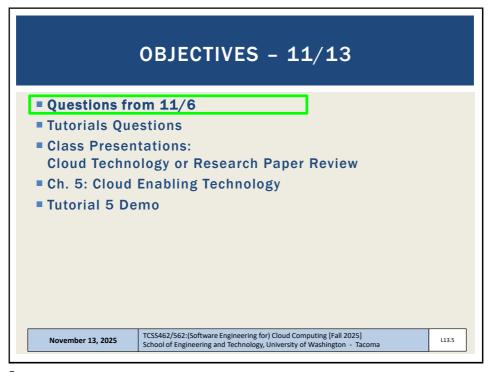
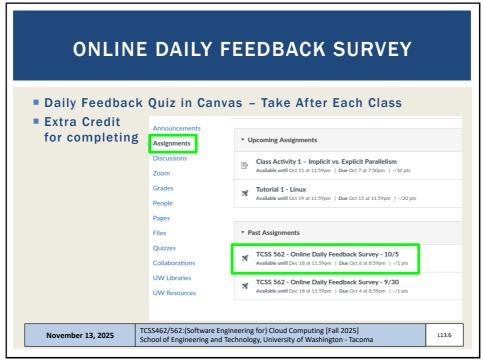
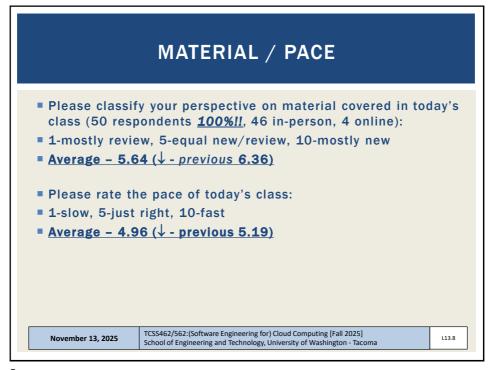

Τ


2


3

4


5

6

	Started	S 562 : Oct 7 at : z Instr	1:13am		Daily	Feedl	oack S	Surve	y - 10	/5				
		Questi	on 1								0.5 pts			
		On a so	cale of 1	l to 10, p	olease cl	assify yo	our persp	ective o	n mater	ial cove	red in today's			
		1 Mostly Review	2 To Me	3	4 Ne	5 Equal w and Rev	6 view	7	8	9	10 Mostly New to Me			
		Questi	on 2								0.5 pts			
		Please	rate the	pace of	today's	class:								
		1	2	3	4	5	6	7	8	9	10			
		Slow			J	ust Right				-	Fast			
November	r 13, 20	25									Fall 2025] gton - Tacoma	 L13	1.7	

7

8

FEEDBACK FROM 11/6

- Regarding a Cloud Technology Class Presentation, is a demonstration required?
 - Yes, a demonstration is required for a cloud technology presentation, though a LIVE demonstration is <u>not</u> required
 - The Assignment description provides some strategies
- Will Quiz 2 be similar to quiz 1 in terms of format, difficulty and/or scope?
 - It is likely to be similar
 - Quiz 2 will have less new content, and more review, since there are just 4 lectures before December 2nd
 - Lectures 12, 13, 14, 15, 16
 - Tutorials 5, 6, 7

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.9

9

OBJECTIVES - 11/13

- Questions from 11/6
- Tutorials Questions
- Class Presentations: Cloud Technology or Research Paper Review
- Ch. 5: Cloud Enabling Technology
- Tutorial 5 Demo

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

13.10

10

Don't Forget to Terminate (Shutdown) all EC2 instances for Tutorials 3

Spot instances: c5d.large instance @ ~3.2 cents / hour

\$0.78 / day \$5.48 / week \$23.78 / month \$285.42 / year

AWS CREDITS $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

11

TUTORIAL 4 - DUE NOV 11

- Introduction to AWS Lambda with the Serverless Application Analytics Framework (SAAF)
 - https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_4.pdf
- Set up Java development environment
- Introduction to Maven build files for Java
- Create and Deploy "hello" Java AWS Lambda Function
- Create API Gateway REST endpoint
- Sequential testing of "hello" AWS Lambda Function
 - API Gateway endpoint, AWS Lambda CLI Function invocation, AWS Function URL
- Profiling function performance with SAAF
- Concurrent function testing with faas_runner
- Performance analysis using faas_runner reports
- Two function pipeline development task: Caesar Cipher

