
Τ

2

ರ

4

Starte	SS 562 - C d: Oct 7 at 1:13ar iz Instruct	n	Daily	Feedk	oack S	Surve	y - 10	/5		
D	Question 1 On a scale of class:	ion 1 0.5 pts cale of 1 to 10, please classify your perspective on material covered in today's								
	1 2 Mostly Review To M	3	4 Ne	5 Equal ew and Rev	6 view	7	8	9	10 Mostly New to Me	
	Question 2 0.5 pts Please rate the pace of today's class:									
	1 2 Slow	3	4 J	5 ust Right	6	7	8	9	10 Fast	
November 4, 20									Fall 2025] gton - Tacoma	L11.5

5

MATERIAL / PACE ■ Please classify your perspective on material covered in today's class (41 respondents, 24 in-person, 17 online): ■ 1-mostly review, 5-equal new/review, 10-mostly new ■ Average - 6.55 (↓ - previous 6.71) ■ Please rate the pace of today's class: ■ 1-slow, 5-just right, 10-fast ■ Average - 5.18 (↓ - previous 5.45) November 4, 2025 | TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] | School of Engineering and Technology, University of Washington - Tacoma

6

FEEDBACK FROM 10/30

- For Tutorial 4, is it possible to implement the encode and decode functions in the same Lambda function and specify the operation in the parameter passed to it?
- It is fine to just create a single Java package (jar) that has both function handlers
- But for deployment, having two Lambda functions is required so the encode and decode operations are fully isolated from each other
 - If you pass in the raw string to encode, then it would be too easy to cache it and simply return it
 - Therefore, two distinct AWS Lambda endpoints are required for Tutorial 4...

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.7

7

PRACTICE - CALCULATE BREAK EVEN POINT: AWS-LAMBDA = EC2

- At how many "compute" days will AWS Lambda processing costs equal the EC2 hosting cost?
- Assume a hypothetical microservice that runs for 1 second
- The function is called repeatedly and sequentially
- 1 endpoint is hosted with EC2, the other with AWS Lambda
- Requirements: ~4 vCPUs, 7 GB RAM
- EC2 instance: m5n.xlarge, on demand cost \$0.238/hour
- AWS Lambda: \$0.00001667 GB/sec
- Ignore the additional cost of AWS Lambda function calls
- Ignore the AWS Lambda Free Tier (400,000 GB/sec per month)

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.8

8

SOLUTION Lambda cost: Cost per second: 7 GB x \$.00001667 = \$.00011669 How much does one month cost on AWS Lambda @7GB? ■ 1 month = 30.416667 days x 24 hours/days = 730 hours/month ■ 730 hours * 60 minutes * 60 seconds = 2,628,000 sec/month AWS Lambda = \$306.66/month (about \$43.81/GB/month) EC2 COST = 730 hours x \$0.238 /hr = \$173.74/month How much AWS Lambda compute can you buy for \$173.74? Seconds = 1,488,902 ■ Minutes (/60) = 24,815 ■ Hours (/60) = 413.584 ■ Days (/24) = 17.23 ← Point when EC2 becomes cheaper than Lambda for continuous compute TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] November 4, 2025 School of Engineering and Technology, University of Washington - Tacoma

9

FEEDBACK - 2

- How is the quiz going to be structured? Are we allowed to bring notes?
- Thursday November 6 @ 4:40pm in BHS 106
 - Moving rooms for quiz for more time
 - The room is vacant after 5:40p and the professor will stay late
- The quiz will be delivered using paper (not Canvas)
- Unlimited notes and books permitted
- No digital devices (ebook, laptop, smartphone) or Internet
- Sample questions in lectures 9, 10, 11

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.10

10

November 4, 2025

QUIZ 1 COVERAGE

- Review content from Tutorials 1, 2, 3, 4
- In class we only covered a subset of the slides each day:
 - Lecture 1: L1.1 L1.46
 - Lecture 2: L2.1 L2.50
 - Lecture 3: L3.1 L3.34, Class Activity 1
 - Lecture 4: L4.1 L4.35
 - Lecture 5: L5.1 L5.56
 - Lecture 6: L6.1 L6.49
 - Lecture 7: L7.1 L7.43
 - Lecture 8: L8.1 L8.38 , Class Activity 2 (covers Tutorial 3)
 - Lecture 9: L9.1 L9.72
 - Lecture 10: L10.1 L10.19, L9.72-9.85, Class Activity 3 (covers Tutorial 4)

