
Serverless Replication of
Object Storage across
Multi-Vendor Clouds and
Regions Accepted to: EuroSys '26

Team 4: Xiaoling Wei, Bohan Xiong, Xu Zhu

Paper Authors: Junyi Shu et al. (Peking University)

1

➢ Introduction & Problem Statement
➢ Background & Related Work

○ Limitations of existing VM-based solutions
➢ 𝜆Replica System Design

○ Distribution-aware performance modeling
○ Decentralized part-granularity scheduling

➢ Key Contributions
○ Performance gains and cost reductions

➢ Experimental Evaluation
○ Delay, Cost, and Real-world Traces

➢ Conclusion & Critique
○ Strengths, Weaknesses, and Future Work

Talk Outline

2

● Object Storage is ubiquitous:
○ Dominates Data: 80-90% enterprise data (unstructured).

● Why Replicate?
○ Reliability: Survive regional outages.
○ Performance: Low latency for global users.

● Current Limitation:
○ Vendor Lock-in: Native tools lack cross-cloud support.

Introduction: Cross-Cloud Data Replication

3

● Current Approach:
○ Relies on Virtual Machines (e.g.,

Skyplane).
● Pain Point 1: High Latency

○ Slow Provisioning: VM startup takes
tens of seconds.

○ Impact: High delays for small objects or
bursty traffic.

● Pain Point 2: Cost Inefficiency
○ Billing Granularity: Minimum billable

duration (e.g., 1 min).
○ Impact: Wasteful for short-duration

tasks.

Problem: Limitations of VM-based Solutions

4

● Proposed Solution: Cloud Functions
○ Fast: Millisecond-level startup (vs. tens of

seconds for VMs). Elastic: Scales instantly to
thousands of instances. Cost-Effective:
Fine-grained billing (pay-per-ms).

Serverless & New Challenges
➔ Challenge 1: Performance

Asymmetry (Cloud-level)
◆ Bandwidth varies significantly

across different clouds/regions.
Key Insight: Not all links are
equal.

➔ Challenge 2: Performance
Variability (Instance-level)

◆ “Straggler” Problem:
Performance varies randomly
among instances. Result: One
slow function can delay the
whole transfer.

5

Background: Limitations of Existing
Approaches

VM-based Intercloud Brokers
- Approach: Orchestrates VMs

to move data and compute
across clouds.

- Critical Weakness:
- Slow Provisioning: “Typical

provisioning time of several
minutes” [1]

- Inefficient: Overkill for
small objects or bursty
transfers.

Cloud-Native Services (e.g., S3
Replication)
- Vendor Lock-in: No incentives

for cross-cloud support.
- High Cost: Requires object

versioning enabled (doubles
storage cost).

Reference: [1] SkyPilot: An Intercloud
Broker for Sky Computing (Yang et al.,
NSDI '23).

Acknowledgement: Generative AI (Gemini) was used to assist with paper summarization. 6

Why Serverless? The Unexplored Gap

The solution: 𝜆Replica

First system to harness
Serverless for robust,
high-performance
cross-cloud replication.

 The potential of Serverless

● Instant Startup:
Milliseconds vs. Minutes
(VMs).

● Cost-Efficiency:
Pay-per-use billing
eliminates idle costs.

The Gap

● Technical Hurdle: Extreme
performance variability
makes reliable replication
difficult.

● Limitation: Functions are
stateless and cannot
directly address each
other.

7

Offline Phase:
- Performance Profiler: Profiles

cloud/region pairs to build a
distribution-aware performance model.

Online Phase (Runtime):
- Strategy Planner: Generates an SLO-

compliant plan before replication starts.
- Replication Engine: Executes the plan

using decentralized part-granularity
scheduling to handle variability.

System Overview: 𝜆Replica
Architecture

(Shared State Store, e.g., DynamoDB)

8

Goal: Find the cheapest plan (Region + Concurrency) that meets the SLO.
Modeling Uncertainty:
- Traditional models use averages (Static).
- 𝜆Replica models execution time as probability distribution (Normal /

Gumbel) to capture variability.
Prediction Logic:
- Calculates replication Time() for different parallelism levels ().
- Selects the plan where the estimated tail latency (e.g., p99) User SLO.

The Brain: Distribution-Aware Performance
Model

9

The Challenge:
- Equal distribution fails due to stragglers (slow instances delay everyone).

The Solution:
- Dynamic Assignment: Split object into small parts.
- Shared Pool: Functions autonomously “pull” parts from a shared pool.

Benefit:
- Load Balancing: Fast instances process more parts; slow instances process fewer.
- Minimizes the total end-to-end replication time.

Decentralized Part-Granularity Scheduling

10

Technique 1: Changelog Propagation
- Idea: Propagate operation logs (e.g., COPY, CONCAT) instead of full object data.
- Benefit: Near-zero cost for common operations (avoids unnecessary

replication).
Technique 2: SLO-bounded Batching
- Idea: Aggregate frequent updates into a single transfer if the deadline permits.
- Benefit: Reduces egress cost for “hot” objects without violating SLO.

