
11/26/2024

1

Scaling Applications with Kubernetes using a

Kubernetes Emulator (MiniKube)

Introduction to Kubernetes

Kubernetes, also known as K8s, is an open-source system for automating deployment, scaling, and
management of containerized applications.

• It groups containers that make up an application into logical units for easy management and discovery.

What does scaling applications with kubernetes mean?

Adjusting the number of instances (replicas) of an application or the resources allocated to those

instances to handle changes in demand or workload. This ensures the application remains available,

responsive, and efficient, whether demand increases (e.g., during traffic spikes) or decreases (e.g.,

during off-peak hours).

1

2

https://kubernetes.io/docs/concepts/overview/

11/26/2024

2

Minikube: Simulating Application Scaling with Kubernetes

Minikube is a lightweight Kubernetes emulator that

runs a single-node Kubernetes cluster locally on your

laptop using a virtual machine. It enables developers

to test and experiment with Kubernetes without

needing a full cloud environment.

Using Minikube to simulate scaling applications

with Kubernetes involves deploying an application

on a local Kubernetes cluster and then testing scaling

features such as adding replicas or adjusting resource

limits. While Minikube runs on a single node (since it

emulates Kubernetes locally), it can still demonstrate

the concepts of scaling.

THE MOTIVATION:

The design and development of Kubernetes was inspired by
Google's Borg cluster manager and based on Promise Theory.
Many of its top contributors had previously worked on
Borg they codenamed Kubernetes "Project 7" after the Star
Trek ex-Borg character Seven of Nine and gave its logo a
seven-spoked ship's wheel (designed by Tim Hockin). Unlike
Borg, which was written in C++ Kubernetes is written in
the Go language.

The idea for Minikube came from the desire to provide a
lightweight solution that could allow developers to run a
single-node Kubernetes cluster locally on their machines in an
isolated, cost-effective way.

3

5

11/26/2024

3

Building Minikube: From Concept to Reality

To implement Minikube, the development team leveraged existing virtualization technologies:

•VirtualBox: For creating and managing the VM that would run Kubernetes locally.

•Docker: For containerization, allowing Kubernetes components to run inside containers.

•Kubernetes’ own features: Minikube was designed to run Kubernetes just like it would on a

production cluster, but in a scaled-down, single-node environment.

The goal was to use virtual machines (VMs) to run Kubernetes as a self-contained

environment, making it easy for developers to spin up a local Kubernetes cluster with a few

simple commands.

Building the Tool:

•Automated Setup: Minikube automates the setup process of creating a VM, installing

Kubernetes, and configuring it to run locally. This was done using a set of scripts that handled the

installation and configuration of Kubernetes on the VM.

•Integration with Virtualization Platforms: Minikube was built to work with different

virtualization platforms, such as VirtualBox, VMware, and Docker, to allow users to choose the

platform that best suited their environment.

Exploring Scaling Features in Minikube

1. Local Kubernetes Cluster

Runs a Kubernetes cluster on a single node in a virtual

machine (VM) or container on your local machine.

Supports multiple operating systems (Linux, macOS,

Windows).

2. Multi-Node Clusters

Allows creation of clusters with multiple nodes for

simulating distributed systems.

3. Container Runtime Support

Supports Docker, CRI-O, and containerd as container

runtimes, allowing users to test different setups.

4. Hot Reloading

Enables seamless code and configuration changes

without restarting the cluster.

5. Resource Efficiency

Minimal resource requirements make it suitable for

machines with limited computing power.

6. Compatibility with CI/CD Pipelines

Can be integrated into Continuous Integration and

Continuous Deployment (CI/CD) pipelines to test

Kubernetes configurations.

6

7

11/26/2024

4

Technical Design and Relation to Cloud Computing

• Simulating Kubernetes in Distributed Systems

˃ Minikube emulates the Kubernetes control

plane, including components like the API

server, scheduler, controller manager, and

etcd.

˃ It uses virtualized networking to mimic the

behavior of Kubernetes in real-world distributed

systems.

˃ Network policies, service discovery, and load

balancing can be tested locally.