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.11

11

TERM PROJECT PROPOSALS

- 14 Total term project proposals received
- Project proposals are under review
- If asked for minor revisions, can simply address item(s) and submit a brief update
- Status & Feedback to be provided:
 - proposals accepted, or
 - revisions requested

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.12

12

SAMPLE QUESTION 1

- When an AWS Lambda function is scaled from 512 MB memory to 10 GB, what resources are scaled accordingly?
- A. CPU timeshare, disk I/O throughput (iops), network I/O throughput (iops)
- B. Number of concurrent threads
- C. CPU timeshare
- D. CPU timeshare, disk I/O throughput (iops)
- E. CPU timeshare, function concurrency

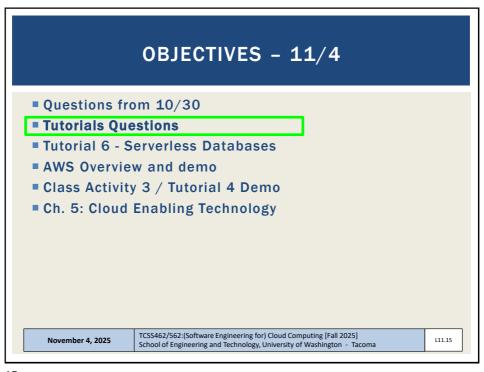
November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.13

13

SAMPLE QUESTION 2


- In tutorial 4, a Plain Old Java Object (POJO) is used inside of HelloPojo.java for what purpose?
- A. To reduce overhead (time) incurred from transferring data using a HashMap.
- B. To prevent camel case typographical errors from interfering with data transfer.
- C. To allow any tag / attribute pair to be transferred seamlessly to the Lambda function handler.
- D. To provide a class where a user can implement checks to verify if data is valid.
- E. To reduce overhead (size) incurred from transferring data using a HashMap.

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.14

14

15

TUTORIAL 3 - NOW CLOSED Best Practices for Working with Virtual Machines on **Amazon EC2** https://faculty.washington.edu/wlloyd/courses/tcss562 /tutorials/TCSS462 562 f2025 tutorial 3.pdf Creating a spot VM Creating an image from a running VM Persistent spot request Stopping (pausing) VMs **■ EBS** volume types Ephemeral disks (local disks) Mounting and formatting a disk Disk performance testing with Bonnie++ Cost Saving Best Practices TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 4, 2025

16

TUTORIAL 4 - DUE NOV 11

 Introduction to AWS Lambda with the Serverless Application Analytics Framework (SAAF)

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462 562 f2025 tutorial 4.pdf

- Set up Java development environment
- Introduction to Maven build files for Java
- Create and Deploy "hello" Java AWS Lambda Function
- Create API Gateway REST endpoint
- Sequential testing of "hello" AWS Lambda Function
 - API Gateway endpoint, AWS Lambda CLI Function invocation, AWS Function URL
- Profiling function performance with SAAF
- Concurrent function testing with faas_runner
- Performance analysis using faas_runner reports
- Two function pipeline development task: Caesar Cipher

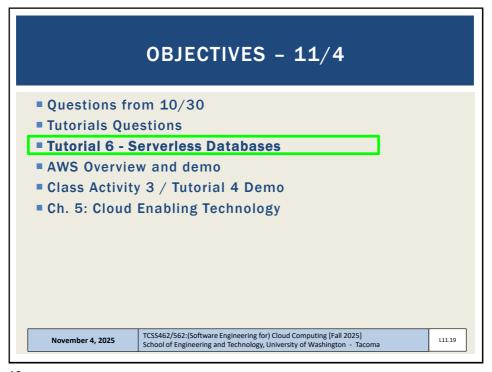
November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

