
TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.1

 AWS Overview and Demo II,
 Cloud Enabling Technology

 Wes J. Lloyd
 School of Engineering and Technology

 University of Washington – Tacoma

TCSS 562:

SOFTWARE ENGINEERING

FOR CLOUD COMPUTING

THIS WEEK

Tuesdays:

▪2:30 to 3:30 pm - CP 229

*** Friday ***

▪1:00 pm to 2:00 pm – ONLINE via Zoom

Or email for appointment

> Of f ice Hours set based on Student Demographics sur vey feedback

OFFICE HOURS – FALL 2024

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

1

2

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.2

 ACM Symposium on Cloud Computing (SoCC)

 3 days: Wed Nov 20 – Fri Nov 22, 8am to 6pm daily

 Redmond, Washington, Microsoft Campus

 Single Research Track Conference

 Light Breakfast, Coffee, Lunch included, (dinner -unsure??)

 $150 registration fee for ACM Student Members

 ACM Student Membership is $19/year:

https://www.acm.org/membership/membership -options

 SoCC website:

https://acmsocc.org/2024/

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.3

CLOUD COMPUTING

CONFERENCE OPPORTUNITY

 Questions from 10/31

 Tutorials Questions

 Tutorial 6 – Serverless Databases

 AWS Overview and demo

 Tutorial 4 Demo

 Ch. 5: Cloud Enabling Technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.4

OBJECTIVES – 10/31

3

4

https://www.acm.org/membership/membership-options
https://acmsocc.org/2024/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.3

 Daily Feedback Quiz in Canvas – Take After Each Class

 Extra Credit

for completing

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.5

ONLINE DAILY FEEDBACK SURVEY

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.6

5

6

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.4

 Please classify your perspective on material covered in today’s

class (32 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.95 ( - previous 6.11)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.28 ( - previous 5.41)

 Response rates:

 TCSS 462: 19/42 – 45.2%

 TCSS 562: 13/20 – 65.0%

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.7

MATERIAL / PACE

 I ’d l ike to see more examples with calculating cost and

evaluating fastest/least runtime. It 's clear that I 'm not quite

getting the concept. I even went back to the lecture 9

recording which helped a lot, but it 's stil l not helping me quite

with in-class activity #2.

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.8

FEEDBACK FROM 10/29

7

8

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.5

 At how many “compute” days will AWS Lambda processing

costs equal the EC2 hosting cost ?

 Assume a hypothetical microservice that runs for 1 second

 The function is called repeatedly and sequentially

 1 endpoint is hosted with EC2, the other with AWS Lambda

 Requirements: ~4 vCPUs, 7 GB RAM

 EC2 instance: m5n.xlarge, on demand cost $0.272/hour

 AWS Lambda: $0.00001667 GB/sec

 Ignore the additional cost of AWS Lambda function calls

 Ignore the AWS Lambda Free Tier (400,000 GB/sec per month)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.9

CALCULATE BREAK EVEN POINT:

AWS-LAMBDA = EC2

 EC2 monthly cost:

1 month = 30.416667 days x 24 hours/days = 730 hours/month

730 hours x $0.272 /hr = $198.56  EC2 COST

 Lambda “break even” cost:

 Cost per second: 7 x $.00001667 = $.00011669

 How many seconds can you buy on AWS Lambda @7GB for $198.56 ?

 Seconds = 1,701,602

 Minutes (/60) = 28,360

 Hours (/60) = 472.667

 Days (/24) = 19.69  Breakeven point Lambda=EC2

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.10

SOLUTION

9

10

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.6

 There were a few questions regarding interpretation of

Bonnie++ output

 How is the quiz going to be structured?

Are we allowed to bring notes?

 Tuesday November 5 @ 4:40pm

▪ The room is vacant after 5:40p and the professor will stay late

 The quiz will be delivered using paper (not Canvas)

 Notes and books permitted

 No digital devices (ebook, laptop, smartphone)

 Sample questions in lectures 9, 10, 11

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

FEEDBACK - 2

 18 Total term project proposals received

 11 teams of 4, 3 teams of 3

 4 teams of 2 – this is really not recommended !!

 11 proposals reviewed thus far, 7 remaining

▪ 7 proposals accepted

▪ 4 proposals – revisions requested

 Application Use Cases:

▪ 10 TLQ pipelines

▪ 5 image processing pipelines

▪ 1 TOPSIS (multi-criteria decision making) pipeline

▪ 1 Data vs. model parallelism ML training w/ GPUs

▪ 1 MapReduce on AWS Lambda, AWS ECS/Fargate

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

TERM PROJECT PROPOSALS

11

12

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.7

 When an AWS Lambda function is scaled from 512 MB

memory to 10 GB, what resources are scaled accordingly?

A. CPU timeshare, disk I/O throughput (iops), network I/O

throughput (iops)

B. Number of concurrent threads

C. CPU timeshare

D. CPU timeshare, disk I/O throughput (iops)

E. CPU timeshare, function concurrency

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.13

SAMPLE QUESTION 1

 In tutorial 4, a Plain Old Java Object (POJO) is used inside of
HelloPojo.java for what purpose?

A. To reduce overhead (time) incurred from transferring data
using a HashMap.

B. To prevent camel case typographical errors from interfering
with data transfer.

C. To allow any tag / attribute pair to be transferred seamlessly
to the Lambda function handler.

D. To provide a class where a user can implement checks to
verify if data is valid.

E. To reduce overhead (size) incurred from transferring data
using a HashMap.

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.14

SAMPLE QUESTION 2

13

14

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.8

 AWS CLOUD CREDITS ARE NOW AVAILABLE FOR TCSS

462/562

 Credit codes must be securely exchanged

 Request codes by sending an email with the subject

“AWS CREDIT REQUEST” to wlloyd@uw.edu

 Codes can also be obtained in person (or zoom), in the

class, during the breaks, after class, during office hours,

by appt

▪ 56 credit requests fulfilled as of Oct 30 @ 11:59p

 Codes not provided using discord

October 31, 2024
TCSS462/562: (Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.15

AWS CLOUD CREDITS UPDATE

 Questions from 10/31

 Tutorials Questions

 Tutorial 6 - Serverless Databases

 AWS Overview and demo

 Tutorial 4 Demo

 Ch. 5: Cloud Enabling Technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

OBJECTIVES – 10/31

15

16

mailto:wlloyd@uw.edu

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.9

 Getting Started with AWS

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori

als/TCSS462_562_f2024_tutorial_0.pdf

 Create an AWS account

 Create account credentials for working with the CLI

 Install awsconfig package

 Setup awsconfig for working with the AWS CLI

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.17

TUTORIAL 0

 Best Practices for Working with Vir tual Machines on Amazon EC2

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori

als/TCSS462_562_f2024_tutorial_3.pdf

 Creating a spot VM

 Creating an image from a running VM

 Persistent spot request

 Stopping (pausing) VMs

 EBS volume types

 Ephemeral disks (local disks)