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.12

12

TUTORIAL 4 - NOTES

- Sometimes students get unexpected results when adding Thread.sleep(10000) to the hello Lambda function:
- It is possible that:
- Results from the SAAF Report Generator were from a test run before the Thread.Sleep() statement was added to the code
- The Thread.Sleep() statement was added in the incorrect location of the code
 - OR
- 3. When opening the CSV output from the Report Generator, the file separator characters were set incorrectly.
- The only separator for a CSV file is the comma "," Be sure to correctly open the CSV file in the spreadsheet. Columns can be offset resulting in the wrong answers being provided for Question 6.

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.13

13

TUTORIAL 4 - NOTES - 2

Code must be recompiled and redeployed after modification

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

November 13, 2025 ICSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma L13.14

14

TUTORIAL 4 - NOTES - 3

- SANITY CHECK: consider that adding 10 seconds of sleep to your AWS Lambda function will cause the function to run for at least 10 seconds. This will impact the outputs requested for Question 6:
- avg_runtime is the server-side (cloud) runtime of the function
- This is the time it takes for the function to run on AWS Lambda (cloud)
- Adding sleep of 10 seconds should increase a function's avg_runtime
- avg_roundTripTime is the total time for a request from a client (laptop?) to travel to the server (cloud), make the function call, and return.
- If trying to make 50 calls at once on a laptop with a small # of CPU cores this time may be slow
- Adding sleep of 10 seconds should increase a function's avg_roundTripTime

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.15

15

TUTORIAL 4 - NOTES - 4

avg_cpuldleDelta time is the amount of time the Lambda function's Firecracker two vCPUs are idle during the function call on the server measured in centiseconds:

> 100 centiseconds = 1 second 100 centiseconds = 1000 milliseconds

- By default, AWS Lambda functions with 512 MB run in a runtime environment with access to two vCPU cores
- This is the total vCPU idle time for both cores (it is doubled)
- Adding sleep of 10 seconds should increase your function's avg_cpuldleDelta
- How much should <u>avg_cpuldleDelta</u> increase?

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.16

16

TUTORIAL 5 - DUE NOV 16

- Introduction to Lambda II: Working with Files in S3, Cloud Trail, and Amazon Event Bridge Rules
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2025_tutorial_5.pdf
- Customize the Request object (add getters/setters)
 Why do this instead of HashMap?
- Import dependencies (jar files) into project for AWS S3
- Create an S3 Bucket
- Give your Lambda function(s) permission to work with S3
- Write to the CloudWatch logs
- Use of CloudTrail to generate S3 events
- Creating Event Bridge rule to capture events from CloudTrail
- Have the Event Bridge rule trigger a Lambda function with a static JSON input object (hard-coded filename)
- Optional: for the S3 PutObject event, dynamically extract the name of the file put to the S3 bucket for processing

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.17

17

TUTORIAL 6 - NOV 23

- Introduction to Lambda III: Serverless Databases
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2025_tutorial_6.pdf
- Create and use Sqlite databases using sqlite3
- Deploy Lambda function with Sqlite3 database under /tmp
- Compare in-memory vs. file-based Sqlite DBs on Lambda
- Create an Amazon Aurora "Serverless" v2 MySQL database
- Using the AWS CloudShell in the same VPC (Region + availability zone) connect and interact your Aurora serverless database using the mysql CLI app
- Deploy an AWS Lambda function that uses the MySQL "serverless" database

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.18

18

TUTORIAL 7 Introduction to Docker To be posted • Must complete using Ubuntu 24.04 (for cgroups v2) Use DOCX file for copying and pasting Docker install commands ■ Topics: Installing Docker Creating a container using a Dockerfile Using cgroups virtual filesystem to monitor CPU utilization of a container Persisting container images to Docker Hub image repository Container vertical scaling of CPU/memory resources Testing container CPU and memory isolation TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 13, 2025

