

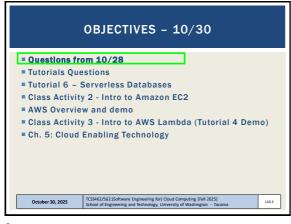
Thursdays:

6:00 to 7:00 pm - CP 229 & Zoom

Friday - *** THIS WEEK ***

11:00 am to 12:00 pm - ONLINE via Zoom

Or email for appointment


Office Hours set based on Student Demographics survey feedback

*-Friday office hours may be adjusted or canceled due meeting conflicts or other obligations. Adjustments will be announced via Canvas.

October 30, 2025

TCSS402/562:Eoftware Engineering En/ Cloud Computing [Tail 2025]
School of Engineering and Technology, University of Washington - Taxoma

1

ONLINE DAILY FEEDBACK SURVEY

Daily Feedback Quiz in Canvas - Take After Each Class

Extra Credit
for completing

Audignments

Discussions
Content
Conception
Content
People
Pages
Files
Quizzes
Collaborations
UW Libraries
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

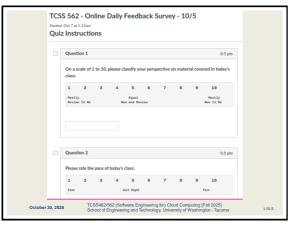
TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments
UW Resources

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments


TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments

TCSS 562 - Online Daily Feedback Survey - 10/5
Audignments

TCS

3

5

MATERIAL / PACE


■ Please classify your perspective on material covered in today's class (42 respondents, 28 in-person, 14 online):
■ 1-mostly review, 5-equal new/review, 10-mostly new
■ Average - 6.71 (↓ - previous 7.19)

■ Please rate the pace of today's class:
■ 1-slow, 5-just right, 10-fast
■ Average - 5.45 (↓ - previous 5.49)

October 30, 2025

| TCSS462/M22/Software Engineering for) Cloud Computing (Fall 2025)
| School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L10.1

FEEDBACK - 2

There are 15 ways to deploy a 4-component application on the cloud, but how do we know which offers the best performance and lowest cost?

For an application with multiple components "brute-force" testing may be necessary:
D - Database
M - Web Application Server
F - File Server
L - Logging Server
Combining or separating individual components changes the total CPU, disk, and especially network I/O
When two components that exchange data are on the same server, network I/O (data transfer) is faster
Transfer may not require sending data over an external link
The Amazon "best practice" is to deploy every component with isolated infrastructure, this is known as "service Isolation"

October 30, 2025

TSCALESCALESCHOOKER Teignering for Joud Computing [181 2025]
School of Engineering and Technology, University of Washington - Tacoma

SAMPLE QUESTION 1

CPU hyperthreads are equivalent to physical CPUs cores and provide identical performance and throughput.

A. True
B. False

SAMPLE QUESTION 2

Which taxonomy classification is most often associated with Graphical Processing Units (GPUs)?

A. SIMD
B. MIMD
C. SISD
D. MISD

October 30, 2025

TCSS462/562:jsoftware Engineering for) Cloud Computing [fall 2025]
School of Engineering and Technology, University of Washington - Taxoma

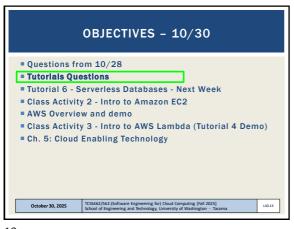
9

SAMPLE QUESTION 3

In Tutorial 4, after creating a new AWS Lambda function in the AWS Management Console, and uploading the Java jar file, what must be done before attempting to call the function using the AWS CLI?