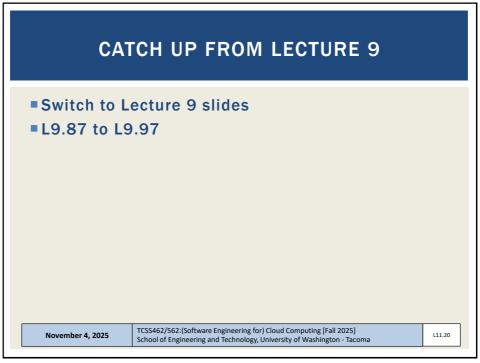
L11.17

17

TUTORIAL 5 - DUE NOV 14

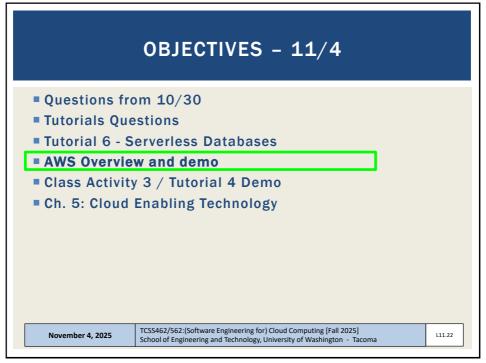

- Introduction to Lambda II: Working with Files in S3, Cloud Trail, and Amazon Event Bridge Rules
- https://faculty.washington.edu/wlloyd/courses/tcss562/ tutorials/TCSS462_562_f2025_tutorial_5.pdf
- Customize the Request object (add getters/setters)
 Why do this instead of HashMap?
- Import dependencies (jar files) into project for AWS S3
- Create an S3 Bucket
- Give your Lambda function(s) permission to work with S3
- Write to the CloudWatch logs
- Use of CloudTrail to generate S3 events
- Creating Event Bridge rule to capture events from CloudTrail
- Have the Event Bridge rule trigger a Lambda function with a static JSON input object (hard-coded filename)
- Optional: for the S3 PutObject event, dynamically extract the name of the file put to the S3 bucket for processing

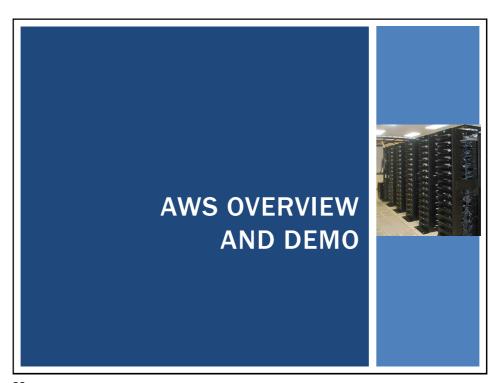
November 4, 2025


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.18

18


19


20

21

22

23

24

26

AWS EC2

- Elastic Compute Cloud
- Instance types: https://instances.vantage.sh/
 - On demand instance full price
 - Reserved instance contract based where customer guarantees VM rental for a fixed period of time (e.g. 1 year, 3 years, etc.)
 Deeper discounts with longer term commitments
 - Spot instance portion of cloud capacity reserved for low cost instances, when demand exceeds supply instances are randomly terminated with 2-minute warning
 - Users can make diverse VM requests using different types, zones, regions, etc. to minimize instance terminations
 - Developers can design for failure because often only 1 or 2 VMs in a cluster fail at any given time. They then need to be replaced.
 - Dedicated host reserved private HW (server)
 - Instance families -General, compute-optimized, memory-optimized, GPU, etc.

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.27

27

AWS EC2 - 2

- Storage types
 - Instance storage ephemeral storage
 - Temporary disk volumes stored on disks local to the VM
 - Evolution: physical hard disk drives (HDDs)
 - Solid state drives (SSDs)
 - Non-volatile memory express (NVMe) drives (closer to DRAM speed)
 - EBS Elastic block store
 - Remotely hosted disk volumes
 - EFS Elastic file system
 - Shared file system based on network file system
 - VMs, Lambdas, Containers mount/interact with shared file system
 - Somewhat expensive

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.28

28

INSTANCE STORAGE

- Also called ephemeral storage
- Persisted using images saved to S3 (simple storage service)
 - ~2.3¢ per GB/month on S3
 - 5GB of free tier storage space on S3
- Requires "burning" an image
- Multi-step process:
 - Create image files
 - Upload chunks to \$3
 - Register image
- Launching a VM
 - Requires downloading image components from S3, reassembling them... is potentially slow
- VMs with instance store backed root volumes not pause-able
- Historically root volume limited to 10-GB max- faster imaging...

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.29

29

ELASTIC BLOCK STORE

- EBS provides 1 drive to 1 virtual machine (1:1) (not shared)
- EBS cost model is different than instance storage (uses S3)
 - ~10¢ per GB/month for General Purpose Storage (GP2)
 - ~8¢ per GB/month for General Purpose Storage (GP3)
 - 30GB of free tier storage space
- EBS provides "live" mountable volumes
 - Listed under volumes
 - <u>Data volumes</u>: can be mounted/unmounted to any VM, dynamically at any time
 - Root volumes: hosts OS files and acts as a boot device for VM
 - In Linux drives are linked to a mount point "directory"
- Snapshots back up EBS volume data to S3
 - Enables replication (required for horizontal scaling)
 - EBS volumes not actively used should be snapshotted, and deleted to save EBS costs...