19

TUTORIAL COVERAGE ■ Docker CLI → Docker Engine (dockerd) → containerd → runc ■ Working with the docker CLI: docker run create a container docker ps -a list containers, find CONTAINER ID docker exec --it run a process in an existing container docker stop stop a container docker kill kill a container list available commands docker help man docker **Docker Linux manual pages** TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 13, 2025 L13.20

20

```
Attach local standard input, output, and error streams to a running container Build an image from a Dockerfile Create a new image from a container's changes Copy files/folders between a container and the local filesystem
 build
 commit
                                                         Create a new image from a container's changes
Copy files/folders between a container and the local filesystem
Create a new container
Deploy a new stack or update an existing stack
Inspect changes to files or directories on a container's filesystem
Get real time events from the server
Run a command in a running container
Export a container's filesystem as a tar archive
Show the history of an image
List images
Import the contents from a tarball to create a filesystem image
Display system-wide information
Return low-level information on Docker objects
Kill one or more running containers
Load an image from a tar archive or STDIN
Log in to a Docker registry
Log out from a Docker registry
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry
Rename a container
Restart one or more containers
 CP
 create
deploy
diff
 events
 exec
 export
 history
 images
import
 info
 inspect
kill
 load
                                                                                                                                                                                                                                                                                                                                                              Docker CLI
  login
 logout
  logs
 pause
port
 ps
pull
                                                         Push an image or a repository to a registry
Rename a container
Restart one or more containers
Remove one or more containers
Remove one or more images
Run a command in a new container
Save one or more images to a tar archive (streamed to STDOUT by default)
Search the Docker Hub for images
Start one or more stopped containers
Display a live stream of container(s) resource usage statistics
Stop one or more running containers
Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
Display the running processes of a container
Unpause all processes within one or more containers
Update configuration of one or more containers
Show the Docker version information
Block until one or more containers stop, then print their exit codes
 rename
 restart
rm
rmi
 save
 search
 start
 stats
 stop
tag
top
 unpause
 update
 version
wait
```

21

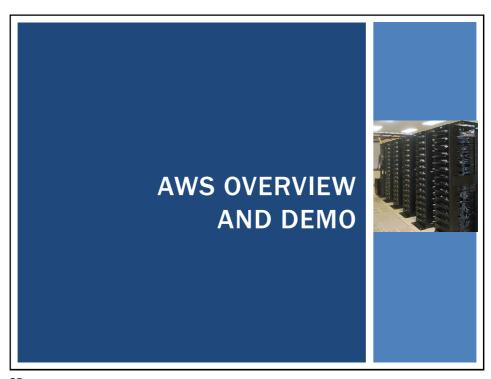
TUTORIAL 7 Tutorial introduces use of two common Linux performance benchmark applications stress-ng 100s of CPU, memory, disk, network stress tests Sysbench Used in tutorial for memory stress test TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]

22

November 13, 2025

Slides by Wes J. Lloyd L13.11

School of Engineering and Technology, University of Washington - Tacoma


113 22

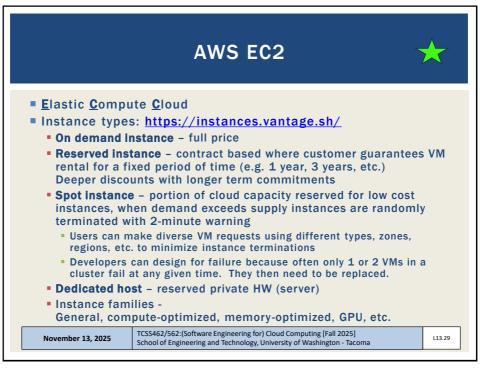
OBJECTIVES - 11/13 Questions from 11/6 Tutorials Questions Class Presentations: Cloud Technology or Research Paper Review Ch. 5: Cloud Enabling Technology Tutorial 5 Demo Tutorial 5 Demo


