ Developed at Cambridge in ~ 2003

Guest VMs

| Control Plane Software | User Soft

65 66

Slides by Wes J. Lloyd L14.11

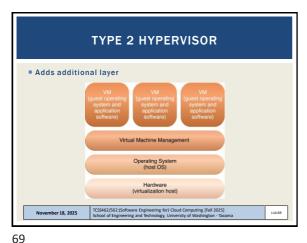
XEN - 3

Physical machine boots special XEN kernel

Kernel provides paravirtual API to manage CPU & device multiplexing

Guests require modified XEN-aware kernels

Xen supports full-virtualization for unmodified OS guests in hvm mode


Amazon EC2 largely based on modified version of XEN hypervisor (EC2 gens 1-4)

XEN provides its own CPU schedulers, I/O scheduling

TCS462/562/5642/562/564vare Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington-Taxoma

Lister

67 68

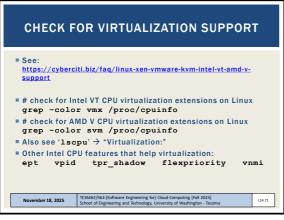
TYPE 2 HYPERVISOR

Problem: Original x86 CPUs could not trap special instructions

Instructions not specially marked

Solution: Use Full Virtualization

Trap ALL instructions


"Fully" simulate entire computer

Tradeoff: Higher Overhead

Benefit: Can virtualize any operating system without modification

TCSS62/562/Software Engineering for Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

09

KERNEL BASED VIRTUAL MACHINES (KVM)

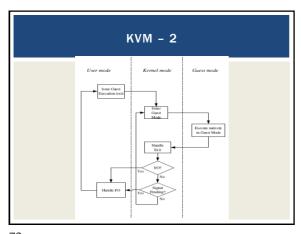
**x86 HW notoriously difficult to virtualize

**Extensions added to 64-bit Intel/AMD CPUs

**Provides hardware assisted virtualization

**New "guest" operating mode

**Hardware state switch

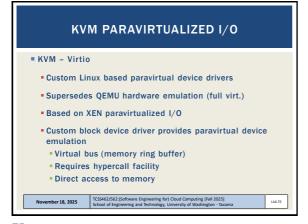

**Exit reason reporting

**Intel/AMD implementations different

**Linux uses vendor specific kernel modules

71 72

Slides by Wes J. Lloyd L14.12



KVM - 3

• KVM has /dev/kvm device file node
• Linux character device, with operations:
• Create new VM
• Allocate memory to VM
• Read/write virtual CPU registers
• Inject interrupts into vCPUs
• Running vCPUs

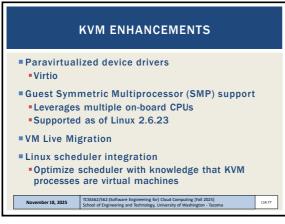
• VMs run as Linux processes
• Scheduled by host Linux OS
• Can be pinned to specific cores with "taskset"

73 74

KVM requires CPU VMX support
 Virtualization management extensions

KVM can virtualize any OS without special kernels
 Less invasive

KVM was originally separate from the Linux kernel, but then integrated

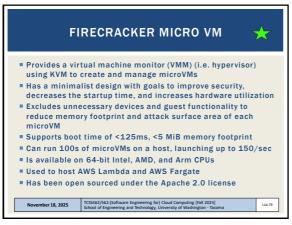

KVM is type 1 hypervisor because the machine boots Linux which has integrated support for virtualization

Different than XEN because XEN kernel alone is not a full-fledged OS

November 18, 2025

TCSS642/502:Eoftware Engineering for) Cloud Computing [Fall 2025]

75



FIRECRACKER MICRO VM

The Indiamong diagram depicts are example host number of previous and analysis of multiple states and the states are states and the states and the states and the states and the st

77 78

Slides by Wes J. Lloyd L14.13

FIRECRACKER - 2

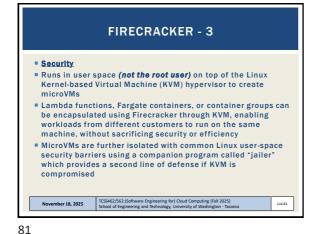
Minimalistic

MicroVMs run as separate processes on the host

Only 5 emulated devices are available: virtio-net, virtio-block, virtio-vsock, serial console, and a minimal keyboard controller used only to stop the microVM

Rate limiters can be created and configured to provision resources to support bursts or specific bandwidth/operation limitations

Configuration


A RESTful API enables common actions such as configuring the number of vCPUs or launching microVMs

A metadata service between the host and guest provides configuration information

November 18, 2025

TESSIGNIS

79

UNIKERNELS

■ Lightweight alternative to containers and VMs

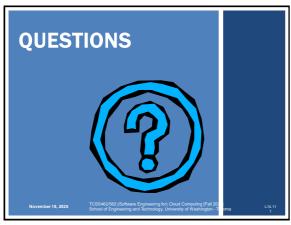
■ Custom Cloud Operating System

■ Single process, multiple threads, runs one program

■ Launch separately atop of hypervisor (XEN/KVM)

■ Reduce overhead, duplication of heavy weight OS

■ OSv is most well known unikernel


■ Several others exist has research projects

■ More information at: http://unikernel.org/

■ Google Trends

OSv →

01

111

Slides by Wes J. Lloyd L14.14

80