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.30

30

EBS VOLUME TYPES - 2

- Metric: I/O Operations per Second (IOPS)
- General Purpose 2 (GP2)
 - 3 IOPS per GB, min 100 IOPS (<34GB), max of 16,000 IOPS
 - 250MB/sec throughput per volume
- General Purpose 3 (GP3 new Dec 2020)
 - Max 16,000 IOPS, Default 3,000 IOPS
 - GP2 requires creating a 1TB volume to obtain 3,000 IOPS
 - GP3 all volumes start at 3000 IOPS and 125 MB/s throughput
 - 1000 additional IOPS beyond 3000 is \$5/month up to 16000 IOPS
 - 125 MB/s additional throughput is \$5/month up to 1000 MB/s throughput

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.31

31

EBS VOLUME TYPES - 3

- Provisioned IOPS (IO1)
 - Legacy, associated with GP2
 - Allows user to create custom disk volumes where they pay for a specified IOPS and throughput
 - 32,000 IOPS, and 500 MB/sec throughput per volume MAX
- Throughput Optimized HDD (ST1)
 - Up to 500 MB/sec throughput
 - 4.5 ¢ per GB/month
- Cold HDD (SC1)
 - Up to 250 MB/sec throughput
 - 2.5 ¢ per GB/month
- Magnetic
 - Up to 90 MB/sec throughput per volume
 - 5 ¢ per GB/month

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.32

32

ELASTIC FILE SYSTEM (EFS)

- EFS provides 1 volume to many client (1:n) shared storage
- Network file system (based on NFSv4 protocol)
- Shared file system for EC2, Fargate/ECS, Lambda
- Enables mounting (sharing) the same disk "volume" for R/W access across multiple instances at the same time
- Different performance and limitations vs. EBS/Instance store
- Implementation uses abstracted EC2 instances
- ~ 30 ¢ per GB/month storage default burstable throughput
- Throughput modes:
- Can modify modes only once every 24 hours
- Burstable Throughput Model:
 - Baseline 50kb/sec per GB
 - Burst 100MB/sec pet GB (for volumes sized 10GB to 1024 GB)
 - Credits .72 minutes/day per GB

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

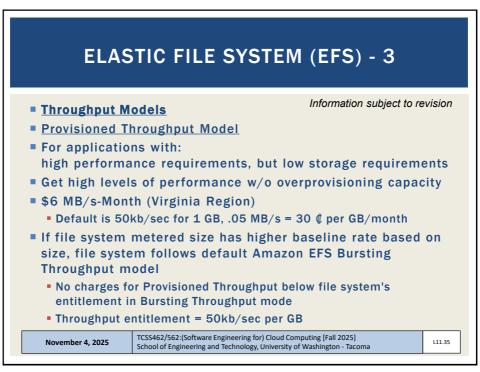
L11.33

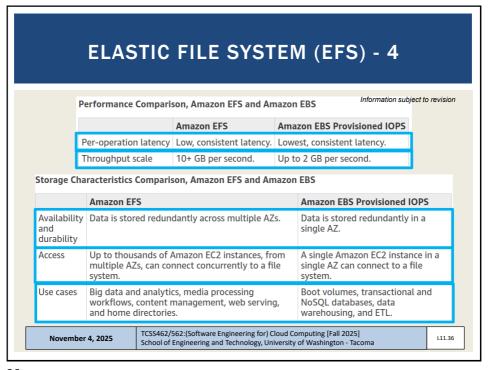
33

ELASTIC FILE SYSTEM (EFS) - 2

Burstable Throughput Rates

Information subject to revision


- Throughput rates: baseline vs burst
- Credit model for bursting: maximum burst per day


File System Size (GiB)	Baseline Aggregate Throughput (MiB/s)	Burst Aggregate Throughput (MiB/s)	Maximum Burst Duration (Min/Day)	% of Time File System Can Burst (Per Day)
10	0.5	100	7.2	0.5%
256	12.5	100	180	12.5%
512	25.0	100	360	25.0%
1024	50.0	100	720	50.0%
1536	75.0	150	720	50.0%
2048	100.0	200	720	50.0%
3072	150.0	300	720	50.0%
4096	200.0	400	720	50.0%

November 4, 2025 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

34

36

EC2

- **■EC2** Spot Instance Advisor:
- https://aws.amazon.com/ec2/spot/instance-advisor/
- Provides sortable list of ec2 instance types with interruption (termination) frequencies
- Helps you choose an instance type that is less likely to be terminated
- Best practices for using spot instances:
- https://docs.aws.amazon.com/whitepapers/latest/costoptimization-leveraging-ec2-spot-instances/spot-bestpractices.html