23

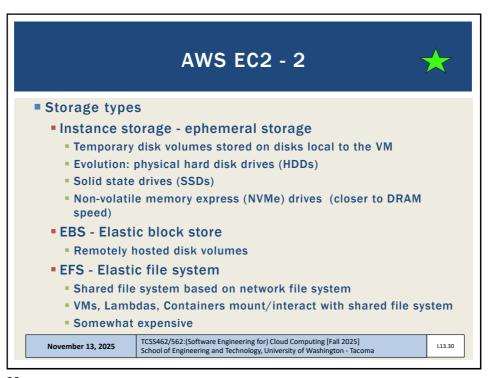
GROUP PRESENTATION TWO OPTIONS: Cloud technology presentation Cloud research paper presentation Recent & suggested papers will be posted at: http://faculty.washington.edu/wlloyd/courses/tcss562/papers/ Submit presentation type and topics (paper or technology) with desired dates of presentation via Canvas by: Tuesday November 18th @ 11:59pm Presentation dates: Tuesday November 25 Tuesday December 2*, Thursday December 4 * - day of quiz 2. only 1 presentation slot TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] November 13, 2025 School of Engineering and Technology, University of Washington - Tacoma

24

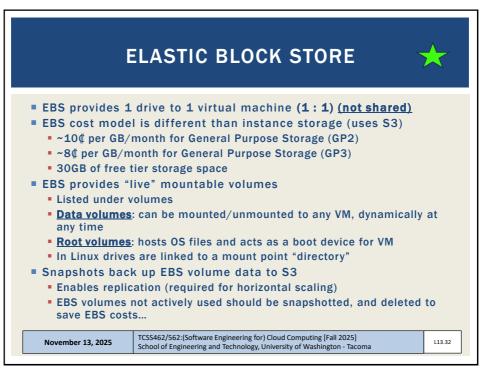
25


26

LIST OF TOPICS AWS Management Console (VM) Instance Actions ■ Elastic Compute Cloud ■ EC2 Networking (EC2) ■ EC2 Instance Metadata Instance Storage: Service Virtual Disks on VMs Simple Storage Service (S3) Elastic Block Store: AWS Command Line Virtual Disks on VMs Interface (CLI) Elastic File System (EFS) Legacy / Service Specific Amazon Machine Images CLIs (AMIs) AMI Tools ■ EC2 Paravirtualization Signing Certificates ■ EC2 Full Virtualization Backing up live disks (hvm) Cost Savings Measures ■ EC2 Virtualization Evolution Disk images and S3 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 13, 2025 L13.27


27

28


29

30

INSTANCE STORAGE Also called ephemeral storage Persisted using images saved to S3 (simple storage service) ~2.3¢ per GB/month on S3 • 5GB of free tier storage space on S3 Requires "burning" an image Multi-step process: Create image files Upload chunks to S3 Register image Launching a VM Requires downloading image components from S3, reassembling them... is potentially slow VMs with instance store backed root volumes not pause-able Historically root volume limited to 10-GB max - faster imaging... TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] November 13, 2025 School of Engineering and Technology, University of Washington - Tacoma

31

32

EBS VOLUME TYPES - 2

- Metric: I/O Operations per Second (IOPS)
- General Purpose 2 (GP2)
 - 3 IOPS per GB, min 100 IOPS (<34GB), max of 16,000 IOPS
 - 250MB/sec throughput per volume
- General Purpose 3 (GP3 new Dec 2020)
 - Max 16,000 IOPS, Default 3,000 IOPS
 - GP2 requires creating a 1TB volume to obtain 3,000 IOPS
 - GP3 all volumes start at 3000 IOPS and 125 MB/s throughput
 - 1000 additional IOPS beyond 3000 is \$5/month up to 16000 IOPS
 - 125 MB/s additional throughput is \$5/month up to 1000 MB/s throughput

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.33

33

EBS VOLUME TYPES - 3

- Provisioned IOPS (IO1)
 - Legacy, associated with GP2
 - Allows user to create custom disk volumes where they pay for a specified IOPS and throughput
 - 32,000 IOPS, and 500 MB/sec throughput per volume MAX
- Throughput Optimized HDD (ST1)
 - Up to 500 MB/sec throughput
 - 4.5 ¢ per GB/month
- Cold HDD (SC1)
 - Up to 250 MB/sec throughput
 - 2.5 ¢ per GB/month
- Magnetic
 - Up to 90 MB/sec throughput per volume
 - 5 ¢ per GB/month