• Cloud Infrastructure Emulation

˃ Acts as a scaled-down version of cloud

Kubernetes clusters provided by platforms like

Google Kubernetes Engine (GKE), Amazon

Elastic Kubernetes Service (EKS), and Azure

Kubernetes Service (AKS).

˃ Bridges the gap between local development and

production deployment in the cloud.

• Provisioning and Node Management

˃ Utilizes virtualization tools (e.g., VirtualBox,

Hyper-V) or container backends (Docker) to

simulate Kubernetes nodes.

˃ Kubernetes cluster nodes can be provisioned

and scaled locally, which aids in studying

resource management and autoscaling

principles.

• Service Orchestration

˃ Minikube supports testing Kubernetes objects

such as Deployments, Services, and Persistent

Volumes, enabling developers to refine service

orchestration workflows.

Technical Design and Web Services

1. Ingress and Load Balancing

• Integrated Ingress controller allows local testing of web applications with advanced routing

capabilities.

• Simulates LoadBalancer-type services for testing web service performance and scalability.

2. API Testing

• Developers can test REST APIs or microservices in a Kubernetes environment, ensuring service

compatibility and availability.

3. Debugging and Monitoring

• Offers debugging tools like kubectl logs and port forwarding.

• Add-ons like metrics-server and Grafana enable performance monitoring for web services.

8

9

11/26/2024

5

Use Cases in Real-World Scenarios

1. E-Commerce

Use Case: Handle high traffic during events like Black Friday.

Example Deployment: Test microservices, load balancing, and blue-green deployments locally to ensure

smooth scaling under heavy load.

2. Financial Services

Use Case: Support secure, real-time trading systems.

Example Deployment: Simulate fault tolerance, validate resource policies, and test autoscaling for

transaction-heavy services.

3. Healthcare

Use Case: Manage HIPAA-compliant patient data.

Example Deployment: Test persistent storage, encryption, and multi-tenant setups for healthcare platforms.

4. Media Streaming

Use Case: Scale video delivery systems dynamically.

Example Deployment: Simulate caching, autoscaling, and service mesh features to optimize user

experiences during peak hours.

5. Gaming

Use Case: Scale game servers for multiplayer games.

Example Deployment: Test server scaling, messaging systems, and traffic routing for real-time gameplay.

6. SaaS Platforms

Use Case: Scale collaboration tools dynamically.

Example Deployment: Test multi-region deployments, database scaling, and rolling updates for SaaS tools

like Slack or Jira.

7. Manufacturing and IoT

Use Case: Process real-time IoT data on factory floors.

Example Deployment: Simulate edge computing, IoT pipelines, and workload scaling for smart

manufacturing systems.

8. AI and Machine Learning

Use Case: Scale model training and inference workloads.

Example Deployment: Validate AI pipelines, GPU/TPU support, and autoscaling for real-time predictions.

10

11

11/26/2024

6

Technology Advantages

Cost-Effective Local Testing Environment

• Minikube eliminates the need for expensive cloud

infrastructure during the development phase.

Developers can test Kubernetes deployments locally

on a laptop.

Accelerated Development Cycle

• Allows developers to quickly iterate and debug

Kubernetes configurations, such as Pods,

Deployments, and Services, without requiring a full

production cluster.

Realistic Kubernetes Simulation

• Provides a near-production Kubernetes

environment, enabling testing of scaling scenarios,

application behavior under load, and resource

allocation.

Multi-Platform Support

• Runs on Windows, macOS, and Linux, ensuring

compatibility across diverse developer

environments.

Enables CI/CD Integration

• Can be used in Continuous Integration pipelines to

validate Kubernetes deployments, ensuring reliable

scaling and fault tolerance before production

rollouts.

Lightweight and Easy Setup

• With minimal configuration, developers can create a

Kubernetes cluster locally, making Minikube

suitable for rapid experimentation with scaling

strategies.

Technology Disadvantages

Not Suitable for Large-Scale Production Testing

• Minikube is designed for local development and

testing. It does not emulate multi-node clusters or

distributed workloads accurately, limiting its

scalability testing for production environments.