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.37

37

EC2 - 2

- On Amazon EC2, what is a "metal" instance?
- A bare metal server is not shared with anyone
- There is no virtualization hypervisor (program the contextualizes and hosts virtual machines)
- The operating system is installed directly on the root disk and the machine is booted directly like a laptop or desktop computer
- The user can install any operating system and make configurations changes to the machine's base operating system
- The user can then install and control a virtualization hypervisor on bare metal servers
- Bare metal servers were offered on AWS starting in ~2017

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.38

38

AMAZON MACHINE IMAGES

- AMIs
- Unique for the operating system (root device image)
- Two types
 - Instance store
 - Elastic block store (EBS)
- Deleting requires multiple steps
 - Deregister AMI
 - Delete associated data (files in S3)
- Forgetting both steps leads to costly "orphaned" data
 - No way to instantiate a VM from deregistered AMIs
 - Data still in S3 resulting in charges

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.39

39

EC2 VIRTUALIZATION - PARAVIRTUAL

- 1st, 2nd, 3rd, 4th generation → XEN-based
- 5th+ generation instances → AWS Nitro virtualization
- XEN two virtualization modes
- XEN Paravirtualization "paravirtual"
 - 10GB Amazon Machine Image base image size limit
 - Addressed poor performance of old XEN HVM mode
 - I/O performed using special XEN kernel with XEN paravirtual mode optimizations for better performance
 - Requires OS to have an available paravirtual kernel
 - PV VMs: will use common <u>AKI</u> files on AWS Amazon kernel Image(s)
 - Look for common identifiers

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.40

40

EC2 VIRTUALIZATION - HVM

- XEN HVM mode
 - Full virtualization no special OS kernel required
 - Computer entirely simulated
 - MS Windows runs in "hvm" mode
 - Allows work around: 10GB instance store root volume limit
 - Kernel is on the root volume (under /boot)
 - No AKIs (kernel images)
 - Commonly used today (EBS-backed instances)

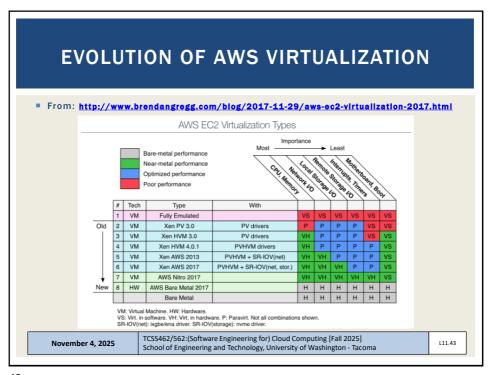
November 4, 2025

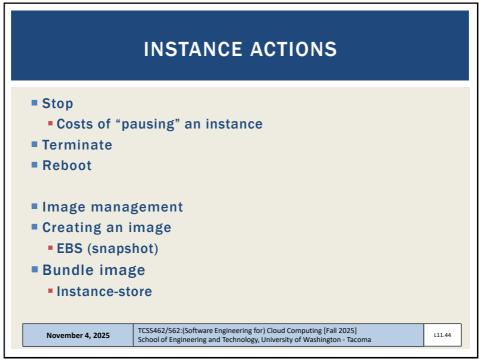
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.41