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.34

34

ELASTIC FILE SYSTEM (EFS)

- EFS provides 1 volume to many client (1:n) shared storage
- Network file system (based on NFSv4 protocol)
- Shared file system for EC2, Fargate/ECS, Lambda
- Enables mounting (sharing) the same disk "volume" for R/W access across multiple instances at the same time
- Different performance and limitations vs. EBS/Instance store
- Implementation uses abstracted EC2 instances
- ~ 30 ¢ per GB/month storage default burstable throughput
- Throughput modes:
- Can modify modes only once every 24 hours
- Burstable Throughput Model:
 - Baseline 50kb/sec per GB
 - Burst 100MB/sec pet GB (for volumes sized 10GB to 1024 GB)
 - Credits .72 minutes/day per GB

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.35

35

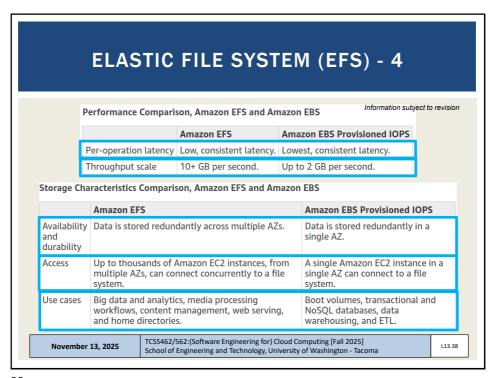
ELASTIC FILE SYSTEM (EFS) - 2

Burstable Throughput Rates

Information subject to revision

- Throughput rates: baseline vs burst
- Credit model for bursting: maximum burst per day

File System Size (GiB)	Baseline Aggregate Throughput (MiB/s)	Burst Aggregate Throughput (MiB/s)	Maximum Burst Duration (Min/Day)	% of Time File System Can Burst (Per Day)
10	0.5	100	7.2	0.5%
256	12.5	100	180	12.5%
512	25.0	100	360	25.0%
1024	50.0	100	720	50.0%
1536	75.0	150	720	50.0%
2048	100.0	200	720	50.0%
3072	150.0	300	720	50.0%
4096	200.0	400	720	50.0%


November 13, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.36

36

ELASTIC FILE SYSTEM (EFS) - 3 Information subject to revision ■ Throughput Models Provisioned Throughput Model ■ For applications with: high performance requirements, but low storage requirements Get high levels of performance w/o overprovisioning capacity \$6 MB/s-Month (Virginia Region) Default is 50kb/sec for 1 GB, .05 MB/s = 30 ¢ per GB/month If file system metered size has higher baseline rate based on size, file system follows default Amazon EFS Bursting Throughput model No charges for Provisioned Throughput below file system's entitlement in Bursting Throughput mode Throughput entitlement = 50kb/sec per GB TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] November 13, 2025 School of Engineering and Technology, University of Washington - Tacoma

37

38

EC2

- **■EC2** Spot Instance Advisor:
- https://aws.amazon.com/ec2/spot/instance-advisor/
- Provides sortable list of ec2 instance types with interruption (termination) frequencies
- Helps you choose an instance type that is less likely to be terminated
- Best practices for using spot instances:
- https://docs.aws.amazon.com/whitepapers/latest/costoptimization-leveraging-ec2-spot-instances/spot-bestpractices.html

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

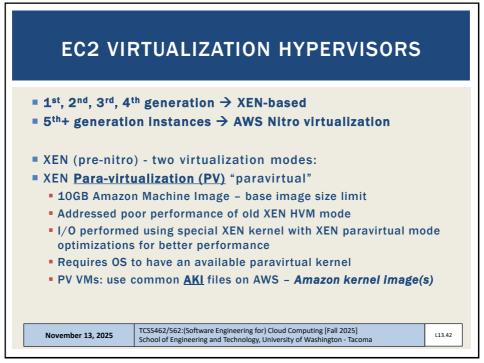
L13.39

39

EC2 - 2

- On Amazon EC2, what is a "metal" instance?
- A bare metal server is not shared with anyone
- There is no virtualization hypervisor (program the contextualizes and hosts virtual machines)
- The operating system is installed directly on the root disk and the machine is booted directly like a laptop or desktop computer
- The user can install any operating system and make configurations changes to the machine's base operating system
- The user can then install and control a virtualization hypervisor on bare metal servers
- Bare metal servers were offered on AWS starting in ~2017

