Intelligent Optimization of Distributed
Pipeline Execution in Serverless Platforms: A
Predictive Model Approach

Group Members:
- Chris Biju
- Sparsh Jha

TCSS 562 Au 25 (Software Engineering for) Cloud Computing

Motivation

e Serverless pipelines are powerful
e But performance varies wildly
e Hard to tune configurations

e Brute-force testing is expensive

Goal of the Paper

Goal:

Predict a pipeline’s execution time without running hundreds of configurations,
using XGBoost - pick optimal setup faster & cheaper.

Course of an objective function

Local minimum

. ,Global minimum

Background

e XGBoost:
o Builds many small decision trees sequentially; each fixes prior errors.

o Excellent at learning complex patterns in tabular data with many features.
e Hyperparameter Tuning:
o The process of automatically searching for optimal model settings (e.g., depth, learning
rate).
o Strongly impacts model accuracy and performance.
e Feature Engineering:
o Creating new input variables (e.g., memory-per-file) to expose hidden relationships.

o Helps ML models learn patterns that raw data alone cannot reveal.

What Does This Pipeline Do?

Geospatial water consumption analysis pipeline.

30-yr Normal Precipitation: Annual
Period: 1981.2010

Serverless Architecture Overview

e Lithops orchestrates Python functions
e AWS Lambda executes them in parallel

e Highly scalable

How Parallel Execution Works
Data is split into chunks and each chunk is processed by Lambda.

(k,v) (k' v) (k' v) (k,v[]) v

Blockl <« Map

Block2 |« Map \ SORT
\ COMBINER AND REDUCE Output
7

—> —>
Block3 SHUFFLE

—> Map

Block4 «—> Map

Design Space Analysis

e The authors ran 148 pipeline executions, systematically varying
memory, splits, storage, input sizes, and various execution parameters.

e This created a broad configuration landscape to understand how each
parameter affects performance.

e DSA provides real ground truth but is expensive, slow, and scales
poorly for large pipelines.

Design Space Analysis

Parameters Adjusted During the DSA.

e Splits: Range of 2 to 6, to balance parallelism. More than 6
adds unnecessary overhead, while fewer than 2 limits effi-
ciency.

e Allocated Memory: 1,024 MB to 3,008 MB (maximum in
Lithops). Less than 1,024 MB was insufficient for the data
used, leading to suboptimal performance.

e Ephemeral Storage: 512 MB to 8,192 MB, varied to support
different temporary storage needs.

e vCPUs: Indirectly set by allocated memory in AWS Lambda
(0.85 to 1.61 vCPUs). Not directly controlled, but adjusted
automatically based on memory.

e Input Files and Size: Configurations with 5 or 15 files, ranging
from 0.25 to 1 GB, based on a real-world use case analyzing
water consumption in Murcia.

Why DSA Alone Is Not Enough

e Although DSA reveals true optimal configurations, it requires many full pipeline
runs, making it impractical for frequent tuning.

e Parameter interactions are non-linear and complex; manual tuning cannot
capture these dependencies.

e A predictive model is needed to reduce expensive experimentation while
keeping accuracy.

Dataset: Inputs + Engineered Features

e The model uses both raw parameters (memory, splits, data size) and
derived features like memory-per-file, storage-per-GB,
threads-per-worker.

e Feature engineering helps expose hidden relationships in parallel
performance.

e All148 runs form a dataset capturing diverse real-world scenarios.

Dataset: Inputs + Engineered Features

Table 2: Derived Parameters from Feature Engineering

Derived Parameter

Description

memory_per_file
storage_per_file
vcpus_per_file
files_per_vcpu
size_per_file
memory_per_gb
vcpus_per_gb
storage_per_gb
threads_per_worker
memory_per_thread
vcpus_per_thread

memory_per_thread_vcpus_ratio

Memory allocated per file processed (MB)
Temporary storage per file (MB)

vCPUs allocated per file

Number of files processed per vCPU

Size of each file (GB)

Memory allocated per GB of input size
vCPUs allocated per GB of input size
Temporary storage per GB of input size (MB
Threads running per worker process
Memory allocated per thread (MB)
vCPUs allocated per thread

Ratio of memory to vCPUs per thread

Preprocessing & Transformations

e Data was normalized, outliers kept (to help model learn inefficient configs), and
Gaussian noise was injected for generalization.

e Execution time was log-transformed to reduce variance and stabilize
predictions.

e A70/30 train-test split ensures the model learns patterns without overfitting.

Model: XGBoost + Optuna Optimization

e XGBoost was chosen for its ability to capture nonlinear interactions across many numerical
features.

e Optuna performed Bayesian hyperparameter tuning to find optimal depth, learning rate,
regularization, and subsampling.

e This combination yields a robust, high-accuracy predictor even with a relatively small dataset.

Model: XGBoost + Optuna Optimization

Table 3: Best Hyperparameters Found Using Optuna

Hyperparameter Value
Max Depth 4
Learning Rate 0.005193]
Number of Estimators 2268
Subsample 0.7467
Colsample by Tree 0.9654
Gamma 0.0101
L1 Regularization (Reg_Alpha) | 0.0914
L2 Regularization (Reg_Lambda) 0.1549

Model Performance: Accuracy Gains

e XGBoost significantly outperformed baseline models:
o 75.34% lower MAE than the average baseline
o ~69% improvement over linear & PCA-based regression

e The model captures complex non-linear interactions that linear and PCA-based
regression fail to capture.
MAE Comparison Across Models

—_ L

; 100
50 - —
é 0 | |

t y :
XG%(:J‘;Zline (Avercggzeli%z glli':neea(rf)’c A + Linea?)