 Mounting and formatting a disk

 Disk performance testing with Bonnie++

 Cost Saving Best Practices

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.18

TUTORIAL 3 – DUE OCT 31

17

18

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_0.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_0.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_3.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_3.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.10

 Introduction to AWS Lambda with the Serverless Application
Analytics Framework (SAAF)

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_4.pdf

 Obtaining a Java development environment

 Introduction to Maven build files for Java

 Create and Deploy “hello” Java AWS Lambda Function
▪ Creation of API Gateway REST endpoint

 Sequential testing of “hello” AWS Lambda Function
▪ API Gateway endpoint

▪ AWS CLI Function invocation

 Observing SAAF profiling output

 Parallel testing of “hello” AWS Lambda Function with
faas_runner

 Performance analysis using faas_runner reports

 Two function pipeline development task

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.19

TUTORIAL 4 – DUE NOV 5

 Introduction to Lambda II: Working with Files in S3 and
CloudWatch Events

 https://faculty.washington.edu/wlloyd/courses/tcss562/tutori
als/TCSS462_562_f2024_tutorial_5.pdf

 Customize the Request object (add getters/setters)
▪ Why do this instead of HashMap ?

 Import dependencies (jar files) into project for AWS S3

 Create an S3 Bucket

 Give your Lambda function(s) permission to work with S3

 Write to the CloudWatch logs

 Use of CloudTrail to generate S3 events

 Creating CloudWatch rule to capture events from CloudTrail

 Have the CloudWatch rule trigger a target Lambda function with
a static JSON input object (hard -coded filename)

 Optional: for the S3 PutObject event, dynamically extract the
name of the file put to the S3 bucket for processing

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.20

TUTORIAL 5 – DUE NOV 14

19

20

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_4.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_4.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2024_tutorial_5.pdf

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.11

 Questions from 10/31

 Tutorials Questions

 Tutorial 6 - Serverless Databases

 AWS Overview and demo

 Tutorial 4 Demo

 Ch. 5: Cloud Enabling Technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.21

OBJECTIVES – 10/31

 1. Determine which cloud computing resource above will

complete the data processing task in the least amount of time

based on the provided average execution times for a single

iteration of the data processing task from the table.

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

CLASS ACTIVITY 2

21

22

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.12

 2. Now determine how long the FASTEST computing resource

will require to complete 2,500 iterations of the data

processing task? (the task is repeated 2,500 times)

Assume infinite horizontal scalability in that you can create as

many resources (VMs or Lambdas) as needed to complete all

of the runs in parallel. VM(s) or Lambda function(s) will

perform a total of 2,500 distinct executions of the processing

task.

Assume that each VM requires 5-minutes (300 seconds, .0833

hours) to initialize before any processing can be performed.

AWS Lambda has no initialization time or cost.

(list time in minutes:seconds)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

CA2 - 2

 3. What is the COST for the resource type above that offers

the FASTEST total execution time for 2,500 iterations.

 4. Which cloud computing resource above can complete 2,500

iterations of the data processing task for the LOWEST

POSSIBLE COST?

 5. What is the lowest possible cost for performing 2,500

iterations for #4?

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

CA2 - 3

23

24

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.13

 6. How long will these iterations require using the LOWEST

COST resource?

 (list time in minutes:seconds)

 Assume infinite horizontal scalability in that you can create as

many VMs as needed to complete all of the iterations in

parallel.

 Assume that VMs require 5-minutes to initialize before any

runs can be performed.

 Note that initialization increases cost, and cost should be

minimized.

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

CA2 - 4

 Questions from 10/31

 Tutorials Questions

 Tutorial 6 - Serverless Databases

 AWS Overview and demo

 Tutorial 4 Demo

 Ch. 5: Cloud Enabling Technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

OBJECTIVES – 10/31

25

26

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.14

AWS OVERVIEW

AND DEMO

 Provisioned IOPS (IO1)

▪ Legacy, associated with GP2

▪ Allows user to create custom disk volumes where they pay for a
specified IOPS and throughput

▪ 32,000 IOPS, and 500 MB/sec throughput per volume MAX

 Throughput Optimized HDD (ST1)

▪ Up to 500 MB/sec throughput

▪ 4.5 ₡ per GB/month

 Cold HDD (SC1)

▪ Up to 250 MB/sec throughput

▪ 2.5 ₡ per GB/month

 Magnetic

▪ Up to 90 MB/sec throughput per volume

▪ 5 ₡ per GB/month

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.28

EBS VOLUME TYPES - 3

27

28

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.15

 EFS provides 1 volume to many client (1 : n) shared storage

 Network file system (based on NFSv4 protocol)

 Shared file system for EC2, Fargate/ECS, Lambda

 Enables mounting (sharing) the same disk “volume” for R/W access
across multiple instances at the same time

 Dif ferent performance and limitations vs. EBS/Instance store

 Implementation uses abstracted EC2 instances

 ~ 30 ₡ per GB/month storage – default burstable throughput

 Throughput modes:

 Can modify modes only once every 24 hours

 Burstable Throughput Model:

▪ Baseline – 50kb/sec per GB

▪ Burst – 100MB/sec pet GB (for volumes sized 10GB to 1024 GB)

▪ Credits - .72 minutes/day per GB

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

ELASTIC FILE SYSTEM (EFS)

 Burstable Throughput Rates

▪ Throughput rates: baseline vs burst

▪ Credit model for bursting: maximum burst per day

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.30

ELASTIC FILE SYSTEM (EFS) - 2

Information subject to revision

29

30

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.16

 Throughput Models

 Provisioned Throughput Model

 For applications with:

high performance requirements, but low storage requirements

 Get high levels of performance w/o overprovisioning capacity

 $6 MB/s-Month (Virginia Region)

▪ Default is 50kb/sec for 1 GB, .05 MB/s = 30 ₡ per GB/month

 If file system metered size has higher baseline rate based on

size, file system follows default Amazon EFS Bursting

Throughput model

▪ No charges for Provisioned Throughput below file system's

entitlement in Bursting Throughput mode

▪ Throughput entitlement = 50kb/sec per GB

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.31

ELASTIC FILE SYSTEM (EFS) - 3

Information subject to revision

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.32

ELASTIC FILE SYSTEM (EFS) - 4

Information subject to revision

31

32

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.17

EC2 Spot Instance Advisor:

 https://aws.amazon.com/ec2/spot/instance-advisor/

 Provides sortable list of ec2 instance types with

interruption (termination) frequencies

 Helps you choose an instance type that is less likely to be

terminated

 Best practices for using spot instances:

 https://docs.aws.amazon.com/whitepapers/latest/cost -

optimization-leveraging-ec2-spot-instances/spot-best-

practices.html

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.33

EC2

 On Amazon EC2, what is a “metal” instance?