Further Optimization: Cost Reduction

11

Key Contributions

Significant Performance
& Cost Gains03

● Delay: Reduced by 61%-99% compared to
Skyplane and commercial tools.

● Cost: Reduced by up to 3 orders of magnitude.
● Reliability: Maintained p99.99 delay < 10s on

production traces.

Handling Uncertainty02
● Designed a Distribution-aware Performance

Model for proactive planning.
● Developed Decentralized Part-granularity

Scheduling to mitigate runtime variability.

First Serverless
Replication System01

● Proposed 𝜆Replica, a novel approach replacing
VMs with cloud functions for cross-cloud data
movement.

Acknowledgement: Generative AI (Gemini) was used to assist with paper summarization. 12

Experimental Setup and Evaluation
Goals

Evaluation goals Quantify how much 𝜆Replica reduces replication delay and cost vs existing
solutions

Platforms & deployment
Three major clouds: AWS, Azure, GCP.
𝜆Replica deployed as cloud functions (AWS Lambda: 512 MB – 1 GB, Azure
Functions: minimum 2048 MB, Google Cloud Run: 1024 MB memory, 1–2
vCPUs); metadata stored in serverless NoSQL databases.

Workloads
Synthetic objects with sizes 1 MB, 128 MB, 1 GB, plus a 100 GB bulk
replication scenario
Real-world trace: 1-hour segment of IBM COS production trace with ~0.99M
PUT/DELETE requests

Baselines
Skyplane (open-source VM-based cross-cloud/region replication)
AWS S3 Replication Time Control (S3 RTC) and Azure object replication
(AZ Rep) as proprietary intra-cloud baselines

Metrics
Replication delay: time from completing a PUT to successfully retrieving that
version (or a newer one) at the destination.
Cost: estimated from provider price lists and measured resource usage
(functions, storage, data egress, API calls).

Acknowledgement: GPT was used to assist with analysis the experiment. 13

Main Quantitative Results: Delay & Cost
- 1

Table 1 shows the replication delay and cost of 𝜆Replica from AWS us-east-1 to the other nine
regions.
𝜆Replica outperforms the best baseline in every experiment and reduces the replication delay by
61%-99%.
𝜆Replica also reduces the cost by 28.5%-99.9%. Using 𝜆Replica with underlying Lambda and
DynamoDB is more cost-effective than S3 RTC, providing 28.5%-39.9% cost savings.

14

Main Quantitative Results: Delay & Cost -
2

Bulk replication results - the replication time
and cost of λReplica and Skyplane for
replicating a 100 GB object

● The notification delay is not included in these experiments
● Skyplane still suffers from the non-negligible VM

provisioning time. When multiple VMs are used and one
starts slowly, the others must wait, increasing replication
time and cost.

● λReplica can replicate the 100GB object in a minute,
reducing the replication time by 76%-91%.

● λReplica does not reduce the cost significantly compared
to Skyplane because the fixed data egress cost dominates
for large objects

● For 100GB objects, 𝜆Replica uses 128-512 function
instances to replicate between the reported region pairs

15

Ablation Studies and Real-World
Evaluation

● Compared to fair, equal-part dispatching,
λReplica’s decentralized scheduling lets
faster instances process more chunks and
slower ones process fewer or none.

● This balances completion times across
functions and significantly reduces tail
latency for large objects.

Impact of decentralized part-granularity scheduling Effectiveness of dynamic region selection

● Neither statically using the source
region nor the destination region can
provide optimal performance.

● Dynamically selecting where to
execute the functions can significantly
reduce the replication time.

16

Ablation Studies and Real-World Evaluation -
2

● Experimental Setup: 1) Object size: 100 MB, 2)
Update frequency: 5, 10, 50, 100 updates/min,
3) SLO: 30 second

● SLO attainment is nearly 100% in all cases
● The real benefit of batching is dramatic cost

reduction under high update rates

Effectiveness of SLO-bounded batching Real-World Object Storage Trace

● S3 RTC’s replication time is typically around 20
seconds, but its p99.99 delay exceeds 30 seconds during
traffic bursts.

● 𝜆Replica ’s elasticity and adaptivity keeps the p99.99
replication time under 10 seconds for the entire period,
despite dynamic bursts and varying object sizes.

17

Conclusions and Takeaways

λReplica summary A serverless, platform-independent system for replicating objects across
multiple clouds and regions.

Key design ideas
Uses a distribution-aware performance model, decentralized
part-granularity scheduling, and changelog propagation with
SLO-bounded batching to plan replication under user-specified SLOs.

Experimental
conclusions

Across AWS, Azure, and GCP, λReplica reduces replication delay by about
61–99% and achieves significant cost savings (up to orders of
magnitude) compared to VM-based and provider-native baselines.

Real-world impact On a one-hour IBM COS production trace with ~1M updates, λReplica keeps
p99.99 replication delay under ≈10 seconds, even during bursty traffic.

Take-home message
Serverless functions can be an effective building block for fast,
SLO-aware, and cost-efficient multi-cloud object replication, enabling use
cases such as global model distribution and geo-distributed applications.

18

Massive Performance Improvement
> λReplica outperforms existing solutions and proprietary cloud services, reducing replication delay by 61%–99%.
> This far exceeds the "10% improvement" benchmark, offering near-synchronous speeds.
> Maintains p99.99 replication delay below 10 seconds even on production traces with bursty traffic.

Significant Cost Reduction
> Achieves cost savings of up to three orders of magnitude compared to VM-based solutions.
> Leverages the millisecond-level billing of serverless functions to eliminate idle resource costs.

Scalability & Elasticity
> Exploits serverless elasticity to handle transient bursts instantly without the provisioning time required for VMs.
> Performance scales nearly linearly with the number of function workers.

Algorithmic Innovation
> Decentralized Part-Granularity Scheduling: Effectively mitigates the "straggler" problem inherent in

serverless instances by allowing faster instances to steal work from a shared pool.

Critique: Strengths

Acknowledgement: Generative AI (Gemini) was used to assist with paper summarization. 19

Consistency Model Limitations
> The system guarantees Eventual Consistency, aligning with the standard adopted by major cloud providers for

cross-region replication.
> Implementing strong consistency across multi-vendor clouds is largely practically infeasible due to high WAN

latency; attempting to do so would negate the performance and cost benefits of the serverless architecture.

Implementation Complexity & Dependencies
> Requires managing external state in cloud databases to handle locking and coordination, which adds

architectural complexity compared to simple point-to-point transfers.
> Relies on offline profiling to train performance models when onboarding new regions, rather than being fully

self-adapting online immediately.

Platform-Specific Constraints
> Cost Effectiveness Variability: While highly efficient on AWS, the cost benefits are less pronounced on GCP

due to higher pricing for Cloud Run and Firestore.
> Resource Quotas: Users are still bound by cloud provider concurrency limits, potentially requiring manual

quota increases for massive workloads.

Critique: Weaknesses

20

Comprehensive & Reproducible
> Baselines: Compared against the state-of-the-art open-source solution

(Skyplane) and commercial proprietary tools (AWS S3 RTC, Azure
Object Replication).

> Environments: Evaluated across three major cloud providers (AWS,
Azure, GCP) and multiple geographic regions.

> Reproducibility: The prototype code is open-sourced, allowing verification
of results.

Critique: Evaluation

21

Strong Consistency in Serverless
Gap: The current approach relies on eventual consistency. Solving strong consistency efficiently in a
stateless, serverless environment without high latency penalties remains an open challenge.

Handling Extreme Contention
Gap: The concurrency control relies on an abort-and-retry mechanism.

Fully Online Adaptation
Future Work: Eliminating the need for offline profiling to onboard new clouds. A fully
zero-configuration, online learning model would improve usability.

Cross-Cloud Cost Parity
Limitation: The cost savings are uneven across vendors. Future research could explore "Cloud-Arbitrage"
scheduling to route data through cheaper intermediate hops to normalize costs.

Identify GAPS

22

Q&A Session

Questions

23

(Skipped slides) Raw materials

24

The potential of Serverless
- Instant Startup: Milliseconds vs. Minutes (VMs).
- Cost-Efficiency: Pay-per-use billing eliminates

idle costs.
Why hasn’t it been done? (The Gap)
- Technical Hurdle: Extreme performance

variability makes reliable replication difficult.
- Limitation: Functions are stateless and cannot

directly address each other.
Our Approach: 𝜆Replica
- First system to harness Serverless for robust,

high-performance cross-cloud replication.

Why Serverless? The Unexplored Gap

25

Key Contributions

First Serverless
Replication System

Proposed 𝜆Replica, a novel
approach replacing VMs with

cloud functions for
cross-cloud data movement.

Handling Uncertainty
- Designed a Distribution-aware
Performance Model for proactive
planning.
- Developed Decentralized
Part-granularity Scheduling to
mitigate runtime variability.

Significant Performance &
Cost Gains
- Delay: Reduced by 61%-99%
compared to Skyplane and
commercial tools.
- Cost: Reduced by up to 3 orders of
magnitude.
- Reliability: Maintained p99.99
delay < 10s on production traces.

03

01 02

26

Key Contributions

First Serverless
Replication System

- Proposed 𝜆Replica, a novel approach replacing VMs with
cloud functions for cross-cloud data movement.

Handling Uncertainty

- Designed a Distribution-aware Performance Model for
proactive planning.
- Developed Decentralized Part-granularity Scheduling to
mitigate runtime variability.

Significant Performance &
Cost Gains

- Delay: Reduced by 61%-99% compared to Skyplane and
commercial tools.
- Cost: Reduced by up to 3 orders of magnitude.
- Reliability: Maintained p99.99 delay < 10s on production
traces.

27