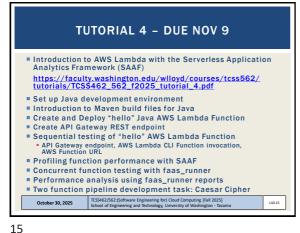
A. Permission must be granted to write to the CloudWatch logs B. The function memory size and timeout needs to be adjusted C. The function handler must be updated D. A REST 'POST' endpoint must be created using the Amazon API Gateway E. All of the above

TERM PROJECT PROPOSALS

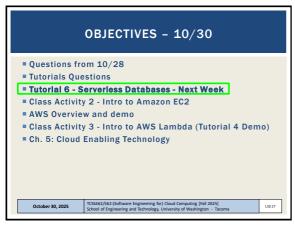

14 Total term project proposals received
Team 13 has uploaded proposal 3 times to Canvas
There should only be 1 proposal uploaded by the team lead
Review over weekend
Status & Feedback to be provided:
proposals accepted, or
revisions requested

TESSIGZ/SGZ:SOftware Engineering for Cloud Computing [fall 2025]
Stood of Engineering and Technology University of Washington - Tacons

11 12

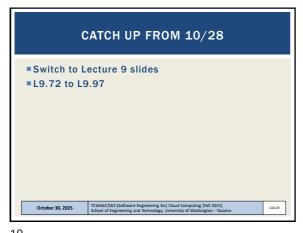

Slides by Wes J. Lloyd L10.2

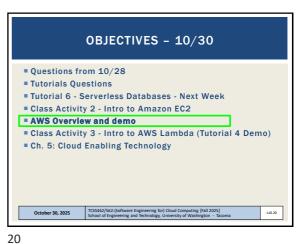
8



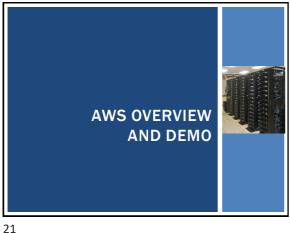
TUTORIAL 3 - DUE OCT 30 (TEAMS OF 2) Best Practices for Working with Virtual Machines on Amazon EC2 https://faculty.washington.edu/wlloyd/courses/tcss562 /tutorials/TCSS462_562_f2025_tutorial_3.pdf Creating a spot VM Creating an image from a running VM ■ Persistent spot request Stopping (pausing) VMs EBS volume types Ephemeral disks (local disks) Mounting and formatting a disk Disk performance testing with Bonnie++ Cost Saving Best Practices October 30, 2025

13 14


TUTORIAL 5 - TO BE POSTED Introduction to Lambda II: Working with Files in S3 and CloudWatch Events Customize the Request object (add getters/setters) Why do this instead of HashMap ? ■ Import dependencies (jar files) into project for AWS S3 Create an S3 Bucket Give your Lambda function(s) permission to work with S3 ■ Write to the CloudWatch logs Use of CloudTrail to generate S3 events Creating CloudWatch rule to capture events from CloudTrail Have the CloudWatch rule trigger a target Lambda function with a static JSON input object (hard-coded filename) Optional: for the S3 PutObject event, dynamically extract the name of the file put to the S3 bucket for processing October 30, 2025 L10.16

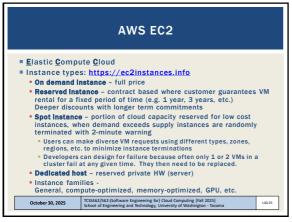


OBJECTIVES - 10/30 Questions from 10/28 ■ Tutorials Questions ■ Tutorial 6 - Serverless Databases - Next Week Class Activity 2 - Intro to Amazon EC2 ■ AWS Overview and demo Class Activity 3 - Intro to AWS Lambda (Tutorial 4 Demo) ■ Ch. 5: Cloud Enabling Technology October 30, 2025


17 18

Slides by Wes J. Lloyd L10.3

19

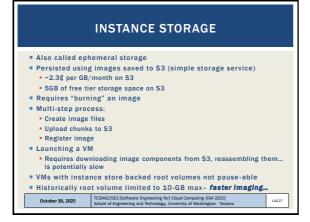

ONLINE CLOUD TUTORIALS ■ From the eScience Institute @ UW Seattle: https://escience.washington.edu/ Online cloud workshops Introduction to AWS, Azure, and Google Cloud ■ Task: Deploying a Python DJANGO web application Self-guided workshop materials available online: https://cloudmaven.github.io/documentation/ AWS Educate provides access to many online tutorials / learning resources: https://aws.amazon.com/education/awseducate/ October 30, 2025 L10.22