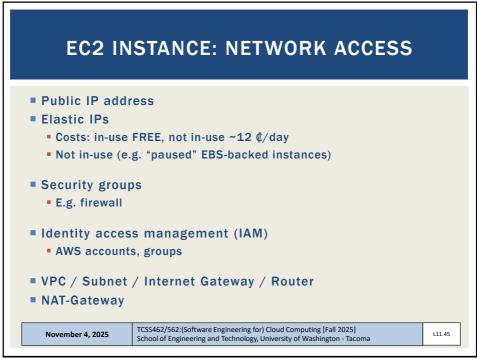
41

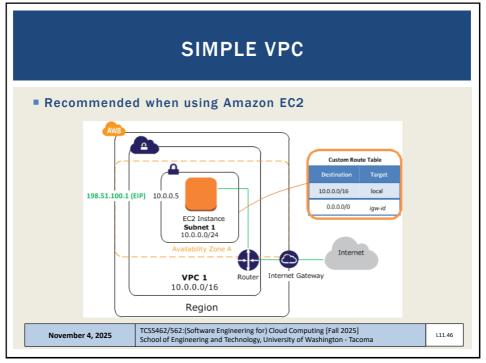
EC2 VIRTUALIZATION - NITRO

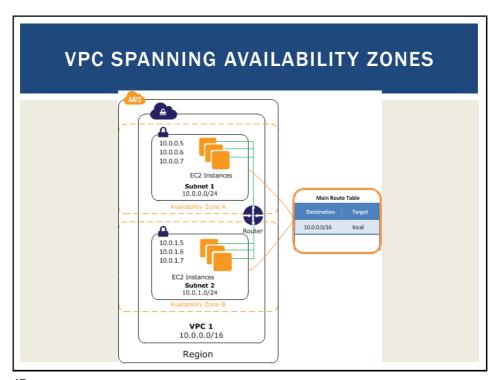

- Nitro based on Kernel-based-virtual-machines
 - Stripped down version of Linux KVM hypervisor
 - Uses KVM core kernel module
 - I/O access has a direct path to the device
- Goal: provide indistinguishable performance from bare metal


November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma


L11.42


42



44

46

INSPECTING INSTANCE INFORMATION EC2 VMs run a local metadata service Can query instance metadata to self discover cloud config attributes Version 2 (default) of the metadata service requires a token Get Token: TOKEN=`curl -X PUT "http://169.254.169.254/latest/api /token" -H "X-aws-ec2-metadata-token-ttl-seconds: 21600"` Find your instance ID: curl -H "X-aws-ec2-metadata-token: \$TOKEN" http://169.254.169.254/ curl -H "X-aws-ec2-metadata-token: \$TOKEN" http://169.254.169.254/latest/ curl -H "X-aws-ec2-metadata-token: \$TOKEN" http://169.254.169.254/latest/meta-data/ curl -H "X-aws-ec2-metadata-token: \$TOKEN" http://169.254.169.254/latest/meta-data/instance-id; echo See: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html#instance-metadata-retrieval-examples TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma November 4, 2025

48

SIMPLE STORAGE SERVICE (S3) ** Key-value blob storage ** What is the difference vs. key-value stores (NoSQL DB)?

- Can mount an S3 bucket as a volume in Linux
 - Supports common file-system operations
- Provides eventual consistency
- Can store Lambda function state for life of container.

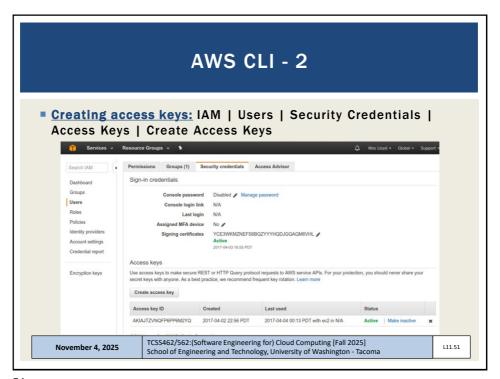
November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

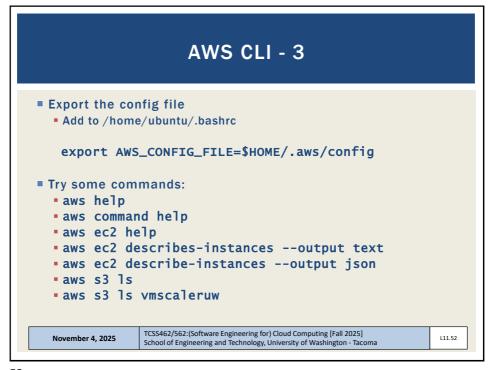
L11.49

49

AWS CLI


- Launch Ubuntu 16.04 VM
 - Instances | Launch Instance
- Install the general AWS CLI
 - sudo apt install awscli
- Create config file
 [default]
 aws_access_key_id = <access key id>
 aws_secret_access_key = <secret access key>
 region = us-east-1

November 4, 2025


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.50

50

51

52

LEGACY / SERVICE SPECIFIC CLI(S)

- sudo apt install ec2-api-tools
- Provides more concise output
- Additional functionality
- Define variables in .bashrc or another sourced script:
- export AWS_ACCESS_KEY={your access key}
- export AWS_SECRET_KEY={your secret key}
- ec2-describe-instances
- ec2-run-instances
- ec2-request-spot-instances
- EC2 management from Java:
- http://docs.aws.amazon.com/AWSJavaSDK/latest/javad oc/index.html
- Some AWS services have separate CLI installable by package

