
Sky Computing for Serverless:
Infrastructure Assessment to Support
Performance Enhancement

School of Engineering and Technology
University of Washington Tacoma

IEEE/ACM 18th International Conference on Utility and Cloud
Computing (UCC 25) December 1-4, 2025, Nantes France

Robert Cordingly, Xinghan Chen, Ling-Hong Hung, Wes Lloyd
rcording@uw.edu

1

Background and Motivation

2

What is
Serverless?

Serverless function-as-a-service

(FaaS) platforms offer many

desirable features:

● Rapid elastic scaling

● Scale to zero

● No infrastructure management

● Fine grained billing

● Fault tolerance

● No up front cost to deploy an

application

3

How FaaS
Platforms Work

● Clients make requests to the
FaaS platform which manage
the infrastructure automatically

● FaaS platforms create and
execute users code inside
environments known as
function instances

● Function instances can be
hosted on a variety of different
kinds of hardware

4
Client FaaS

Platform
Function
Instance

Request Execute λ

Automatic Scaling

● As more requests are made, the

FaaS platform scales the

number of function instances

● Function instances for one

function can be spread across

many host servers

5
Clients FaaS

Function
Function
Instances

Request Execute
λ

Request

Request

λ

Execute

λ

λ
λ

λ
Execute

Inconsistent
Performance

● Heterogeneous hardware leads

to some hosts being faster than

others

● Since FaaS platforms bill based

off runtime, slower hosts

perform worse and are more

expensive

6
Clients FaaS

Function
Function
Instances

$$ Medium
λ

$

$$$$

λ

Fast

λ

λ
λ

λ
Slow

Request Routing
● If we were able to observe all of

the available infrastructure of

serverless regions, we could

route requests to regions with

more favorable infrastructure

● Our previous work built a

pserverless sky proxy system to

route requests around the

world (IC2E 2023)

7

Request

Fast

Sl
o

w

What is Sky
Computing?

● The Sky sits above the clouds
● Consists of compatibility layers

allowing aggregation of
resources between cloud
regions, availability zones, or
cloud providers

Goals for Serverless Sky Computing:

● Allow applications to take
advantage of resources of
multiple regions and cloud
providers

● Improve performance and
reduce costs of FaaS
applications

8

9

Close
st

Proxy

Proxy

Proxy

Proxy Proxy

9

10

Lowest
Runtime

Lowest Carbon
Emissions

Lowest
Latency 10

11

Lowest
Runtime

Lowest Carbon
Emissions

Lowest
Latency 11

12

Lowest
Runtime

Lowest Carbon
Emissions

Lowest
Latency 12

Research Questions

13

Research Questions
● RQ-1 (Infrastructure Variation): What CPU variations can be

observed on FaaS platforms across different zones and regions?
How does it change over time?

● RQ-2 (Infrastructure Characterization): How many samples are
required to accurately infer the hardware pool? How can we
balance the cost versus accuracy?

● RQ-3 (Performance Optimization): To what extent are runtime
and cost improvements possible by targeting specific instructure?

14

Serverless Infrastructure
Observation

15

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework

to collect various metrics about the infrastructure and

platform serverless functions are hosted with.

SAAF collected CPU Timing metrics, latency information,

hardware specifications, runtime metrics, and more.

We utilize CPU metrics from SAAF to characterize function

instances and observe details about the host infrastructure.

16

Requests

Observing
Infrastructure ● We deployed “Hello World”

sleep functions with SAAF that
collect CPU information

● We then make parallel requests
to view available infrastructure
for a function

● With SAAF’s data we build a
characterization of the pool of
available infrastructure

● But this method is limited…

17

Requests

Slow

λ

λ

Fast

2.5 GHz
CPU

3.0 GHz
CPU

Function Instance CPUs:
33% 2.5 GHz, 67% 3.0 GHz

Requests

Fast

λ

Poll 3

Poll 2

Poll 1

Creating Function
Instances

● To observe as much infrastructure
as possible we need to create
many function instances

● FaaS platforms limit the number of
concurrent executions
(1000 on AWS Lambda)

● By utilizing many function
deployments, we can create more
function instances than the
concurrency limit

● With this we can build accurate
characterizations of available
CPUs in availability zones (AZs)

18

λ

λ

λ

λ
λ

λ

λ

λ

λ
λ

λ

λ

λ

λ
λ

Requests

Requests

Requests

Creating..

Observed
FIs

Func 1

Func 2

Func 3

Methodology and Results

19

RQ-1 (Part 1): What CPU
variations can be observed on

FaaS platforms across
different zones and regions?

20

21

22

23

24

25

26

27

28

29

30

Saturation Point

Sanity Checks
● To verify this was not a simple rate

limit we:
○ used separate AWS accounts with:

■ different email addresses
■ different payment methods
■ different locations/network
■ different deployed functions
■ different FaaS configurations

(checksum/RAM)
■ different invocation methods:

● Function URLs
● API Gateway
● AWS CLI

● The only similarity was functions
shared an availability zone

● Even with all of these tests we still
observed these errors

31

32

33

Key Points:
1. Saturation point varied

significantly between
regions

2. For most regions only a
single poll was need to
achieve <10% error

34

Ranking by Polls:
1. eu-north-1a
2. ca-central-1a
3. us-west-1b
4. us-west-1a
5. sa-east-1a
6. us-east-2c
7. us-west-2a
8. us-east-2b
9. ap-northeast-1a

10. ap-southeast-2a
11. eu-central-1a

RQ-1 (Part 2): How does
characterization accuracy

change over time?