AWS: provides an ever expanding array of cloud services... Amazon Hana

23 24

Slides by Wes J. Lloyd L10.4

Storage types
Instance storage - ephemeral storage
Temporary disk volumes stored on disks local to the VM
Evolution: physical hard disk drives (HDDs)
Solid state drives (SSDs)
Non-volatile memory express (NVMe) drives (closer to DRAM speed)


EBS - Elastic block store
Remotely hosted disk volumes

EFS - Elastic file system
Shared file system based on network file system
VMs, Lambdas, Containers mount/interact with shared file system
Somewhat expensive

October 30, 2025

TCSSA2/SS2/SSCAPONE Eigineening for Cloud Computing [Fall 2025]
Stool of Engineening and Enchnology, University of Visibnington - Incoma

25 26

ELASTIC BLOCK STORE EBS provides 1 drive to 1 virtual machine (1:1) (not shared) ■ EBS cost model is different than instance storage (uses S3) ■ ~10¢ per GB/month for General Purpose Storage (GP2) ■ ~8¢ per GB/month for General Purpose Storage (GP3) 30GB of free tier storage space EBS provides "live" mountable volumes Listed under volumes Data volumes: can be mounted/unmounted to any VM, dynamically at Root volumes: hosts OS files and acts as a boot device for VM In Linux drives are linked to a mount point "directory" Snapshots back up EBS volume data to S3 Enables replication (required for horizontal scaling) EBS volumes not actively used should be snapshotted, and deleted to save EBS costs. TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 30, 2025 L10.28

27

EBS VOLUME TYPES - 2

Metric: I/O Operations per Second (IOPS)

General Purpose 2 (GP2)

3 IOPS per GB, min 100 IOPS (<34GB), max of 16,000 IOPS

250MB/sec throughput per volume

General Purpose 3 (GP3 - new Dec 2020)

Max 16,000 IOPS, Default 3,000 IOPS

GP2 requires creating a 1TB volume to obtain 3,000 IOPS

GP3 all volumes start at 3000 IOPS and 125 MB/s throughput

1000 additional IOPS beyond 3000 is \$5/month up to 16000 IOPS

125 MB/s additional throughput is \$5/month up to 1000 MB/s throughput

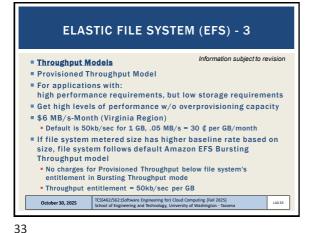
October 30, 2025

Metric: I/O Operations per Second (IOPS)

CONTROL OF THE SECOND IOPS

CONTROL OF THE

EBS VOLUME TYPES - 3 Provisioned IOPS (IO1) Legacy, associated with GP2 Allows user to create custom disk volumes where they pay for a specified IOPS and throughput 32,000 IOPS, and 500 MB/sec throughput per volume MAX Throughput Optimized HDD (ST1) Up to 500 MB/sec throughput 4.5 ¢ per GB/month Cold HDD (SC1) Up to 250 MB/sec throughput ■ 2.5 © per GB/month Magnetic Up to 90 MB/sec throughput per volume ■ 5 ¢ per GB/month TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 30, 2025 L10.30


29 30

Slides by Wes J. Lloyd L10.5

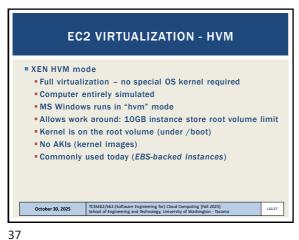
ELASTIC FILE SYSTEM (EFS) - 2 Information subject to revision Burstable Throughput Rates Throughput rates: baseline vs burst Credit model for bursting: maximum burst per day Baseline Aggregate
Throughput (MiB/s)
Burst Aggregate
Throughput
(MiB/s)
Maximum Burst
Duration
(Min/Day) % of Time File System Can Burst (Per Day) 10 100 0.5% 256 12.5 100 180 12.5% 512 25.0 100 360 25.0% 1024 50.0 100 720 50.0% 1536 75.0 150 720 50.0% 2048 100.0 200 720 50.0% 3072 150.0 300 720 50.0% 4096 200.0 400 720 50.0% October 30, 2025 L10.32