 A bare metal server is not shared with anyone

 There is no virtualization hypervisor

(program the contextualizes and hosts virtual machines)

 The operating system is installed directly on the root disk and

the machine is booted directly like a laptop or desktop

computer

 The user can install any operating system and make

configurations changes to the machine’s base operating

system

 The user can then install and control a virtualization

hypervisor on bare metal servers

 Bare metal servers were offered on AWS starting in ~2017

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

EC2 - 2

33

34

https://aws.amazon.com/ec2/spot/instance-advisor/
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/spot-best-practices.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/spot-best-practices.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/spot-best-practices.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.18

 AMIs

 Unique for the operating system (root device image)

 Two types

▪ Instance store

▪ Elastic block store (EBS)

 Deleting requires multiple steps

▪ Deregister AMI

▪ Delete associated data - (files in S3)

 Forgetting both steps leads to costly “orphaned” data

▪ No way to instantiate a VM from deregistered AMIs

▪ Data still in S3 resulting in charges

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.35

AMAZON MACHINE IMAGES

 1st, 2nd, 3 rd, 4 th generation → XEN-based

 5 th generation instances → AWS Nitro vir tualization

 XEN - two virtualization modes

 XEN Paravirtualization “paravirtual”

▪ 10GB Amazon Machine Image – base image size limit

▪ Addressed poor performance of old XEN HVM mode

▪ I/O performed using special XEN kernel with XEN paravirtual mode

optimizations for better performance

▪ Requires OS to have an available paravirtual kernel

▪ PV VMs: will use common AKI files on AWS – Amazon kernel

image(s)

▪ Look for common identifiers

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.36

EC2 VIRTUALIZATION - PARAVIRTUAL

35

36

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.19

 XEN HVM mode

▪ Full virtualization – no special OS kernel required

▪ Computer entirely simulated

▪MS Windows runs in “hvm” mode

▪ Allows work around: 10GB instance store root volume limit

▪ Kernel is on the root volume (under /boot)

▪ No AKIs (kernel images)

▪ Commonly used today (EBS-backed instances)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.37

EC2 VIRTUALIZATION - HVM

 Nitro based on Kernel-based-virtual-machines

▪ Stripped down version of Linux KVM hypervisor

▪ Uses KVM core kernel module

▪ I/O access has a direct path to the device

 Goal: provide indistinguishable performance from bare

metal

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.38

EC2 VIRTUALIZATION - NITRO

37

38

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.20

 From: h t t p :// ww w.br en da n gre gg .c om / blog /2017 -1 1 -29/ aws -e c2 - v i r tua l i za t ion -2017.htm l

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.39

EVOLUTION OF AWS VIRTUALIZATION

 Stop

▪ Costs of “pausing” an instance

 Terminate

 Reboot

 Image management

 Creating an image

▪ EBS (snapshot)

 Bundle image

▪ Instance-store

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.40

INSTANCE ACTIONS

39

40

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.21

 Public IP address

 Elastic IPs

▪ Costs: in-use FREE, not in-use ~12 ₡/day

▪ Not in-use (e.g. “paused” EBS-backed instances)

 Security groups

▪ E.g. firewall

 Identity access management (IAM)

▪ AWS accounts, groups

 VPC / Subnet / Internet Gateway / Router

 NAT-Gateway

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.41

EC2 INSTANCE: NETWORK ACCESS

WE WILL RETURN AT

4:50 PM

41

42

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.22

 Recommended when using Amazon EC2

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.43

SIMPLE VPC

VPC SPANNING AVAILABILITY ZONES

43

44

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.23

 EC2 VMs run a local metadata service

 Can query instance metadata to self discover cloud config attributes

 Version 2 (default) of the metadata ser vice requires a token

 Get Token:
TOKEN=`curl -X PUT "http://169.254.169.254/latest/api /token" -H
"X-aws-ec2-metadata-token-ttl-seconds: 21600"`

 Find your instance ID:
curl -H "X-aws-ec2-metadata-token: $TOKEN“ http://169.254.169.254/

curl -H "X-aws-ec2-metadata-token: $TOKEN“
http://169.254.169.254/latest/

curl -H "X-aws-ec2-metadata-token: $TOKEN“
http://169.254.169.254/latest/meta-data/

curl -H "X-aws-ec2-metadata-token: $TOKEN“
http://169.254.169.254/latest/meta-data/instance-id ; echo

See: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-
instance-metadata-service.html#instance-metadata-retrieval-examples

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.45

INSPECTING INSTANCE INFORMATION

 Key-value blob storage

 What is the dif ference vs. key -value stores (NoSQL DB)?

 Can mount an S3 bucket as a volume in Linux

▪ Supports common file-system operations

 Provides eventual consistency

 Can store Lambda function state for life of container.

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.46

SIMPLE STORAGE SERVICE (S3)

45

46

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html#instance-metadata-retrieval-examples
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html#instance-metadata-retrieval-examples

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.24

 Launch Ubuntu 16.04 VM

▪ Instances | Launch Instance

 Install the general AWS CLI

▪ sudo apt install awscli

 Create config file

[default]

aws_access_key_id = <access key id>

aws_secret_access_key = <secret access key>

region = us-east-1

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.47

AWS CLI

 Creating access keys: IAM | Users | Security Credentials |

Access Keys | Create Access Keys

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.48

AWS CLI - 2

47

48

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.25

 Export the config file

▪ Add to /home/ubuntu/.bashrc

 export AWS_CONFIG_FILE=$HOME/.aws/config

 Try some commands:

▪ aws help

▪ aws command help

▪ aws ec2 help

▪ aws ec2 describes-instances --output text

▪ aws ec2 describe-instances --output json

▪ aws s3 ls

▪ aws s3 ls vmscaleruw

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.49

AWS CLI - 3

 sudo apt install ec2-api-tools
 Provides more concise output

 Additional functionality

 Define variables in .bashrc or another sourced script:

 export AWS_ACCESS_KEY={your access key}
 export AWS_SECRET_KEY={your secret key}

 ec2-describe-instances
 ec2-run-instances
 ec2-request-spot-instances

 EC2 management from Java:

 http://docs.aws.amazon.com/AWSJavaSDK/latest/javad
oc/index.html

 Some AWS services have separate CLI installable by package

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.50

LEGACY / SERVICE SPECIFIC CLI(S)

49

50

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.26

 Amazon Machine Images tools

 For working with disk volumes

 Can create live copies of any disk volume

▪ Your local laptop, ec2 root volume (EBS), ec2 ephemeral disk

 Installation:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami

-tools-commands.html

 AMI tools reference:

 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami

-tools-commands.html

 Some functions may require private key & certificate files

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.51

AMI TOOLS

 Install openssl package on VM

generate private key file

$openssl genrsa 2048 > mykey.pk

generate signing certificate file

$openssl req -new -x509 -nodes -sha256 -days 36500 -key

mykey.pk -outform PEM -out signing.cert

 Add signing.cert to IAM | Users | Security Credentials |

- - new signing certif icate - -

 From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set -

up-ami-tools.html?icmpid=docs_iam_console#ami -tools-create-

certificate

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.52

PRIVATE KEY AND CERTIFICATE FILE

51

52

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-tools-commands.html

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.27

 These files, combined with your AWS_ACCESS_KEY and

AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to

publish new images from the CLI

 Objective:

1. Configure VM with software stack

2. Burn new image for VM replication (horizontal scaling)

 An alternative to bundling volumes and storing in S3 is

to use a containerization tool such as Docker. . .

 Create image script . . .

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.53

PRIVATE KEY, CERTIFICATE FILE

image=$1

echo "Burn image $image"

echo "$image" > image.id

mkdir /mnt/tmp

AWS_KEY_DIR=/home/ubuntu/.aws

export EC2_URL=http://ec2.amazonaws.com

export S3_URL=https://s3.amazonaws.com

export EC2_PRIVATE_KEY=${AWS_KEY_DIR}/mykey.pk

export EC2_CERT=${AWS_KEY_DIR}/signing.cert

export AWS_USER_ID={your account id}

export AWS_ACCESS_KEY={your aws access key}

export AWS_SECRET_KEY={your aws secret key}

ec2-bundle-vol -s 5000 -u ${AWS_USER_ID} -c ${EC2_CERT} -k ${EC2_PRIVATE_KEY}
--ec2cert /etc/ec2/amitools/cert-ec2.pem --no-inherit -r x86_64 -p $image -i
/etc/ec2/amitools/cert-ec2.pem

cd /tmp

ec2-upload-bundle -b tcss562 -m $image.manifest.xml -a ${AWS_ACCESS_KEY} -s
${AWS_SECRET_KEY} --url http://s3.amazonaws.com --location US

ec2-register tcss562/$image.manifest.xml --region us-east-1 --kernel aki-
88aa75e1

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.54

SCRIPT: CREATE A NEW INSTANCE STORE

IMAGE FROM LIVE DISK VOLUME

53

54

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.28

**************** ON THE LOCAL COMPUTER *******************

create 1200 MB virtual disk = 1,258,291,200 bytes

sudo dd if=/dev/zero of=vhd.img bs=1M count=1200

format the disk using the ext4 filesystem

sudo mkfs.ext4 vhd.img

mount the disk at "/mnt"

sudo mount -t auto -o loop vhd.img /mnt

check that the disk is mounted

df -h

create a hello file (or copy data) to the new virtual disk

cd /mnt

sudo echo "hello world !" > hello.txt

ls -l

cd

unmount the virtual disk

sudo umount /mnt

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.55

MAKE A DISK FROM AN IMAGE FILE

compress the disk

bzip2 vhd.img

push the disk image to S3

aws s3 cp vhd.img.bz2 s3://tcss562-f21-images

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.56

COMPRESS IMAGE, PUSH TO S3

55

56

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.29

****************** ON THE AWS EC2 VM *******************

with the awscli installed and configured

download the image from S3

aws s3 cp s3://tcss562-f21-images/vhd.img.bz2 vhd.img.bz2

uncompress the image

bzip2 -d vhd.img.bz2

we need to calculate the number of sectors for the

partition

disk sectors are 512 bytes each

divide the disk size by 512 to determine sectors

sectors = 1258291200 / 512 = 2459648

create a disk partition for this disk that is

2459648 sectors in size using the ephemeral drive or

a newly mounted EBS volume that is unformatted

sudo fdisk /dev/nvme1n1

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.57

RESTORE ON THE CLOUD

Welcome to fdisk (uti l - l inux 2.34).

Command (m for help): n

Partit ion type

 p pr imar y (0 pr imar y, 0 extended, 4 free)

 e extended (container for logical par tit ions)

Select (default p): p

Partit ion number (1 -4, default 1): 1

First sector (2048-97656249, default 2048): 2048

Last sector, +/-sectors or +/-s ize{K,M,G,T,P} (2048-97656249, default
97656249) : 2459648

Created a new partit ion 1 of type 'Linux' and of s ize 1 .2 GiB.

Command (m for help): t

Selected par tit ion 1

Hex code (type L to l ist al l codes): 83

Changed type of par tit ion 'Linux' to 'Linux' .

Command (m for help): w (to wr i te and ex i t)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.58

PARTITION THE DISK

57

58

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.30

now check if the partition has been created.
it should be listed as /dev/nvme1n1p1:

ls /dev/nvme1n1*

now copy the data to the partition

sudo dd if=vhd.img of=/dev/nvme1n1p1

mount the disk

sudo mount /dev/nvme1n1p1 /mnt

and check if the hello file is there

cat /mnt/hello.txt

we were able to copy the disk image to the cloud

and we never had to format the cloud disk

this examples copies a filesystem from a local disk
to the cloud disk

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.59

COPY DATA TO NEW DISK PARTITION

 Example script:

 https://faculty.washington.edu/wlloyd/courses/tcss562/

examples/copy-disk-to-cloud.sh

 URLs:

 https://help.ubuntu.com/community/DriveImaging

 https://www.tecmint.com/create-vir tual-harddisk-volume-in-

linux/

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.60

FOR MORE INFORMATION

59

60

https://faculty.washington.edu/wlloyd/courses/tcss562/examples/copy-disk-to-cloud.sh
https://faculty.washington.edu/wlloyd/courses/tcss562/examples/copy-disk-to-cloud.sh
https://help.ubuntu.com/community/DriveImaging
https://www.tecmint.com/create-virtual-harddisk-volume-in-linux/
https://www.tecmint.com/create-virtual-harddisk-volume-in-linux/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.31

 From Tutorial 3:

 #1: ALWAYS USE SPOT INSTANCES FOR COURSE/RESEARCH
RELATED PROJECTS

 #2: NEVER LEAVE AN EBS VOLUME IN YOUR ACCOUNT THAT IS
NOT ATTACHED TO A RUNNING VM

 #3: BE CAREFUL USING PERSISTENT REQUESTS FOR SPOT
INSTANCES

 #4: TO SAVE/PERSIST DATA, USE EBS SNAPSHOTS AND THEN

 #5: DELETE EBS VOLUMES FOR TERMINATED EC2 INSTANCES.

