
Intelligent Optimization of Distributed
Pipeline Execution in Serverless Platforms: A
Predictive Model Approach

Group Members:
- Chris Biju
- Sparsh Jha

TCSS 562 Au 25 (Software Engineering for) Cloud Computing

Motivation

● Serverless pipelines are powerful

● But performance varies wildly

● Hard to tune configurations

● Brute-force testing is expensive

2

Goal of the Paper

Goal:

Predict a pipeline’s execution time without running hundreds of configurations,
using XGBoost → pick optimal setup faster & cheaper.

3

● XGBoost:
○ Builds many small decision trees sequentially; each fixes prior errors.
○ Excellent at learning complex patterns in tabular data with many features.

● Hyperparameter Tuning:
○ The process of automatically searching for optimal model settings (e.g., depth, learning

rate).
○ Strongly impacts model accuracy and performance.

● Feature Engineering:
○ Creating new input variables (e.g., memory-per-file) to expose hidden relationships.

○ Helps ML models learn patterns that raw data alone cannot reveal.

Background

4

What Does This Pipeline Do?

Geospatial water consumption analysis pipeline.

5

Serverless Architecture Overview

● Lithops orchestrates Python functions

● AWS Lambda executes them in parallel

● Highly scalable

6

How Parallel Execution Works

Data is split into chunks and each chunk is processed by Lambda.

7

Design Space Analysis

● The authors ran 148 pipeline executions, systematically varying
memory, splits, storage, input sizes, and various execution parameters.

● This created a broad configuration landscape to understand how each
parameter affects performance.

● DSA provides real ground truth but is expensive, slow, and scales
poorly for large pipelines.

8

Design Space Analysis

9

Why DSA Alone Is Not Enough

● Although DSA reveals true optimal configurations, it requires many full pipeline
runs, making it impractical for frequent tuning.

● Parameter interactions are non-linear and complex; manual tuning cannot
capture these dependencies.

● A predictive model is needed to reduce expensive experimentation while
keeping accuracy.

10

Dataset: Inputs + Engineered Features

● The model uses both raw parameters (memory, splits, data size) and
derived features like memory-per-file, storage-per-GB,
threads-per-worker.

● Feature engineering helps expose hidden relationships in parallel
performance.

● All 148 runs form a dataset capturing diverse real-world scenarios.

11

Dataset: Inputs + Engineered Features

12

Preprocessing & Transformations

● Data was normalized, outliers kept (to help model learn inefficient configs), and
Gaussian noise was injected for generalization.

● Execution time was log-transformed to reduce variance and stabilize
predictions.

● A 70/30 train–test split ensures the model learns patterns without overfitting.

13

Model: XGBoost + Optuna Optimization

● XGBoost was chosen for its ability to capture nonlinear interactions across many numerical
features.

● Optuna performed Bayesian hyperparameter tuning to find optimal depth, learning rate,
regularization, and subsampling.

● This combination yields a robust, high-accuracy predictor even with a relatively small dataset.

14

Model: XGBoost + Optuna Optimization

15

Model Performance: Accuracy Gains

● XGBoost significantly outperformed baseline models:
○ 75.34% lower MAE than the average baseline
○ ~69% improvement over linear & PCA-based regression

● The model captures complex non-linear interactions that linear and PCA-based
regression fail to capture.

16

Predicting Optimal Configurations

● Using the trained model, the authors predicted
execution time for unseen configurations.

● Results showed optimal performance at 5 splits and
2048 MB memory, aligning with intuition yet
discovered automatically.

● This allows fast identification of ideal parameters
without rerunning the full pipeline.

17

Cost Analysis: Real Savings

● The best configuration reduces execution time by up to 79.9% and runtime cost
by ~20%.

● Savings accumulate across repeated runs, making predictive tuning worthwhile.
● With a training cost of $38.75, break-even occurs after ~562 executions (~2

months at 10 runs/day).

18

Long-Term Cost Accumulation

● Because many pipelines run daily or hourly, small per-run savings translate into
large long-term gains.

● The model effectively reduces experimentation overhead by ~30%.
● This makes it viable for enterprise-scale workloads and recurring analysis

pipelines.

19

Real vs Predicted Fit

● Predictions closely match real execution
times, demonstrating strong generalization.

● The model successfully identifies
near-optimal configurations it has never
directly observed.

● Residual patterns indicate low bias and
effective learning of non-linear patterns.

20

Residual Analysis

● Residuals from XGBoost are
centered near zero with significantly
lower spread than linear models.

● This indicates the model captures
important interactions missing from
simpler methods.

● The residual distribution validates
the reliability of predictions for
decision-making.

21

Highlights

● Predicts optimal configurations without full DSA

● Cuts execution time by up to 79.9% (compared to Full DSA), cost by ~30%

● Reduces number of required experiments by 30%

● Provides a multi-parameter optimization solution applicable across AWS, Azure,
& GCP via Lithops

22

Critique: Strengths

● Strong Practical Relevance
○ Based on a real geospatial water-consumption pipeline.
○ Uses actual distributed serverless execution (Lithops + AWS Lambda).

● Thoughtful Feature Engineering
○ Attempts to capture complex interactions between memory, storage,

vCPUs, and data size.
● Transparent and Comprehensive Evaluation

○ Includes model comparisons (baselines vs XGBoost) and multiple
diagnostic plots.

○ Honest reporting of negative results (CTGAN, ensembles, feature
selection).

23

Critique: Weaknesses
● Performance Variability Limitations

○ Only 1 observation performed per execution; performance varies in
serverless for the same config.

● Narrow Design Space
○ Does not address what percentage of DSA their 148 executions cover.
○ Not representative of the full Lambda configuration spectrum.

● Evaluation Weaknesses
○ Test configurations similar to training ones
○ No variance analysis, or confidence intervals

● Overstated Claims & Cost Analysis Issues
○ “79.9% improvement” compares best vs worst config; not realistic.
○ Cost savings do not account for cold starts, S3 costs, or repeated runs.
○ Claims of “universal applicability” unsupported by cross-pipeline tests.

24

Future Work

● Strengthen Statistical Rigor
○ Incorporate multiple runs per configuration to capture serverless variance.
○ Add confidence intervals, variance estimates, and significance tests to

improve reliability.
○ Model noisy behavior explicitly (e.g., probabilistic regression).

● Expand Dataset & Design Space
○ Run broader DSA across larger memory ranges, more split values, and

multiple pipelines. (Costly, but necessary on pipelines with large variability
in parameters)

○ Validate generalization across different workloads and cloud providers
(Azure, Google Cloud).

● Advanced Optimization Approaches
○ Use ensembles (stacking, blending) to reduce model bias and variance.
○ Apply active learning to selectively explore high-impact configurations

with minimal cost. 25

Q&A

26