31 32

ELASTIC FILE SYSTEM (EFS) - 4 Performance Comparison, Amazon EFS and Amazon EBS Amazon EFS Amazon EBS Provisioned IOPS Per-operation latency Low, consistent latency. Lowest, consistent latency.

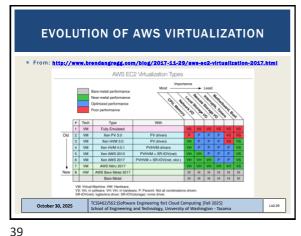
Throughput scale 10+ GB per second. Up to 2 GB per second. Throughput scale Storage Characteristics Comparison, Amazon EFS and Amazon EBS Amazon EFS Amazon EBS Provisioned IOPS Availability Data is stored redundantly across multiple AZs. Data is stored redundantly in a single AZ. Up to thousands of Amazon EC2 instances, fron multiple AZs, can connect concurrently to a file A single Amazon EC2 instance in a single AZ can connect to a file Boot volumes, transactional and NoSQL databases, data warehousing, and ETL. TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 30, 2025

0

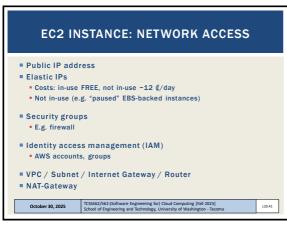

AMAZON MACHINE IMAGES

AMIS
Unique for the operating system (root device image)
Two types
Instance store
Elastic block store (EBS)
Deleting requires multiple steps
Deregister AMI
Delete associated data - (files in S3)
Forgetting both steps leads to costly "orphaned" data
No way to instantiate a VM from deregistered AMIS
Data still in S3 resulting in charges

EC2 VIRTUALIZATION - PARAVIRTUAL ■ 1st, 2nd, 3rd, 4th generation → XEN-based ■ 5th generation instances → AWS Nitro virtualization XEN - two virtualization modes XEN Paravirtualization "paravirtual" • 10GB Amazon Machine Image - base image size limit Addressed poor performance of old XEN HVM mode I/O performed using special XEN kernel with XEN paravirtual mode optimizations for better performance Requires OS to have an available paravirtual kernel PV VMs: will use common AKI files on AWS - Amazon kernel Image(s) Look for common identifiers TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Taco October 30, 2025 L10.36

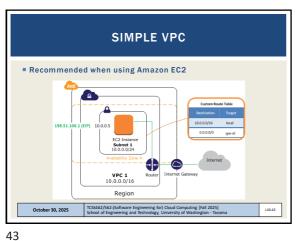

35 36

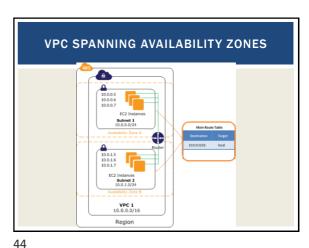
Slides by Wes J. Lloyd L10.6


EC2 VIRTUALIZATION - NITRO ■ Nitro based on Kernel-based-virtual-machines Stripped down version of Linux KVM hypervisor Uses KVM core kernel module I/O access has a direct path to the device • Goal: provide indistinguishable performance from bare October 30, 2025 L10.38

38

INSTANCE ACTIONS Costs of "pausing" an instance ■ Terminate ■ Reboot ■ Image management Creating an image ■ EBS (snapshot) ■ Bundle image Instance-store October 30, 2025 L10.40