 #6: UNUSED SNAPSHOTS AND UNUSED EBS VOLUMES SHOULD
BE PROMPTLY DELETED !!

 #7: USE PERSISTENT SPOT REQUESTS AND THE “STOP”
FEATURE TO PAUSE VMS DURING SHORT BREAKS

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.61

COST SAVINGS MEASURES

 Questions from 10/31

 Tutorials Questions

 Tutorial 6 - Serverless Databases

 AWS Overview and demo

 Tutorial 4 Demo

 Ch. 5: Cloud Enabling Technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.62

OBJECTIVES – 10/31

61

62

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.32

 Questions from 10/31

 Tutorials Questions

 Tutorial 6 - Serverless Databases

 AWS Overview and demo

 Tutorial 4 Demo

 Ch. 5: Cloud Enabling Technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.63

OBJECTIVES – 10/31

CLOUD ENABLING

TECHNOLOGY

63

64

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.33

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.65

CLOUD ENABLING TECHNOLOGY

 Clouds must be connected to a network

 Inter-networking: Users’ network must connect to cloud’s

network

 Public cloud computing relies heavily on the internet

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.66

1. BROADBAND NETWORKS

AND INTERNET ARCHITECTURE

65

66

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.34

 For institutions with in-house private clouds

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.67

PRIVATE CLOUD NETWORKING

remote users

in-office users

 Resources can be

extended by adding

public cloud

 Places further

dependency on the

internet to provide

connectivity

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.68

PUBLIC CLOUD NETWORKING

in-office users

remote users

private cloud
network

67

68

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.35

 Cloud consumers and providers typically communicate via the

internet

 Decentralized provisioning and management model is not

controlled by the cloud consumers or providers

 Inter-networking (internet) relies on connectionless packet

switching and route-based interconnectivity

 Routers and switches support communication

 Network bandwidth and latency influence QoS, which is

heavily impacted by network congestion

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.69

INTERNETWORKING KEY POINTS

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.70

CLOUD ENABLING TECHNOLOGY

69

70

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.36

 Grouping servers together (clusters):

 Enables power sharing

 Higher efficiency in shared IT resource usage

(less duplication of effort)

 Improved accessibility and organization

 Key components:

▪ Virtualized and physical server resources

▪ Standardized, modular hardware

▪ Automation support: enable server provisioning,

configuration, patching, monitoring without

supervision… tool/API support is desirable

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.71

2. DATA CENTER TECHNOLOGY

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.72

CLUSTER MANAGEMENT TOOLS

Example:
Hyak Cluster
UW-Seattle

71

72

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.37

 Remote operation / management

 High availability support : **redundant everything**
Includes: power supplies, cabling, environmental control
systems, communication links, duplicate warm replica HW

 Secure design: physical and logical access control

 Servers: rackmount, etc.

 Storage: hard disk arrays (RAID)

 storage area network (SAN): disk array w/ multiple servers
(individual nodes w/ disks) and a dedicated network

 network attached storage (NAS): inexpensive single node with
collection of disks, provides shared filesystems, for NFS, etc.

 Network hardware: backbone routers (WAN to LAN
connectivity), firewalls, VPN gateways, managed
switches/routers

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.73

DATA CENTER TECHNOLOGY –

KEY COMPONENTS

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.74

CLOUD ENABLING TECHNOLOGY

73

74

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.38

 Convert a physical IT resource into a virtual IT resource

 Servers, storage, network, power (virtual UPSs)

 Virtualization supports:

▪ Hardware independence

▪ Server consolidation

▪ Resource replication

▪ Resource pooling

▪ Elastic scalability

 Virtual servers

▪ Operating-system based virtualization

▪ Hardware-based virtualization

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.75

3. VIRTUALIZATION TECHNOLOGY

 Emulation/simulation of a computer in software

 Provides a substitute for a real computer or server

 Virtualization platforms provide functionality to run an

entire operating system

 Allows running multiple different operating systems, or

operating systems with different versions simultaneously

on the same computer

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.76

VIRTUAL MACHINES

75

76

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.39

 Tradeoff space:

What is the “right” level of abstraction in the cloud

for sharing resources with users?

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.77

KEY VIRTUALIZATION TRADEOFF

Degree of
Hardware

Abstraction

Abstraction

Concerns:

• Overhead

• Performance

• Isolation

• Security

Too muchToo little

 Overhead with too many instances w/ heavy abstractions

▪ Too many instances using a heavy abstraction can lead to

hidden resource utilization and waste

▪ Example: Dedicated server with 48 VMs each with separate

instance of Ubuntu Linux

▪ Idle VMs can reduce performance of co-resident jobs/tasks

 “Virtualization” Overhead

▪ Cost of virtualization an OS instance

▪ Overhead has dropped from ~100% to ~1% over last decade

 Performance

▪ Impacted by weight of abstraction and virtualization overhead

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.78

ABSTRACTION CONCERNS

77

78

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.40

 Isolation

▪ From others:

What user A does should not impact user B in any noticeable

way

 Security

▪ User A and user B’s data should be always separate

▪ User A’s actions are not perceivable by User B

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.79

ABSTRACTION CONCERNS - 2

 Vir tual Machines – original IaaS cloud abstraction

 OS and Application Containers – seen with CaaS

▪ OS Container – replacement for VM, mimics full OS instance, heavier

▪ OS containers run 100s of processes just like a VM

▪ App Container – Docker: packages dependencies to easily transport
and run an application anywhere

▪ Application containers run only a few processes

 Micro VMs – FaaS / CaaS

▪ Lighter weight alternative to full VM (KVM, XEN, VirtualBox)

▪ Firecracker

 Unikernel Operating Systems – research mostly

▪ Single process, multi-thread operating system

▪ Designed for cloud, objective to reduce overhead of running too
many OS instances