November 13, 2025


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.40

40

AMAZON MACHINE IMAGES AMIS Unique for the operating system (root device image) Two types Instance store Elastic block store (EBS) Deleting requires multiple steps Deregister AMI Delete associated data - (files in S3) Forgetting both steps leads to costly "orphaned" data No way to instantiate a VM from deregistered AMIS Data still in S3 resulting in charges

41

42

EC2 VIRTUALIZATION - HVM

- XEN HVM (hardware virtualization) mode:
 - HVM just meant that virtualization used CPU extensions (Intel VT-x or AMD-V) to run an unmodified OS directly on the VM
 - Today HVM usually implies there is more than just native-CPU virtualization support, but also I/O-device support, etc.
 - Full virtualization no special OS kernel required (no AKI)
 - Computer entirely simulated (... i.e. slow)
 - MS Windows pre-nitro ran in "HVM" mode
 - Allows work around: 10GB instance store root volume limit
 - Kernel is on the root volume (under /boot)
 - No AKIs (kernel images)
 - Commonly used today (EBS-backed instances)

November 13, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

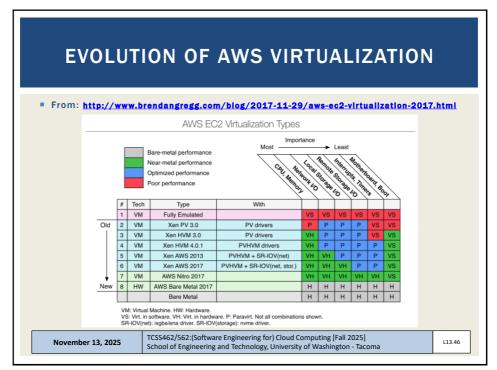
L13.43

43

	XEN PV VS HV	M ON EC2			
Feature	Paravirtual (PV)	Hardware Virtual Machine (HVM)			
Guest OS Modification	Requires the guest OS to be modified (aware of the hypervisor).	Allows the use of unmodified guest OS, as if running on bare metal hardware.			
Boot Method	Boots with a special boot loader called PV-GRUB, which then chain loads the kernel.	Boots by executing the master boot record of the root block device, like a physical machine.			
Hardware Access	Relies on a patched kernel and specialized drivers (hypercalls) for I/O operations and direct communication the hypervisor.	Emulates a full set of hardware and takes advantage of hardware virtualization extensions (Intel VT-x, AMD-V) for fast access to the underlying physical hardware.			
Performance (Historically)	Historically offered better performance than early HVM instances due to the u of direct drivers for network/storage I/G	ise Early HVM had more overhead due to hardwar			
Performance (Modern Legacy)	Performance is limited and lacks mode enhancements.	With the availability of PV drivers for HVM AMIs and hardware advancements, HVM instances provide better or superior performance for most workloads.			
Feature Support	Does not support modern features like enhanced networking or GPU process				
November 13, 20	TCSS462/562:(Software Engineering for School of Engineering and Technology				

44

EC2 VIRTUALIZATION - NITRO


- Nitro based on Kernel-based-virtual-machines
 - Stripped down version of Linux KVM hypervisor
 - Uses KVM core kernel module
 - I/O access has a direct path to the device
- Goal: provide indistinguishable performance from bare metal
- There are 5 Nitro versions (v2 to v6)
- Article describes features and provides links to instance families (m, c, r, etc.) where it is possible to check the Nitro version for specific instance types to understand feature evolution
- https://docs.aws.amazon.com/ec2/latest/instancetypes/ec2nitro-instances.html

November 13, 2025


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L13.45

45

46

130