40



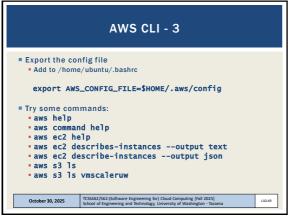
WE WILL RETURN AT 4:50 PM

41 42

Slides by Wes J. Lloyd L10.7

INSPECTING INSTANCE INFORMATION ■ FC2 VMs run a local metadata service Can query instance metadata to self discover cloud configuration attributes Find your instance ID: curl http://169.254.169.254/ curl http://169.254.169.254/latest/ curl http://169.254.169.254/latest/meta-data/ curl http://169.254.169.254/latest/meta-data/instance-id
; echo ■ ec2-get-info command Python API that provides easy/formatted access to metadata TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025] School of Engineering and Technology, University of Washington - Tac October 30, 2025

SIMPLE STORAGE SERVICE (S3) ■ Key-value blob storage What is the difference vs. key-value stores (NoSQL DB)? Can mount an S3 bucket as a volume in Linux Supports common file-system operations ■ Provides eventual consistency Can store Lambda function state for life of container. October 30, 2025 L10.46


45

AWS CLI ■ Launch Ubuntu 16.04 VM Instances | Launch Instance ■ Install the general AWS CLI sudo apt install awscli ■ Create config file [default] aws_access_key_id = <access key id> aws_secret_access_key = <secret access key> region = us-east-1October 30, 2025 L10.47

AWS CLI - 2 Creating access keys: IAM | Users | Security Credentials | Access Keys | Create Access Keys October 30, 2025

47 48

Slides by Wes J. Lloyd L10.8

49

Install openssl package on VM
generate private key file
\$ openssl genrsa 2048 > mykey.pk
generate signing certificate file
\$ openssl req -new -x509 -nodes -sha256 -days 36500 -key
mykey.pk -outform PEM -out signing.cert

Add signing.cert to IAM | Users | Security Credentials |
-- new signing certificate -
From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/setup-ami-tools.html?icmpid=docs_lam_console#ami-tools-createcertificate

| October 30, 2025 | TICSS62/562/Software Engineering for Cloud Computing | Fail 2025|
School of Engineering and Technology, University of Washington - Tacoma

51

PRIVATE KEY, CERTIFICATE FILE

These files, combined with your AWS_ACCESS_KEY and AWS_SECRET_KEY and AWS_ACCOUNT_ID enable you to publish new images from the CLI

Objective:
Configure VM with software stack
Burn new image for VM replication (horizontal scaling)

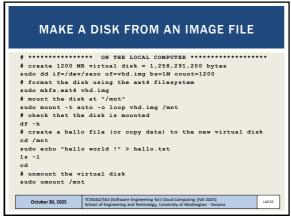
An alternative to bundling volumes and storing in S3 is to use a containerization tool such as Docker...

Create image script ...

TCS462/662/iSoftware Engineering for | Cloud Computing [Fail 2025] | School of Engineering and Technology, University of Washington - Tacoma

SCRIPT: CREATE A NEW INSTANCE STORE

IMAGE FROM LIVE DISK VOLUME


Image=\$1
echo "\$urn image \$image"
echo "\$image" > image.1d
mkdir /mrt/temp
AWS_LEV_DIXR~/home/ubuntu/.ws
export eC2_UNL=http://e2.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export s3_UNL=https://s3.amazonaws.com
export aWS_LEXE_DIV_UNT aCcount 1d]
export AWS_ACCESS_KEY={your aws access key}
exc-upload-bundle -b tcss562 - 8 simage.manifest_xml -a s{AWS_ACCESS_KEY} -s
s{AWS_ACCESS_KEY} -- url http://s3.amazonaws.com --location us
exc-register tcss562/\$image.manifest_xml -- region us-east-1 -- kernel aki88aa75e1

Cotober 30, 2025

53 54

Slides by Wes J. Lloyd L10.9

50

compress the disk
bzip2 vhd.img
push the disk image to S3
aws s3 cp vhd.img.bz2 s3://tcss562-f21-images