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.80

TYPES OF ABSTRACTION IN THE CLOUD

79

80

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.41

 Type 1 hypervisor

▪ Typically involves a special virtualization kernel that runs directly on the

system to share the underlying machine with many guest VMs

▪ Paravirtualization introduced to directly share system resources with

guests bypassing full emulation

▪ VM becomes equal participant in sharing the network card for example

 Type 2 hypervisor

▪ Typically involves the Full Virtualization of the guest, where everything is

simulated/emulated

 Hardware level support (i.e. features introduced on CPUs) have

made virtualization faster in all respects shrinking virtualization

overhead

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.81

VIRTUAL MACHINES

 Host OS and VMs run atop the hypervisor

 The boot OS is the hypervisor kernel

 Xen dom0

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.82

TYPE 1 HYPERVISOR

81

82

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.42

 Acts as a control program

 Miniature OS kernel that manages VMs

 Boots and runs on bare metal

 Also known as Virtual Machine Monitor (VMM)

 Paravirtualization: Kernel includes I/O drivers

 VM guest OSes must use special kernel to interoperate

 Paravirtualization provides hooks to the guest VMs

 Kernel traps instructions (i.e. device I/O) to implement
sharing & multiplexing

 User mode instructions run directly on the CPU

 Objective: minimize virtualization overhead

 Classic example is XEN (dom0 kernel)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.83

TYPE 1 HYPERVISOR

 T YPE 1 Hypervisor

 XEN

 Citrix Xen-server (a commercial version of XEN)

 VMWare ESXi

 KVM (virtualization support in kernel)

 Paravirtual I/O drivers introduced

▪ XEN

▪ KVM

▪ Virtualbox

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.84

COMMON VMMS:

PARAVIRTUALIZATION

83

84

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.43

 Developed at Cambridge in ~ 2003

XEN

Physical Machine →

XEN kernel →

Host OS →

Guest VMs

 VMs managed as “domains”

 Domain 0 is the hypervisor domain

▪ Host OS is installed to run on bare-metal, but doesn’t

directly facilitate virtualization (unlike KVM)

 Domains 1..n are guests (VMs) – not bare-metal

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.86

XEN - 2

85

86

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.44

 Physical machine boots special XEN kernel

 Kernel provides paravirtual API to manage CPU & device

multiplexing

 Guests require modified XEN-aware kernels

 Xen supports full -virtualization for unmodified OS guests

in hvm mode

 Amazon EC2 largely based on modified version of XEN

hypervisor (EC2 gens 1-4)

 XEN provides its own CPU schedulers, I/O scheduling

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.87

XEN - 3

 Adds additional layer

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.88

TYPE 2 HYPERVISOR

87

88

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.45

 Problem: Original x86 CPUs could not trap special
instructions

 Instructions not specially marked

 Solution: Use Full Virtualization

 Trap ALL instructions

 “Fully” simulate entire computer

 Tradeoff: Higher Overhead

 Benefit: Can virtualize any operating system without
modification

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.89

TYPE 2 HYPERVISOR

 See:
https://cyberciti.biz/faq/linux -xen-vmware-kvm-intel-vt-amd-v -

support

 # check for Intel VT CPU virtualization extensions on Linux
grep –color vmx /proc/cpuinfo

 # check for AMD V CPU virtualization extensions on Linux
grep –color svm /proc/cpuinfo

 Also see ‘lscpu ’ → “Virtualization:”

 Other Intel CPU features that help virtualization:

ept vpid tpr_shadow flexpriority vnmi

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.90

CHECK FOR VIRTUALIZATION SUPPORT

89

90

https://cybercity.biz/faq/linux-xen-vmware-kvm-intel-vt-a-v-support
https://cybercity.biz/faq/linux-xen-vmware-kvm-intel-vt-a-v-support

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.46

KERNEL BASED VIRTUAL

MACHINES (KVM)

 x86 HW notoriously difficult to virtualize

Extensions added to 64-bit Intel/AMD CPUs

▪Provides hardware assisted virtualization

▪New “guest” operating mode

▪Hardware state switch

▪Exit reason reporting

▪ Intel/AMD implementations different

▪Linux uses vendor specific kernel modules

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.91

KVM – 2

91

92

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.47

KVM – 3

KVM has /dev/kvm device file node

▪Linux character device, with operations:

▪ Create new VM

▪ Allocate memory to VM

▪ Read/write virtual CPU registers

▪ Inject interrupts into vCPUs

▪ Running vCPUs

VMs run as Linux processes

▪Scheduled by host Linux OS

▪Can be pinned to specific cores with “taskset”

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.93

KVM PARAVIRTUALIZED I/O

 KVM – Virtio

▪ Custom Linux based paravirtual device drivers

▪ Supersedes QEMU hardware emulation (full virt.)

▪ Based on XEN paravirtualized I/O

▪ Custom block device driver provides paravirtual device

emulation

▪ Virtual bus (memory ring buffer)

▪ Requires hypercall facility

▪ Direct access to memory

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.94

93

94

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.48

KVM DIFFERENCES FROM XEN

 KVM requires CPU VMX support

▪ Virtualization management extensions

 KVM can virtualize any OS without special kernels

▪ Less invasive

 KVM was originally separate from the Linux kernel,
but then integrated

 KVM is type 1 hypervisor because the machine boots
Linux which has integrated support for virtualization

 Different than XEN because XEN kernel alone is not a
full-fledged OS

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.95

KVM ENHANCEMENTS

Paravirtualized device drivers

▪Virtio

Guest Symmetric Multiprocessor (SMP) support

▪Leverages multiple on-board CPUs

▪Supported as of Linux 2.6.23

VM Live Migration

Linux scheduler integration

▪Optimize scheduler with knowledge that KVM
processes are virtual machines

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.96

95

96

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.49

FIRECRACKER MICRO VM

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.97

From https://firecracker-microvm.github.io/

 Provides a virtual machine monitor (VMM) (i.e. hypervisor)