35

36● Characterization accuracy over 24 hours on us-west-1b

37● Characterization accuracy over 24 hours on us-west-1b

Key Points:
1. Over 24 hours,

characterization error
stayed below 10% for
22/24 hours

2. Error was below 5% for
16/24 hours

38

39

Key Points:
1. Depending on the region, characterizations

remain accurate over multiple days.
2. Age of region or popularity may impact the

distribution of hardware, making
characterizations less accurate over time

40

Accuracy Rank:
1. eu-north-1a
2. sa-east-1a
3. ca-central-1a
4. us-west-1a
5. us-west-1b

RQ-2: How many samples are
required to accurately infer

the hardware pool? How can
we balance the cost versus

accuracy?
41

42

43

44

Key Points:
1. When sampling infrastructure sleeping for 0.25

seconds allowed us to hit the concurrency limit
while costing under $0.03 a poll

2. For later experiments we used 10 GBs memory
settings, resulting in ~$0.04 cost per poll

45

46

 1 - 10 polls

 11 to 20 polls

Costs $0.04 to $0.40

Costs $0.44 to $0.80

47

 1 - 10 polls

 11 to 20 polls

Costs $0.04 to $0.40

Costs $0.44 to $0.80

Key Points:
1. Polling to the saturation

point is expensive!
2. How many polls do we

need for accurate
characterizations?

48

49

Key Points:
1. For most times, we

needed less than 5 polls
to achieve 90% accuracy

2. sa-east-1a had >90%
accuracy with a single
poll

3. With less than 5 polls it
only costs $0.20 to
characterize a region

RQ-3: To what extent are
runtime and cost

improvements possible by
targeting specific instructure?

50

λ
λ

λ

λ

λ

λ

λ
Client Load

Generators

Workers

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

Client

Workers

Client

Workers

Proxy

1. Baseline 2. Retry Method 3. Regional Routing

Load
Generators

51

1. Retry Slow: Invocations retry
on the two slowest CPUs

2. Focus Fastest: Invocations
retry on everything but the
fastest CPU

Retry Logic Hybrid Approach

Combine both Retries and
Regional Routing

52● Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda

53● Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda

Slower

Faster

54● Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda

Compared to the 2.5 GHz processor:
1. The 3.0 GHz was 5% to 15% faster
2. The 2.9 GHz was 15% to 30% slower
3. The EPYC processor was the worst,

up to 50% slower

55● Runtime relative to the most common Intel 2.5 GHz processor observed on AWS Lambda

Compared to the 2.5 GHz processor:
1. The 3.0 GHz was 5% to 15% faster
2. The 2.9 GHz was 15% to 30% slower
3. The EPYC processor was the worst,

up to 50% slower

Processor Ranks:
1. Intel 3.0 GHz processor
2. Intel 2.5 GHz processor
3. Intel 2.9 GHz processor
4. AMD EPYC processor

56

Retry Methods

57

58

CPU Distribution impacts cost.
Times with less EPYC and

more 3.0 GHz reduces costs

59

Key Points:
1. Focus Fastest achieved

a total 16.5% cost
savings

2. Retry slow yielded a
10.1% cost savings

60

Region Hopping

61● Baseline fixed region of us-west-1b

62● Baseline fixed region of us-west-1b

63● Baseline fixed region of us-west-1b

64● Baseline fixed region of us-west-1b

65● Baseline fixed region of us-west-1b

Key Points:
1. Region hopping

achieved an overall
cost reduction of 13.3%

2. Only $2.80 was spent
on sampling
infrastructure

Conclusions

66

Key Results

67

● RQ-1: We were able to observe diverse CPU characterizations across 41

serverless regions

● RQ-1: Our sampling technique appears to be able to saturate entire

availability zones creating accurate hardware characterizations

● RQ-2: Our sampling technique is able to characterize an availability zone

for only $0.04 with 95% accuracy

● RQ-3: The Retry Slow method resulted in a consistent 10.1% reduction

in runtime and cost

● RQ-3: Focus Fastest had up to 18.5% lower costs, averaging 16.5%

across all functions

● RQ-3: Compared to a baseline of running in us-west-1b, the Region
Hopping hybrid approach averaged a cost savings of 10.0% up to 18.2%

Future Work

68

Future Work and Limitations

69

● The retry methods sacrifice responsiveness for cost

savings

● Building CPU characterizations for many regions is

expensive

● In the future, a complete Serverless Sky Computing

platform could build the CPU characterizations as

workloads run, eliminating the need for dedicated polling

● Instead of relying on individual characterizations, they

could be updated as new functions execute

70

This research has been supported by the of Washington Carwein-Andrews Distinguished Fellow Fund and AWS Educate Cloud Credits.

Thank You!

Any Questions?