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.53

53

AMI TOOLS

- Amazon Machine Images tools
- For working with disk volumes
- Can create live copies of any disk volume
 - Your local laptop, ec2 root volume (EBS), ec2 ephemeral disk
- Installation:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html

- AMI tools reference:
- https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami -tools-commands.html
- Some functions may require private key & certificate files

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

11.54

54

PRIVATE KEY AND CERTIFICATE FILE

- Install openssl package on VM
- # generate private key file \$openssl genrsa 2048 > mykey.pk
- # generate signing certificate file \$openssl req -new -x509 -nodes -sha256 -days 36500 -key mykey.pk -outform PEM -out signing.cert
- Add signing.cert to IAM | Users | Security Credentials | -- new signing certificate --
- From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-up-ami-tools.html?icmpid=docs_iam_console#ami-tools-create-certificate

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.55

55

PRIVATE KEY, CERTIFICATE FILE

- These files, combined with your AWS_ACCESS_KEY and AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to publish new images from the CLI
- Objective:
- 1. Configure VM with software stack
- 2. Burn new image for VM replication (horizontal scaling)
- An alternative to bundling volumes and storing in S3 is to use a containerization tool such as Docker. . .
- Create image script . . .

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

.11.56

56

SCRIPT: CREATE A NEW INSTANCE STORE IMAGE FROM LIVE DISK VOLUME

```
image=$1
echo "Burn image $image"
echo "$image" > image.id
mkdir /mnt/tmp
AWS_KEY_DIR=/home/ubuntu/.aws
export EC2_URL=http://ec2.amazonaws.com
export S3_URL=https://s3.amazonaws.com
export EC2_PRIVATE_KEY=${AWS_KEY_DIR}/mykey.pk
export EC2_CERT=${AWS_KEY_DIR}/signing.cert
export AWS_USER_ID={your account id}
export AWS_ACCESS_KEY={your aws access key}
export AWS_SECRET_KEY={your aws secret key}
ec2-bundle-vol -s 5000 -u ${AWS_USER_ID} -c ${EC2_CERT} -k ${EC2_PRIVATE_KEY}
--ec2cert /etc/ec2/amitools/cert-ec2.pem --no-inherit -r x86_64 -p $image -i
/etc/ec2/amitools/cert-ec2.pem
cd /tmp
ec2-upload-bundle -b tcss562 -m $image.manifest.xml -a ${AWS_ACCESS_KEY} -s ${AWS_SECRET_KEY} --url http://s3.amazonaws.com --location US
ec2-register tcss562/$image.manifest.xml --region us-east-1 --kernel aki-
88aa75e1
                        TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
     November 4, 2025
                       School of Engineering and Technology, University of Washington - Tacoma
```

57

MAKE A DISK FROM AN IMAGE FILE

```
************ ON THE LOCAL COMPUTER *************
# create 1200 MB virtual disk = 1,258,291,200 bytes
sudo dd if=/dev/zero of=vhd.img bs=1M count=1200
# format the disk using the ext4 filesystem
sudo mkfs.ext4 vhd.img
# mount the disk at "/mnt"
sudo mount -t auto -o loop vhd.img /mnt
# check that the disk is mounted
# create a hello file (or copy data) to the new virtual disk
sudo echo "hello world !" > hello.txt
ls -1
# unmount the virtual disk
sudo umount /mnt
                  TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
  November 4, 2025
                                                                    111 58
                  School of Engineering and Technology, University of Washington - Tacoma
```

58

COMPRESS IMAGE, PUSH TO S3

```
# compress the disk
bzip2 vhd.img

# push the disk image to S3
aws s3 cp vhd.img.bz2 s3://tcss562-f21-images

November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma
```

59

RESTORE ON THE CLOUD

```
************** ON THE AWS EC2 VM ************
 with the awscli installed and configured
# download the image from S3
aws s3 cp s3://tcss562-f21-images/vhd.img.bz2 vhd.img.bz2
# uncompress the image
bzip2 -d vhd.img.bz2
# we need to calculate the number of sectors for the
partition
# disk sectors are 512 bytes each
# divide the disk size by 512 to determine sectors
\# sectors = 1258291200 / 512 = 2459648
# create a disk partition for this disk that is
 2459648 sectors in size using the ephemeral drive or
# a newly mounted EBS volume that is unformatted
sudo fdisk /dev/nvme1n1
                 TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
  November 4, 2025
                                                                L11.60
                 School of Engineering and Technology, University of Washington - Tacoma
```