using KVM to create and manage microVMs

 Has a minimalist design with goals to improve security,

decreases the startup time, and increases hardware utilization

 Excludes unnecessary devices and guest functionality to

reduce memory footprint and attack surface area of each

microVM

 Supports boot time of <125ms, <5 MiB memory footprint

 Can run 100s of microVMs on a host, launching up to 150/sec

 Is available on 64-bit Intel, AMD, and Arm CPUs

 Used to host AWS Lambda and AWS Fargate

 Has been open sourced under the Apache 2.0 license

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.98

FIRECRACKER MICRO VM

97

98

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.50

 Minimalistic

 MicroVMs run as separate processes on the host

 Only 5 emulated devices are available: virtio-net, virtio-block,

virtio-vsock, serial console, and a minimal keyboard controller

used only to stop the microVM

 Rate limiters can be created and configured to provision

resources to support bursts or specific bandwidth/operation

limitations

 Configuration

 A RESTful API enables common actions such as configuring

the number of vCPUs or launching microVMs

 A metadata service between the host and guest provides

configuration information

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.99

FIRECRACKER - 2

 Security

 Runs in user space (not the root user) on top of the Linux

Kernel-based Virtual Machine (KVM) hypervisor to create

microVMs

 Lambda functions, Fargate containers, or container groups can

be encapsulated using Firecracker through KVM, enabling

workloads from different customers to run on the same

machine, without sacrificing security or efficiency

 MicroVMs are further isolated with common Linux user -space

security barriers using a companion program called “jailer”

which provides a second line of defense if KVM is

compromised

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.100

FIRECRACKER - 2

99

100

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.51

 Lightweight alternative to containers and VMs

▪ Custom Cloud Operating System

▪ Single process, multiple threads, runs one program

▪ Launch separately atop of hypervisor (XEN/KVM)

▪ Reduce overhead, duplication of heavy weight OS

▪ OSv is most well known unikernel

▪ Several others exist has research projects

▪More information at: http://unikernel.org/

▪ Google Trends

OSv →

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

101

UNIKERNELS

 Virtual infrastructure management (VIM) tools

 Tools that manage pools of virtual machines, resources, etc.

 Private cloud software systems can be considered as a VIM

 Considerations:

 Performance overhead

▪ Paravirtualization: custom OS kernels, I/O passed directly to HW w/

special drivers

 Hardware compatibility for virtualization

 Portability: virtual resources tend to be dif ficult to migrate

cross-clouds

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.102

VIRTUALIZATION MANAGEMENT

101

102

http://unikernel.org/

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.52

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

Middleware to manage virtual machines and

infrastructure of IaaS “clouds”

Examples

▪OpenNebula

▪Nimbus

▪Eucalyptus

▪OpenStack

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.103

VIM FEATURES

Create/destroy VM Instances

 Image repository

▪Create/Destroy/Update images

▪Image persistence

Contextualization of VMs

▪Networking address assignment

▪DHCP / Static IPs

▪Manage SSH keys

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.104

103

104

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.53

VIM FEATURES - 2

Virtual network configuration/management

▪Public/Private IP address assignment

▪Virtual firewall management

 Configure/support isolated VLANs (private

clusters)

Support common virtual machine managers

(VMMs)

▪XEN, KVM, VMware

▪Support via libvirt library

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.105

VIM FEATURES - 3

Shared “Elastic” block storage

▪Facility to create/update/delete VM disk volumes

▪Amazon EBS

▪Eucalyptus SC

▪OpenStack Volume Controller

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.106

105

106

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.54

 Middleware to manage Docker application container

deployments across virtual clusters of Docker hosts (VMs)

 Considered Infrastructure-as-a-Service

 Opensource

 Kubernetes framework

 Docker swarm

 Apache Mesos/Marathon

 Proprietary

 Amazon Elastic Container Service

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.107

CONTAINER ORCHESTRATION

FRAMEWORKS

 Public cloud container cluster services

 Azure Kubernetes Service (AKS)

 Amazon Elastic Container Service for Kubernetes (EKS)

 Google Kubernetes Engine (GKE)

 Container-as-a-Service

 Azure Container Instances (ACI – April 2018)

 AWS Fargate (November 2017)

 Google Kubernetes Engine Serverless Add-on (July 2018)

 Google Cloud Run (2019)

 Google Cloud Run jobs (2022)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.108

CONTAINER SERVICES

107

108

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.55

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.109

CLOUD ENABLING TECHNOLOGY

 Each tenant (like in an apartment) has their own view of the

application

 Tenants are unaware of their neighbors

 Tenants can only access their data, no access to

data and configuration that is not their own

 Customizable features

▪ UI, business process, data model, access control

 Application architecture

▪ User isolation, data security, recovery/backup by tenant, scalability

for a tenant, for tenants, metered usage, data tier isolation

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.110

4. MULTITENANT APPLICATIONS

109

110

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.56

 Forms the basis for SaaS (applications)

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.111

MULTITENANT APPS - 2

Adapted from Ch. 5 from Cloud Computing

Concepts, Technology & Architecture

Broadband networks and internet architecture

Data center technology

Virtualization technology

Multitenant technology

Web/web services technology

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.112

CLOUD ENABLING TECHNOLOGY

111

112

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.57

 Web services technology is a key foundation of cloud

computing’s “as-a-service” cloud delivery model

 SOAP – “Simple” object access protocol

▪ First generation web services

▪WSDL – web services description language

▪ UDDI – universal description discovery and integration

▪ SOAP services have their own unique interfaces

 REST – instead of defining a custom technical interface

REST services are built on the use of HTTP protocol

 HTTP GET, PUT, POST, DELETE

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.113

5. WEB SERVICES/WEB

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.114

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

113

114

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.58

 Web services protocol

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined

set of stateless operations (known as web services)

 Requests are made to a URI

 Responses are most often in JSON, but can also be HTML,

ASCII text, XML, no real limits as long as text -based

 HTTP verbs: GET, POST, PUT, DELETE, …

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.115

REST: REPRESENTATIONAL STATE TRANSFER

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.11
6

// SOAP REQUEST

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

 <m:GetBookPrice>

 <m:BookName>The Fleamarket</m:BookName>

 </m:GetBookPrice>

</soap:Body>

</soap:Envelope>

115

116

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.59

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.11
7

// SOAP RESPONSE

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

 <m:GetBookPriceResponse>

 <m: Price>10.95</m: Price>

 </m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.11
8

// WSDL Service Definition

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

 targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="DayOfWeekInput">

 <part name="date" type="xsd:date"/>

 </message>

 <message name="DayOfWeekResponse">

 <part name="dayOfWeek" type="xsd:string"/>

 </message>

 <portType name="DayOfWeekPortType">

 <operation name="GetDayOfWeek">

 <input message="tns:DayOfWeekInput"/>

 <output message="tns:DayOfWeekResponse"/>

 </operation>

 </portType>

 <binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetDayOfWeek">

 <soap:operation soapAction="getdayofweek"/>

 <input>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace="http://www.roguewave.com/soapworx/examples"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

 <service name="DayOfWeekService" >

 <documentation>

 Returns the day-of-week name for a given date

 </documentation>

 <port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

 <soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

 </port>

 </service>

</definitions>

117

118

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.60

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.119

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

 "parameter": [

 {

 "name": "latitude",

 "value":47.2529

 },

 {

 "name": "longitude",

 "value":-122.4443

 }

]

}

 App manipulates one or more types of resources.