55

```
RESTORE ON THE CLOUD
# ************ ON THE AWS EC2 VM ***********
# with the awscli installed and configured
# download the image from S3
aws s3 cp s3://tcss562-f21-images/vhd.img.bz2 vhd.img.bz2
# uncompress the image
bzip2 -d vhd.img.bz2
# we need to calculate the number of sectors for the
partition
# disk sectors are 512 bytes each
# divide the disk size by 512 to determine sectors
# sectors = 1258291200 / 512 = 2459648
# create a disk partition for this disk that is
# 2459648 sectors in size using the ephemeral dr
# a newly mounted EBS volume that is unformatted
                  TCSS462/562:(Software Engineering for) Cloud Computing [Fall 2025]
School of Engineering and Technology, University of Washington - Tacoma
   October 30, 2025
                                                                            L10.57
```

Welcome to fdisk (util-linux 2.34).

Command (m for help): n
Partition type
p primary (0 primary, 0 extended, 4 free)
e extended (container for logical partitions)

Select (default p): p
Partition number (1.4, default 1): 1
First sector (2048-97656249, default 2048): 2048
Last sector, +/-sector; or +/-size(K, M, G, T, P) (2048-97656249, default 97656249); 2459848

Created a new partition 1 of type 'Linux' and of size 1.2 GiB.

Command (m for help): Selected partition 1
Hex code (type L to list all codes): 83
Changed type of partition 'Linux' to 'Linux'.

Command (m for help): W (to write and exit)

October 30, 2025

57

now check if the partition has been created.
it should be listed as /dev/nymelnlp1:
ls /dev/nymeln1*

now copy the data to the partition
sudo dd if=vhd.img of=/dev/nymelnlp1

mount the disk
sudo mount /dev/nymelnlp1 /mnt

and check if the hello file is there
cat /mnt/hello.txt

we were able to copy the disk image to the cloud
and we never had to format the cloud disk
this examples copies a filesystem from a local disk
to the cloud disk

| TCSM62/562/50ftware Engineering for) Cloud Computing [Fall 2025]
| School of Engineering and Technology, University of Washington-Tacoms

FOR MORE INFORMATION

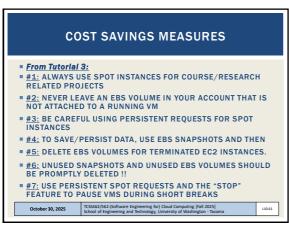
Example script:

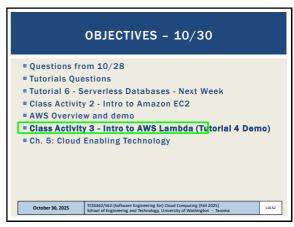
https://faculty.washington.edu/wlloyd/courses/tcss562/examples/copy-disk-to-cloud.sh

URLs:

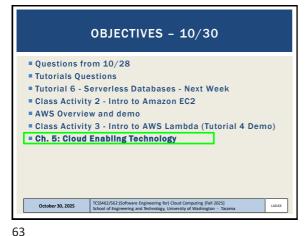
https://help.ubuntu.com/community/Drivelmaging

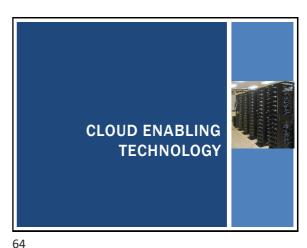
https://help.ubuntu.com/create-virtual-harddisk-volume-in-linux/

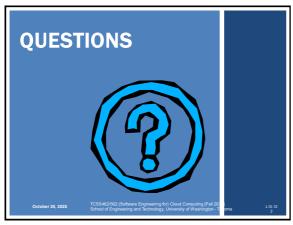

October 30, 2025


ICSS462/S82/Scholure Engineering for) Cloud Computing [Fall 2025]
school of Engineering and Technology, University of Washington - Tacoma

59 60


Slides by Wes J. Lloyd L10.10


56



61 62

03

122

Slides by Wes J. Lloyd L10.11