60

```
PARTITION THE DISK
Welcome to fdisk (util-linux 2.34).
Command (m for help): n
Partition type
  p primary (0 primary, 0 extended, 4 free)
  e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-97656249, default 2048): 2048
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-97656249, default 97656249): 2459648
Created a new partition 1 of type 'Linux' and of size 1.2 GiB.
Command (m for help): t
Selected partition 1
Hex code (type L to list all codes): 83
Changed type of partition 'Linux' to 'Linux'.
Command (m for help): w (to write and exit)
                      TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
   November 4, 2025
                                                                                   L11.61
                      School of Engineering and Technology, University of Washington - Tacoma
```

COPY DATA TO NEW DISK PARTITION

```
# now check if the partition has been created.
# it should be listed as /dev/nvmelnlp1:
ls /dev/nvmeln1*

# now copy the data to the partition
sudo dd if=vhd.img of=/dev/nvmelnlp1

# mount the disk
sudo mount /dev/nvmelnlp1 /mnt

# and check if the hello file is there
cat /mnt/hello.txt

# we were able to copy the disk image to the cloud
# and we never had to format the cloud disk
# this examples copies a filesystem from a local disk
# to the cloud disk

November 4, 2025

| TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
| School of Engineering and Technology, University of Washington - Tacoma
```

62

FOR MORE INFORMATION

- Example script:
- https://faculty.washington.edu/wlloyd/courses/tcss562/ examples/copy-disk-to-cloud.sh
- URLs:
- https://help.ubuntu.com/community/DriveImaging
- https://www.tecmint.com/create-virtual-harddisk-volume-inlinux/

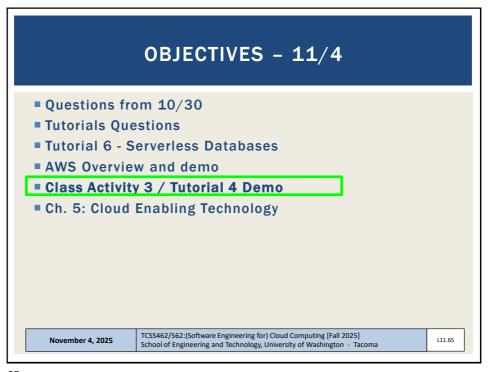
November 4, 2025

TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

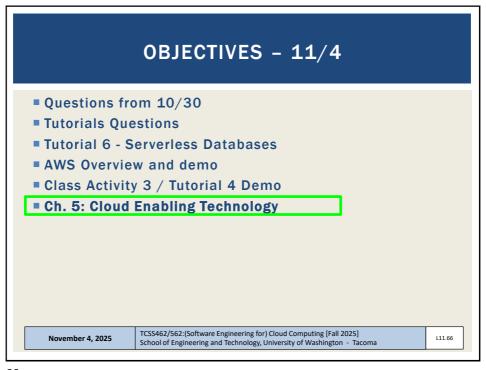
L11.63

63

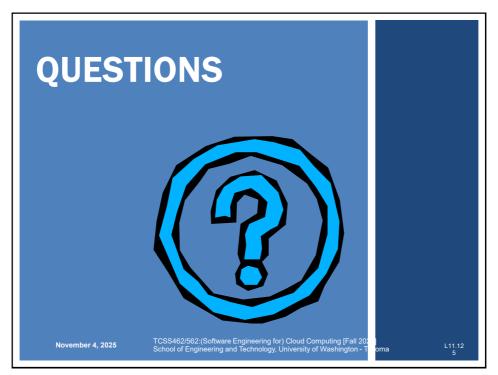
COST SAVINGS MEASURES


- From Tutorial 3:
- #1: ALWAYS USE SPOT INSTANCES FOR COURSE/RESEARCH RELATED PROJECTS
- #2: NEVER LEAVE AN EBS VOLUME IN YOUR ACCOUNT THAT IS NOT ATTACHED TO A RUNNING VM
- #3: BE CAREFUL USING PERSISTENT REQUESTS FOR SPOT INSTANCES
- #4: TO SAVE/PERSIST DATA, USE EBS SNAPSHOTS AND THEN
- #5: DELETE EBS VOLUMES FOR TERMINATED EC2 INSTANCES.
- #6: UNUSED SNAPSHOTS AND UNUSED EBS VOLUMES SHOULD BE PROMPTLY DELETED !!
- #7: USE PERSISTENT SPOT REQUESTS AND THE "STOP" FEATURE TO PAUSE VMS DURING SHORT BREAKS

November 4, 2025


TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tacoma

L11.64


64

65

66

125