Limited Resource Availability

• Being run locally, Minikube is constrained by the

hardware resources of the developer’s machine,

making it unsuitable for applications requiring high

memory, CPU, or storage.

Network and Load Balancing Differences

• Network configurations and load balancing in

Minikube do not fully replicate those in cloud-based

Kubernetes clusters, potentially leading to

discrepancies when scaling.

Performance Limitations

• Minikube struggles to handle stress-testing of

applications under high concurrency or scaling

scenarios due to its reliance on local hardware.

Dependency on Virtualization

• Requires virtualization tools (like Docker or Hyper-

V), which may lead to compatibility issues or

overhead, especially in constrained environments.

Cloud-Specific Features Missing

• Features like managed load balancers or cloud-

native storage integrations (e.g., AWS EBS or

Google Persistent Disks) are not available, limiting

real-world testing capabilities.

12

13

11/26/2024

7

Usability

Ease of Use

• Minikube is beginner-friendly with straightforward setup steps and detailed documentation.

• Ideal for developers and teams new to Kubernetes who want a hands-on learning experience.

Learning Curve

• Initial concepts like Pods, Services, and Ingress can be challenging for newcomers, but Minikube

provides a sandboxed environment to experiment safely.

Programming APIs

• Seamlessly integrates with Kubernetes tools (kubectl, Helm), enabling developers to test

applications with real-world APIs.

Interactive Tooling

• Minikube includes features like the dashboard, logs, and live resource monitoring to enhance

usability during local development.

Cost Discussion

Minikube Costs

• Free to use as an open-source project, requiring only local hardware resources.

• Minimal infrastructure cost compared to cloud-hosted Kubernetes clusters.

Comparison with Cloud Kubernetes

• Running Kubernetes in the cloud involves ongoing costs for compute, storage, and network usage,

often exceeding hundreds of dollars monthly for moderate workloads.

• Minikube offers a low-cost alternative for development and prototyping stages.

Hidden Costs

• Indirect costs include developer time for configuration, potential differences between local and

production environments, and hardware upgrades for resource-intensive applications.

14

15

11/26/2024

8

Cost Example – E-Commerce Prototyping

Scenario:

• Testing a Kubernetes-based e-commerce app with Minikube versus cloud.

Minikube:

• No additional cost beyond hardware (e.g., a developer's laptop).

• Ideal for testing scaling strategies and blue-green deployments locally.

Cloud:

• $50–$200/month for a small Kubernetes cluster on AWS or GCP (based on node size and load).

• Includes managed services like load balancers and persistent storage.

• Minikube enables cost savings during the prototyping stage before moving to cloud production

environments.

Conclusions

Summary of Benefits

• Minikube is a cost-effective, lightweight, and powerful tool for local Kubernetes development.

• It accelerates learning, prototyping, and testing of scaling strategies, reducing the need for expensive

cloud resources.

Challenges

• Limited scalability and hardware dependency make Minikube unsuitable for high-fidelity production

testing.

Final Remarks

• Minikube bridges the gap between Kubernetes education and production, making it indispensable for

developers working on modern cloud-native applications.

16

17

11/26/2024

9

Demonstration:

18

	Slide 1: Scaling Applications with Kubernetes using a Kubernetes Emulator (MiniKube)
	Slide 2: Introduction to Kubernetes
	Slide 3: Minikube: Simulating Application Scaling with Kubernetes
	Slide 5: THE MOTIVATION:
	Slide 6: Building Minikube: From Concept to Reality
	Slide 7: Exploring Scaling Features in Minikube
	Slide 8: Technical Design and Relation to Cloud Computing
	Slide 9: Technical Design and Web Services
	Slide 10: Use Cases in Real-World Scenarios
	Slide 11
	Slide 12: Technology Advantages
	Slide 13: Technology Disadvantages
	Slide 14: Usability
	Slide 15: Cost Discussion
	Slide 16: Cost Example – E-Commerce Prototyping
	Slide 17: Conclusions
	Slide 18: Demonstration:

