Sky Computing for Serverless:
Infrastructure Assessment to Support
Performance Enhancement

Robert Cordingly, Xinghan Chen, Ling-Hong Hung, Wes Lloyd
rcording@uw.edu

School of Engineering and Technology
University of Washington Tacoma

IEEE/ACM 18th International Conference on Utility and Cloud
Computing (UCC 25) December 1-4, 2025, Nantes France

1

Background and Motivation

),

DigitalOcean Serverless function-as-a-service

(FaaS) platforms offer many
desirable features:

What iS Rapid elastic scaling
Serverless? Scale to zero

No infrastructure management
Fine grained billing
Fault tolerance

/ \ No up front cost to deploy an

f application

How FaaS

Clients make requests to the

Platforms wOrk Faa$ platform which manage

the infrastructure automatically

FaaS platforms create and
execute users code inside
environments known as
function instances

Function instances can be
hosted on a variety of different
kinds of hardware

Client FaaS Function
Platform Instance

Automatic Scaling

As more requests are made, the
FaaS platform scales the
number of function instances

Request

=y

Function instances for one
function can be spread across
many host servers

: FaaS Function
Clients)
Function Instances

Inconsistent
Performance

Heterogeneous hardware leads
to some hosts being faster than
others

Since FaaS platforms bill based
off runtime, slower hosts
perform worse and are more
expensive

: FaaS Function
Clients)
Function Instances

Request Routing

If we were able to observe all of
the available infrastructure of
serverless regions, we could
route requests to regions with
more favorable infrastructure

Our previous work built a
pserverless sky proxy system to
route requests around the
world (IC2E 2023)

. The Sky sits above the clouds
What IS Sky Consists of compatibility layers
.) allowing aggregation of
Com pUtI ng . resources between cloud

regions, availability zones, or
cloud providers

Goals for Serverless Sky Computing:

e Allow applications to take
advantage of resources of
multiple regions and cloud
providers

Improve performance and
reduce costs of FaaS
applications

Lowest Carbon
Emissions

Lowest
Runtime

Lowest
Latency

Lowest Carbon
Emissions
£

Lowest
Runtime

Lowest Carbon
Emissions

Lowest
Runtime

Lowest
Latency

Research Questions

13

Research Questions

g > e RQ-1 (Infrastructure Variation): What CPU variations can be
NS observed on Faa$S platforms across different zones and regions?
How does it change over time?

RQ-2 (Infrastructure Characterization): How many samples are
required to accurately infer the hardware pool? How can we
balance the cost versus accuracy?

@

\ /> e RQ-3(Performance Optimization): To what extent are runtime
and cost improvements possible by targeting specific instructure?

14

Serverless Infrastructure

Observation

Usin

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework
to collect various metrics about the infrastructure and
platform serverless functions are hosted with.

SAAF collected CPU Timing metrics, latency information,
hardware specifications, runtime metrics, and more.

We utilize CPU metrics from SAAF to characterize function
instances and observe details about the host infrastructure.

16

Observing
Infrastructure

Requests

—————1
q

Creating Function
Instances

Poll 1

Poll 2

Requests

Poll 3 Requests

Requests

We deployed “Hello World”
sleep functions with SAAF that
collect CPU information

We then make parallel requests
to view available infrastructure
for afunction

With SAAF’s data we build a
characterization of the pool of
available infrastructure

But this method is limited...

To observe as much infrastructure
as possible we need to create
many function instances

FaaS platforms limit the number of

concurrent executions
(1000 on AWS Lambda)

By utilizing many function
deployments, we can create more
function instances than the
concurrency limit

With this we can build accurate
characterizations of available
CPUs in availability zones (AZs)

Methodology and Results

19

RQ-1 (Part 1): What CPU
variations can be observed on
Faa$S platforms across
different zones and regions?

20

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

N
E
Q
S
4
o
®
L
<]
w
w
Q
5]
<)
2
o
]
~
©
|
@
b1
@
o
w
@
o
~
24
=
]
2
=
=
o

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

M Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

103-0p

04s-0p

2JAu-op
YInos-sn-wq|
15e-sNn-LWq|
103-df-waqy
eso-d(-wq|

qb-na-wql

$2-Na-wq|
ap-na-wq!
103-23-W(q|
oes-iq-wq|
pAs-ne-wq|

T-lesjuad-|i-sme

p-1seayinos-de-sme

I Z-Ynos-na-sme

II Z-yinos-de-sme

£-1seayinos-de-sme

I -

- Z-1sea-sn-sme

T-|eJjuad-na-sme
I-. T-)3seayjnos-de-sme

I T-)SB9-SN-SME
o o o o o
@ © < «

Cloud Region

o
(=]

(%) ebejusdiad uonnguisia Ndd

21

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

B Intel(R) Cascade Lake Processor @ 2.40GHz

M Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

103-0p

0Js-op
2JAu-op
YInos-sn-wq|
15e9-sN-LWq|
103-df-waqy
eso-d(-wq|

qb-na-wql

$9-na-wq|
ap-na-wq!
103-82-Wq)

oes-1g-wq|

| |I|IlI|||i|

T-lesjuad-|i-sme

p-1seayinos-de-sme

Z-|eljuad-na-sme

e

[e

B[peee——
I T-1SE9-SN-SMe

(=] o o o o

el © < (]

(%) ebejusdiad uonnglisia Ndd

(=]

Cloud Region

22

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

B Intel(R) Cascade Lake Processor @ 2.40GHz

M Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

=
Y3nos-sn-wiq|

l eso-d(-wq|

qb-na-wql

ap-na-wq!

oes-1g-wq|

pAs-ne-wq|

R - -
I-. T-jseayinos-de-sme

I T-)SB9-SN-SME
o o o o o
@ © < «

Cloud Region

o
(=]

(%) ebejusdiad uonnguisia Ndd

23

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

N
E
Q
S
4
o
®
L
<]
w
w
Q
5]
<)
2
o
]
~
©
|
@
b1
@
o
w
@
o
~
24
=1
]
2
=
=
o

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

B Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

103-0p
04s-0p

2JAu-op

q!

3sed-sn-wq|
03-df-wqt
eso-d(-wq|
qb-na-wql
$2-Na-wq|
ap-na-wq!
103-23-W(q|
oes-iq-wq|
pAs-ne-wq|

T-lesjuad-|i-sme

p-1seayinos-de-sme

I Z-Ynos-na-sme

II Z-ynos-de-sme

£-1seayinos-de-sme

I -

- Z-1sea-sn-sme

T-|eJjuad-na-sme
I-. T-)3seayjnos-de-sme

I T-)SB9-SN-SMB
o o o o o
@ © < «

c
]
o
Q
o
-]
=
o
o

o
o

(%) ebejusdiad uonnglisia Ndd

24

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

B Intel(R) Cascade Lake Processor @ 2.40GHz

M Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

103-0p

0Js-op
2JAu-op
YInos-sn-wq|
15e-sNn-LWq|
103-df-waqy
eso-d(-wq|

qb-na-wql

$9-na-wq|
ap-na-wq!
103-e2-Wq)

oes-1g-wq|

| |I|IlI|||i|

T-lesjuad-|i-sme

p-1seayinos-de-sme

Z-|eljuad-na-sme

-

[e

B[peee——
I T-1SE9-SN-SMe

(=] o o o o

el © < (]

(%) ebejusdiad uonnglisia Ndd

o

Cloud Region

25

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

N
E
Q
S
4
o
®
L
<]
w
w
Q
5]
<)
2
o
]
~
©
|
@
b1
@
o
w
@
o
~
24
=
]
2
=
=
o

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

M Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

26

103-0p

0Js-op
2JAu-op
YInos-sn-wq|
15e9-sN-LWq|
103-df-waqy
eso-d(-wq|

qb-na-wql

$2-Na-wq|
ap-na-wq!
103-23-W(q|
oes-iq-wq|
pAs-ne-wq|

T-lesjuad-|i-sme

p-1seayinos-de-sme

I Z-Ynos-na-sme

II Z-ynos-de-sme

£-1seayinos-de-sme

I -

- Z-1sea-sn-sme

T-|eJjuad-na-sme
I-. T-)3seayjnos-de-sme

I T-)SB9-SN-SMB
o o o o o
@ © < «

c
]
o
Q
o
-]
=
o
o

o
o

(%) ebejusdiad uonnglisia Ndd

Intel(R) Cascade Lake Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.70GHz

B Intel(R) Cascade Lake Processor @ 2.40GHz

M Intel(R) Xeon(R) Processor @ 2.60GHz
B Intel(R) Xeon(R) Processor @ 3.00GHz

AMD EPYC
B Intel(R) Xeon(R) Processor @ 2.50GHz

B Intel(R) Xeon(R) Processor @ 2.90GHz

103-0p

0Js-op
2JAu-op
YInos-sn-wq|
15e9-5N-LWq|
103-df-waqy
eso-d(-wq|

qb-na-wql

$9-na-wq|
ap-na-wq!
103-e2-Wq)

oes-1g-wq|

pAs-ne-wq|

R - -

— T-yanos-de-sme ?

T-|edjuso-na-sme
T-1seaypou-de-sme
I-. T-jseayinos-de-sme
I T-1SE9-SN-SMe
3 g K] °

(%) ebejusdiad uonnguisia Ndd

o o
s3]

0

Cloud Region

27

Errors

Function Instances

100

(%) suoned0AU] pajied

o (=] o o
(e 0] O < (|
5
(=1
NS
)
—
L
[Tp]
[e))
5
(=8
~
1)
-
LL
o))
N
(o]
5
o
w
—
L
o =
3 |2
L5 ~
)
=
(T
o))
[e0)
@ =
o
o
w
—
L
™M
[e))
[e0)
4 s ¢ 25 2
Tp] o Tp] o LN
o o = —

SodoUue]lsul uoliljdund p=AIasqQ

o

50

30 40
Sequential Infrastructure Sampling Polls

20

10

o

28

Observed Function Instances

Observed Function Instances

25k

20k

15k

10k

5k

25k

20k

15k

10k

5k

Function Instances Errors Errors on 2nd AWS Account

440 FIs/poll
889 FIs/poll 95 FIs/poll
259 FIs/poll
|893 FIs/poII|
Switched
Accounts
10 20 30 40 50

Sequential Infrastructure Sampling Polls

Function Instances Errors Errors on 2nd AWS Account

440 FIs/poll

89 FIs/poI 95 FIs/poll
259 FIs/poll
|893 FIs/poII|

Saturation Point

Switched
Accounts

|

10 20 30 40 50
Sequential Infrastructure Sampling Polls

100

80

60

40

20

100

80

60

40

20

Failed Invocations (%)

29

Failed Invocations (%)

30

San Ity CheCks e To verify this was not a simple rate

. o
Function Instances Errors Errors on 2nd AWS Account | | m |t We:

o used separate AWS accounts with:

N
ul
~

c 0 & m different email addresses
2 20k e m different payment methods
= < : .
5 = 60 3 m different locations/network
‘g @ S m different deployed functions
= 10k 40 g m different FaaS configurations
2 _ 3 (checksum/RAM)
J4 B * g m different invocation methods:
° o 0 e Function URLs
0 10 20 30 40 50
Sequential Infrastructure Sampling Polls C API Gateway
e AWSCLI
ap-northeast-la —— ap-southeast-2a ca-central-1a —— eu-central-1a

—— eu-north-1a —— sa-east-1a —— us-east-2a —— us-east-2b

25— us-east-2c us-west-1a —— us-west-1b A Saturation Point The on|y simi |ar|ty was functions
g shared an availability zone
w 20
z
c 15 . .
3 Even with all of these tests we still
5 observed these errors
8 5 o
g 0 A A A A&

0 5k 10k 15k 20k 25k 30k 35k

Function Instances Sampled

ap-northeast-la —— ap-southeast-2a ca-central-1a —— eu-central-1a
——— eu-north-1a —— sa-east-1a —— us-east-2a — us-east-2b
— us-east-2c us-west-1a —— us-west-1b A Saturation Point
X
p—
w 20
o
<
c 15
O
)
©
N 10
| -
Q
0
© 5
|
m T —
= - ' v e —— E
O 0 A A A A
0 5k 10k 15k 20k 25k 30k 35k

Function Instances Sampled

32

Characterization APE (%)

Characterization APE (%)

ap-northeast-la —— ap-southeast-2a ca-central-1a —— eu-central-1a

——— eu-north-1a —— sa-east-1a —— us-east-2a — us-east-2b

— us-east-2c us-west-1a —— us-west-1b A Saturation Point

25

Key Points:

20 . Saturation point varied
significantly between
regions

15 For most regions only a
single poll was need to

10 achieve <10% error

5
0 A A A A
0 5k 10k 15k 20k 25k 30k 35k
Function Instances Sampled
33
ap-northeast-la —— ap-southeast-2a ca-central-1a Ranking by Polls:
——— eu-north-1a —— sa-east-1a —— us-east-2a eu-north-1a
—— us-east-2c us-west-1a —— us-west-1b ca-central-1a

us-west-1b
us-west-1a
sa-east-1a
us-east-2¢c
us-west-2a
us-east-2b
ap-northeast-1a
ap-southeast-2a
eu-central-1a

N N
o ul

[
ul

A
~O0OONOORWON =

[y
o

Ul

e

A A I R a A
5k 10k 15k 20k 25k 30k 35k
Function Instances Sampled

o

o

34

RQ-1 (Part 2): How does

characterization accuracy
change over time?

—— 2.5 GHz Error 2.9 GHz Error —— 3.0 GHz Error —— MAPE
3.0 GHz B 2.9GHz 2.5 GHz
100

/N

o

S 80 o 9
S ot
S 60 2
O (T
‘= 10 Y
)

Q40 5
a O
2 S d

0 5 10 15 20

Hour
e Characterization accuracy over 24 hours on us-west-1b

Key Points: rror —— 2.9 GHz Error —— 3.0 GHz Error —— MAPE

. Over 24 hours, B 2.9GHz 2.5 GHz

characterization error
stayed below 10% for

] - [|
—~ 22/24 hours mE g =E
. 2. Error was below 5% for [O . = ™)
hnd 16/24 hours o~
C N’
9 i
B -
) LLI
= \ -
4-, |
B 40 [\ o
(@) [\ O
o | « a
Q. 20 4
o *BZ N BN LA
v 0 5 10
Hour
e Characterization accuracy over 24 hours on us-west-1b 37
ca-central-1a eu-north-1a - sa-east-1a —— us-west-1a —— us-west-1b

(o))
o

ul
o

N
o

N
o

[
o

Absolute Percent Error (%)
w
(=)

38

ca-central-1a eu-north-1a —— sa-east-1la —— us-west-1a —— us-west-1b

Key Points:

Depending on the region, characterizations
remain accurate over multiple days.

2. Age of region or popularity may impact the
distribution of hardware, making
characterizations less accurate over time

(o))
o

ul
o

N
o

Absolute Percent Error (%)
w
(=)

20
10
2 4 6 8 10 12 14
Day
39
ca-central-1a eu-north-1a —— sa-east-la —— us-west-1a —— us-west-1b

(o))
o

ul
o

N
o

N
o

[
o

Accuracy Rank:

. eu-north-1a

. sa-east-1a

. ca-central-1a

. us-west-1a
us-west-1b

Absolute Percent Error (%)
w
(=)

£

RQ-2: How many samples are
required to accurately infer

the hardware pool? How can
we balance the cost versus
accuracy?

1GB FIs 1GB § —— 2GB FIs ===-- 2GB $ 4GB Fls 4GB $
1000 0.06
/_——
/ 0-05

© o
5 g
Cost per Poll ($)

&
o
N

0.01

Unique Function Instances (FIs)

015 0.2 0.25 0.3 0.35 0.4 0.45 02
Sleep Time (s)

42

Unique Function Instances (FIs)

Unique Function Instances (FIs)

1000

/

800

0915

1000

/

800

600

0915

1GB FIs

0.2

1GB FIs

0.2

1GB § =—=2GB FIs === 2GB $ 4GB FIs 4GB $

A

0.25

1GB § =—=2GB FIs === 2GB $ 4GB FIs 4GB $

A

0.25

0.3 0.35 0.4 0.45
Sleep Time (s)

Key Points:

. When sampling infrastructure sleeping for 0.25
seconds allowed us to hit the concurrency limit

while costing under $0.03 a poll
. For later experiments we used 10 GBs memory
settings, resulting in ~$0.04 cost per poll

0.06
0.05
0.04
0.03
0.02

0.01

03

0.06
0.05
0.04

0.03

"°7°0.02

0.01

0.3

Cost per Poll ($)

43

Cost per Poll ($)

44

Samples before Failure

|
o
~
N \

Samples before Failure

ca-central-1a

40k

30k

20k

ca-central-1a

40k

30k

20k

10k//

~1-10 polls

2

4

eu-north-1a —— sa-east-la —— us-west-1a —— us-west-1b

6 8 10 12 14

eu-north-1a —— sa-east-la —— us-west-1a —— us-west-1b

Costs $0.44 to $0.80

Costs $0.04 to $0.40

6 8 10 12 14

45

46

ca-central-1a eu-north-1a —— sa-east-la —— us-west-1a —— us-west-1b

40k
Key Points:
et 1. Polling to the saturation
= point is expensive!
© 30k . How many polls do we
° need for accurate
sc_> characterizations?
U \
L 20k
"))
%— Costs $0.44 to $0.80
= 10kf—"
(0]
1-10polis
2 4 6 8 10 12 14
Day
ca-central-1a eu-north-1a —— sa-east-la —— us-west-1a —— us-west-1b

35
W 30
o
f 25
o~
= 21
\Y
‘5 15
Y
2 10
[e)
o

Sw
0
2 4

6 8 10 12 14
Day

ca-central-1a eu-north-1a —— sa-east-1la —— us-west-1a —— us-west-1b

Key Points:

. For most times, we
needed less than 5 polls

to achieve 90% accuracy
. sa-east-1a had >90%
accuracy with a single
poll
. With less than 5 polls it

only costs $0.20 to
characterize a region

Polls for <10% APE

49

RQ-3: To what extent are
runtime and cost

Improvements possible by
targeting specific instructure?

3. Regional Routing

1. Baseline 2. Retry Method

Workers Workers Workers
Retry Logic Hybrid Approach
1. Retry Slow: Invocations retry Combine both Retries and
on the two slowest CPUs Regional Routing

2. Focus Fastest: Invocations
retry on everything but the

fastest CPU
51

= B Intel @ 2.90GHz WM Intel @ 3.00GHz W AMD EPYC
o
&
qE_) 50
= 40
c
=
& 30
Q
> 20
e
SO 10
&

0
o ry g
o =10
o
> ; : 4
< ?/DOQ/. d/\?é\ " d/s"\ - g/’@ﬁ/) 9/‘60/7 9/’606 /776 (77* 8/79 1\6 9/8170 -/So /7\)7 C@/c\ se 6(//776

"t ite s o P, sy e e, Vieg ",
Ny L, L 7 "Ossy 7er
\D,.o /7/(' /0/7
C@sS

Serverless Functions

e Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda 52

B Intel @ 2.90GHz M Intel @ 3.00GHz M AMD EPYC

w b U
o O o

=
o

Average Relative Runtime (%)
N
o

0
" n 0
-10
< e/ e/ 9r 9, 9r. ’. Sh, s, Gy,
Por IS ry i oy 6'%\/7; 4 %/’\p e s %o, g/s% 2 T Qs 0%/7 ;
Cep % | X %S s, ~ 7y, Sh e, v e, Viee ey
0;,0,.0 M4 slb/?
CGSS
Serverless Functions

e Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda 53

B Intel @ 2.90GHz M Intel @ 3.00GHz M AMD EPYC

50

20
1°|| ||I i

Compared to the 2.5 GHz processor:
1. The 3.0 GHz was 5% to 15% faster SO S5,
2. The 2.9 GHz was 15% to 30% slower)

3. The EPYC processor was the worst, .
up to 50% slower erverless Functions

N
(@)

erage Relative Runtime (%)
o w
(=) o

e Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda 54

B Intel @ 2.90GHz M Intel @ 3.00GHz M AMD EPYC

Compared to the 2.5 GHz processor: X Processor Ranks:
1. The 3.0 GHz was 5% to 15% faster %, ' . Intel 3.0 GHz processor
2. The 2.9 GHz was 15% to 30% slower . Intel 2.5 GHz processor
K}

. The EPYC processor was the worst, | _ . Intel 2.9 GHz processor
up to 50% slower erverless Functions . AMD EPYC processor

)
o
~
()
£
‘S
=
=)
(a'd
G)
>
5
5
(V)
(a4
()
1) I
0
| -
<

e Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda

Retry Methods

56

(00}
ul
o

800

750

Cost for 1M Runs ($)

700

(00}
ul
o

800

750

Cost for 1M Runs ($)

N
o
o

—— zipper + focus fastest —— zipper + retry slow

AMD EPYC Intel @ 2.90GHz
Intel @ 2.50GHz

—— zipper baseline

Intel @ 3.00GHz

|18.5°/lo cheaper|

L1111

0 2 4 6 8

Day (us-west-1b)

—— zipper + focus fastest —— zipper + retry slow

AMD EPYC

Times with less EPYC and

10

Intel @ 2.50GHz CPU Distribution impacts cost.

more 3.0 GHz reduces costs

|18.5°/lo cheaper|

N

0 2 4 6 8

Day (us-west-1b)

10

\/\/

_—

12

—— zipper baseline

Intel @ 3.00GHz

\/\/

_—

12

100

80

60

20

CPU Percent Distribution (%)

CPU Percent Distribution (%)

—— zipper + focus fastest —— zipper + retry slow —— zipper baseline
AMD EPYC Intel @ 2.90GHz Intel @ 3.00GHz
Intel @ 2.50GHz

100
850 :
: Key Points:
1. Focus Fastest achieved
800 a toltal 16.5% cost
: savings
[18.5% cheaper]| . Retry slow yielded a

10.1% cost savings

Cost for 1M Runs ($)

|

e

CPU Percent Distribution (%)

0 2 4 6 8 10 12
Day (us-west-1b)

Region Hopping

—— logistic_regression baseline (fixed region)
logistic_regression + focus fastest + region hopping

us-west-1a | us-west-1b sa-east-1a
0.17
—
A
N’
-
S 0.16
o
o
3
oy 0.5
| -
L
0
o 0.14
©)
e Baseline fixed region of us-west-1b 61
—— logistic_regression baseline (fixed region)
logistic_regression + focus fastest + region hopping
* us-west-1a | us-west-1b sa-east-1a
0.17
—
A
N’
-
S 0.16
o
o
3
oy 0.5
| -
L
0
o 0.14
©)
0 2 4 6 8 10 12
Day

e Baseline fixed region of us-west-1b 62

—— logistic_regression baseline (fixed region)

logistic_regression + focus fastest + region hopping
* us-west-la | us-west-1b sa-east-1a

0.17

—

-

N’

-

5 0.16

(a'd

o

o

oy 0.5

| .

L

%)

o 0.14

O

e Baseline fixed region of us-west-1b 63

—— logistic_regression baseline (fixed region)
logistic_regression + focus fastest + region hopping
¢ us-west-la | us-west-1b sa-east-1a

0.17

—

-

N’

-

5 0.16

(a'd

o

o

oy 0.5

| .

L

%)

o 0.14

O

e Baseline fixed region of us-west-1b 64

logistic_regression baseline (fixed region)
logistic_regression + focus fastest + region hopping

us-west-1a us-west-1b sa-east-1a

0.17
e
i
L Hiie Key Points: ;
5 0. . : :
= Region hopping :
- achieved an overall -
o cost reduction of 13.3% :
O [

0.15 . Only $2.80 was spent m
t on sampling
O infrastructure :
4‘7; H
o 0.14 :
O -

2 4 6 8 10 12
Day

e Baseline fixed region of us-west-1b 65

Conclusions

Key Results

e RQ-1:We were able to observe diverse CPU characterizations across 41
serverless regions

e RQ-1: Our sampling technique appears to be able to saturate entire
availability zones creating accurate hardware characterizations

e RQ-2: Our sampling technique is able to characterize an availability zone
for only $0.04 with 95% accuracy

e RQ-3: The Retry Slow method resulted in a consistent 10.1% reduction
in runtime and cost

e RQ-3:Focus Fastest had up to 18.5% lower costs, averaging 16.5%
across all functions

e RQ-3: Compared to a baseline of running in us-west-1b, the Region
Hopping hybrid approach averaged a cost savings of 10.0% up to 18.2%

67

Future Work

Future Work and Limitations

e Theretry methods sacrifice responsiveness for cost
savings

e Building CPU characterizations for many regions is
expensive

e Inthe future, a complete Serverless Sky Computing
platform could build the CPU characterizations as
workloads run, eliminating the need for dedicated polling

e Instead of relying on individual characterizations, they
could be updated as new functions execute

69

Thank You!

Any Questions?

This research has been supported by the of Washington Carwein-Andrews Distinguished Fellow Fund and AWS Educate Cloud Credits.