 Everything the app does can be characterized as some

kind of operation on one or more resources.

 Frequently services are CRUD operations

(create/read/update/delete)

▪ Create a new resource

▪ Read resource(s) matching criterion

▪ Update data associated with some resource

▪Destroy a particular a resource

 Resources are often implemented as objects in OO

languages

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.120

REST - 2

119

120

TCSS 462: Cloud Computing
TCSS 562: Software Engineering for Cloud Computing
School of Engineering and Technology, UW-Tacoma

[Fall 2024]

Slides by Wes J. Lloyd L11.61

 Per formance: component interactions can be the dominant

factor in user-perceived performance and network ef ficiency

 Scalabil ity: to support large numbers of services and

interactions among them

 Simplicity: of the Uniform Interface

 Modif iabil ity : of services to meet changing needs (even while the

application is running)

 Visibility : of communication between services

 Por tability : of services by redeployment

 Reliability : resists failure at the system level as redundancy of

infrastructure is easy to ensure

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.121

REST ARCHITECTURAL ADVANTAGES

QUESTIONS

October 31, 2024
TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.12
2

121

122

	Slide 1: TCSS 562: Software Engineering for Cloud Computing
	Slide 2: Office hours – Fall 2024
	Slide 3: Cloud computing conference opportunity
	Slide 4: OBJECTIVES – 10/31
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 10/29
	Slide 9: Calculate break even point: aws-lambda = ec2
	Slide 10: solution
	Slide 11: Feedback - 2
	Slide 12: Term project proposals
	Slide 13: Sample question 1
	Slide 14: Sample question 2
	Slide 15: AWS Cloud Credits update
	Slide 16: OBJECTIVES – 10/31
	Slide 17: Tutorial 0
	Slide 18: Tutorial 3 – due oct 31
	Slide 19: Tutorial 4 – due nov 5
	Slide 20: Tutorial 5 – due nov 14
	Slide 21: OBJECTIVES – 10/31
	Slide 22: Class activity 2
	Slide 23: CA2 - 2
	Slide 24: CA2 - 3
	Slide 25: CA2 - 4
	Slide 26: OBJECTIVES – 10/31
	Slide 27: AWS overview and demo
	Slide 28: Ebs volume types - 3
	Slide 29: Elastic file system (EFS)
	Slide 30: Elastic file system (EFS) - 2
	Slide 31: Elastic file system (EFS) - 3
	Slide 32: Elastic file system (EFS) - 4
	Slide 33: Ec2
	Slide 34: ec2 - 2
	Slide 35: Amazon machine images
	Slide 36: Ec2 virtualization - paravirtual
	Slide 37: Ec2 virtualization - hvm
	Slide 38: Ec2 virtualization - nitro
	Slide 39: Evolution of aws virtualization
	Slide 40: Instance actions
	Slide 41: Ec2 instance: Network access
	Slide 42: We will return at 4:50 pm
	Slide 43: Simple vpc
	Slide 44: Vpc spanning availability zones
	Slide 45: Inspecting instance information
	Slide 46: Simple storage service (S3)
	Slide 47: Aws cli
	Slide 48: Aws cli - 2
	Slide 49: Aws cli - 3
	Slide 50: Legacy / service specific cli(s)
	Slide 51: Ami tools
	Slide 52: Private key and certificate file
	Slide 53: Private key, certificate file
	Slide 54: SCRIPT: Create a new INSTANCE STORE image from live disk volume
	Slide 55: Make a disk from an image file
	Slide 56: Compress image, push to s3
	Slide 57: Restore on the cloud
	Slide 58: Partition the disk
	Slide 59: Copy data to new disk partition
	Slide 60: For more information
	Slide 61: Cost savings measures
	Slide 62: OBJECTIVES – 10/31
	Slide 63: OBJECTIVES – 10/31
	Slide 64: cloud enabling technology
	Slide 65: Cloud enabling technology
	Slide 66: 1. Broadband networks and internet architecture
	Slide 67: Private cloud networking
	Slide 68: Public cloud networking
	Slide 69: Internetworking key points
	Slide 70: Cloud enabling technology
	Slide 71: 2. Data center technology
	Slide 72: Cluster management tools
	Slide 73: Data center technology – key components
	Slide 74: Cloud enabling technology
	Slide 75: 3. Virtualization technology
	Slide 76: Virtual machines
	Slide 77: Key virtualization tradeoff
	Slide 78: Abstraction concerns
	Slide 79: Abstraction concerns - 2
	Slide 80: Types of abstraction in the cloud
	Slide 81: Virtual machines
	Slide 82: Type 1 hypervisor
	Slide 83: Type 1 hypervisor
	Slide 84: Common VMMs: paravirtualization
	Slide 85: xen
	Slide 86: Xen - 2
	Slide 87: Xen - 3
	Slide 88: Type 2 hypervisor
	Slide 89: Type 2 hypervisor
	Slide 90: Check for virtualization support
	Slide 91: Kernel Based Virtual Machines (KVM)
	Slide 92: KVM – 2
	Slide 93: KVM – 3
	Slide 94: KVM Paravirtualized I/O
	Slide 95: KVM Differences from XEN
	Slide 96: KVM Enhancements
	Slide 97: Firecracker micro vm
	Slide 98: Firecracker micro vm
	Slide 99: Firecracker - 2
	Slide 100: Firecracker - 2
	Slide 101: unikernels
	Slide 102: Virtualization management
	Slide 103: Virtual Infrastructure Management (VIM)
	Slide 104: VIM features
	Slide 105: VIM Features - 2
	Slide 106: VIM Features - 3
	Slide 107: Container orchestration frameworks
	Slide 108: Container services
	Slide 109: Cloud enabling technology
	Slide 110: 4. Multitenant applications
	Slide 111: Multitenant apps - 2
	Slide 112: Cloud enabling technology
	Slide 113: 5. Web services/web
	Slide 114: Hypertext transport protocol (http)
	Slide 115: Rest: representational state transfer
	Slide 116
	Slide 117
	Slide 118
	Slide 119: Rest climate services example
	Slide 120: Rest - 2
	Slide 121: REST architectural advantages
	Slide 122: Questions