Figure 3: Mean Absolute Error (MAE) comparison across mod-
els.

Predicting Optimal Configurations

e Using the trained model, the authors predicted -
execution time for unseen configurations. Py
e Results showed optimal performance at 5 splits and E 210 '
2048 MB memory, aligning with intuition yet g 15 9\9\9’—_—@
discovered automatically. ‘g l , .
e This allows fast identification of ideal parameters & 1,024 1,536 2,048 2,560
without rerunning the full pipeline. = Runtime Memory (MB)
= Figure 2: Predicted execution times for different memory
g _ allocations.
= 200 [\L\’&/]
ERU]: :
[]] | |
g 3 4 5 6
= Number of Splits

Figure 1: Predicted execution times for different splits.

Cost Analysis: Real Savings

by ~20%.

months at 10 runs/day).

The best configuration reduces execution time by up to 79.9% and runtime cost

Savings accumulate across repeated runs, making predictive tuning worthwhile.
With a training cost of $38.75, break-even occurs after ~562 executions (~2

Table 7: Configuration Comparison: Minimum vs. Maximum

Duration and Costs

arameter

Minimum Duration|

Maximum Duration)

umber of Files

5

5

Splits

5

2

nput Size (GB)

0.25

0.25

untime Memory (MB)

2000

1024

Ephemeral Storage (MB)

1024

1024

vCPUs

1.13

0.58

uration (s)

184.08

915.89

Cost per Execution (USD

0.281

0.350

Cost Difference (USD)

0.069

Long-Term Cost Accumulation

e Because many pipelines run daily or hourly, small per-run savings translate into
large long-term gains.

e The model effectively reduces experimentation overhead by ~30%.

e This makes it viable for enterprise-scale workloads and recurring analysis

pipelines.

—@— Total Savings

T

Break-even

Point
Y | |
0 6 12 18 24

Time (Months)

Total Savings (USD)
=00 O

Figure 4: Projected cost savings over time, assuming 10 execu-
tions per day. The break-even point occurs at approximately
2 months.

WoSC10 ’24, December 2-6, 2024, Hong Kong, Hong Kong

Real vs Predicted Fit

Actual vs Predicted Duration: XGBoost vs Linear Regression vs PCA + Linear Regression

® XGBoost Predictions
Linear Regression Predictions
PCA + Linear Regression Predictions
N s
800 === 1deal Fit i .

e Predictions closely match real execution
times, demonstrating strong generalization.

e The model successfully identifies
near-optimal configurations it has never

900

@
=3
S

Predicted Duration
w
=3
5

directly observed. - al
e Residual patterns indicate low bias and)
effective learning of non-linear patterns. rRRe ;

4(’)0 SESmBI Duratiiéﬂo 7(‘]0 8(’)0 960
Figure 8: Comparison of actual vs. predicted duration for
various models, highlighting the performance of XGBoost

against simpler regression methods.

Residual Analysis

e Residuals from XGBoost are
centered near zero with significantly
lower spread than linear models. : 7

e Thisindicates the model captures : 1 — - i —
important interactions missing from i
simpler methods.

e The residual distribution validates
the reliability of predictions for
decision-making. Figure 6: Residual comparison across models: XGBoost dis-

plays symmetric residuals around zero, suggesting higher
accuracy and lower bias.

Highlights

Predicts optimal configurations without full DSA
e (Cuts execution time by up to 79.9% (compared to Full DSA), cost by ~30%
e Reduces number of required experiments by 30%

e Provides a multi-parameter optimization solution applicable across AWS, Azure,
& GCP via Lithops

Critique: Strengths

e Strong Practical Relevance
o Based on a real geospatial water-consumption pipeline.
o Uses actual distributed serverless execution (Lithops + AWS Lambda).
e Thoughtful Feature Engineering
o Attempts to capture complex interactions between memory, storage,
vCPUs, and data size.
e Transparent and Comprehensive Evaluation
o Includes model comparisons (baselines vs XGBoost) and multiple
diagnostic plots.
o Honest reporting of negative results (CTGAN, ensembles, feature
selection).

Critique: Weaknesses

e Performance Variability Limitations
o Only 1observation performed per execution; performance varies in
serverless for the same config.
e Narrow Design Space
o Does not address what percentage of DSA their 148 executions cover.
o Not representative of the full Lambda configuration spectrum.
e Evaluation Weaknesses
o Test configurations similar to training ones
o No variance analysis, or confidence intervals
e Overstated Claims & Cost Analysis Issues
o “79.9% improvement” compares best vs worst config; not realistic.
o Cost savings do not account for cold starts, S3 costs, or repeated runs.
o Claims of “universal applicability” unsupported by cross-pipeline tests.

Future Work

e Strengthen Statistical Rigor
o Incorporate multiple runs per configuration to capture serverless variance.
o Add confidence intervals, variance estimates, and significance tests to
improve reliability.
o Model noisy behavior explicitly (e.g., probabilistic regression).
e Expand Dataset & Design Space
o Run broader DSA across larger memory ranges, more split values, and
multiple pipelines. (Costly, but necessary on pipelines with large variability
in parameters)
o Validate generalization across different workloads and cloud providers
(Azure, Google Cloud).
e Advanced Optimization Approaches
o Use ensembles (stacking, blending) to reduce model bias and variance.
o Apply active learning to selectively explore high-impact configurations
with minimal cost.

Q&A

