1

FootPrinter: Quantifying Data Center Carbon Footprint

Authors: Dante Niewenhuis, Sacheendra Talluri, Alexandru Iosup, and Tiziano De Matteis

Institution: Vrije Universiteit Amsterdam (Amsterdam, Netherlands)

Review by: Carla Peterson and Viktoria Dolojan

Talk Outline

2	Introduction
5	Background/Related Work
7	Summary of New Technology
11	Key Contributions
12	Experimental Evaluation
17	Author's Conclusions
18	Strengths
19	Weaknesses
20	Evaluation
21	GAPs

What is the problem?

Data Centers:

- Major carbon emitters
- Complex footprint quantification

Diverse energy sources

Fluctuating utilization patterns

Indirect emissions

Figure 1: The energy mix and carbon intensity of the energy grid in the Netherlands during the month of October 2023 from the ENTSO-E Transparency Platform¹. The top graph shows the energy mix during the month into green and non-green energy. The bottom graph shows the resulting carbon intensity of the grid.

Introduction: Paper Overview

Why is it a problem?

Rising Energy Demand: Data center emissions will escalate alongside their expanding role in the economy

Impact on Climate Goals: Stakeholders put global climate goals at risk Delay progress toward reducing greenhouse gas emissions

Inefficiency and Lack of Transparency: Current practices can lead to inefficient energy use Poor understanding of how to improve sustainability

Why are we interested in the problem?

Addressing Climate Change: Enhancing data center energy efficiency can reduce emissions while enabling technological advancements

Creating Standardized Benchmarks: Reliable metrics for carbon footprints allow organizations to evaluate and improve their sustainability efforts

Driving Policy and Industry Alignment: Standardized tools can help stakeholders achieve shared sustainability goals

Related Work

Specialized Simulators

CloudSim:

Models and simulates cloud computing environments

iFogSim:

Models and evaluates the performance of Internet of Things (IoT) and fog computing environments

WorkflowSim:

Models the execution of scientific workflows in cloud computing environments

Green Algorithms

Green Algorithms:

https://www.green-algorithms.org/

Analyzes and optimizes the energy consumption of cloud computing algorithms

Workflow**Sim**

Missing Elements

Indirect Emissions Modeling:

Existing tools fail to account for lifecycle emissions

Dynamic Energy Grids:

Simulators often oversimplify energy source diversity

Comprehensive Frameworks:

No single simulator integrates edge, fog, and cloud computing with lifecycle carbon footprint assessments and real-time renewable energy modeling

Summary of New Technology, Approach, or Benchmarks

What is being proposed?

FootPrinter

Designed to bridge previous gaps

Offers enhanced adaptability and functionality

Versatile for assessing carbon footprints across a wide range of energy sources

Summary of New Technology, Approach, or Benchmarks

FootPrinter Process

Event-Driven Simulator: Replay Sample energy/performance

Energy Sampler: Carbon intensity from ENTSO-E data

Sustainability Predictor: Carbon/energy metrics Footprint

Key Contributions

Contributions

FootPrinter: First tool to simulate operational carbon footprint of data centers

Open-Source: Extensible for hardware, environmental factors, and embodied emissions

Energy Agnostic: FootPrinter does not depend on the energy source

Findings

Use Cases: Demonstrates carbon impact of design and location choices Insights: Actionable guidance for sustainable data center operations Broad Access: Supports varied trace granularities for diverse operators

- Power Usage Effectiveness (PUE)
 - E_r energy used by the data center 0
 - E_{rr} energy used by the IT components 0
 - Optimal data center has PUE = 1.0 no energy required for redundant tasks 0
 - Google has PUE ~ 1.1 0
 - 0 PUE of data centers has increased
 - Rebound effect as prices to perform tasks decrease, # of tasks increase

 $PUE = \frac{E_T}{E_{IT}}$

- PUE already highly optimized & difficult to further optimize
- Does not include energy efficiency of applications & workloads 0
- Ignores type of energy used (e.g. solar, wind, coal, nuclear) 0
- Carbon Intensity
 - Amount of carbon emitted per unit energy
 - Carbon intensity of the grid 0
 - CI_s carbon intensity of energy source s
 - E_s/E_a share of energy that s contributes to the grid
 - S set of all available energy sources
- **Operational Footprint**
 - Carbon emitted when system is running 0
 - CI, carbon intensity of the data center in gCO2/kWh 0
 - Assume $CI_d = CI_g$
 - E_{op} operational energy of the data center in kWh 0

$$CI_g = \sum_{s \in S} CI_s \frac{E_s}{E_g}$$

 $s \in S$

$$C_{op} = CI_d E_{op}$$

FootPrinter Use Cases

UC-Footprint

- 0 Operational carbon footprint
- Essential to evaluating a data center's effectiveness 0
- Requires knowledge about both the energy usage and the carbon intensity of the used energy 0 sources
- UC-Location
 - 0 Selecting a location
 - Can have a large impact on the carbon footprint due to what's available for energy sources 0
 - Where's the right location? 0
- UC-Hardware (not evaluated)
 - Selecting hardware upgrades 0
 - 0 Responsible for making the right choices for hardware upgrades
 - Must understand impact of hardware changes 0

Dataset Input to FootPrinter

- Data center: SURF Lisa cluster in Netherlands
 - 277 physical machines
 - 7,850 jobs over 7 days
 - Job duration: <1 hr to several days
 - CPU demand sampled @ 30-sec interval
- FootPrinter simulates trace on Intel Core I7-8750 laptop in 10 secs

FootPrinter Simulation Results

- 5A: FootPrinter determined power draw of entire data center
- 5B: Carbon intensity of the grid sampled from ENTSO-E
- 5C: Carbon emission during the workload. Influenced by carbon intensity.

Experimental Evaluation - Location

Carbon Emission

- Compare impact of data center's location
- SURF Lisa data center workload trace simulated in different locations
- France & Belgium have better carbon footprints
 - Source nearly ½ of energy from nuclear power plants
- Germany & Netherlands more carbon intensive energy sources (e.g. coal)

SURF Lisa data center workload trace simulated using FootPrinter in other locations

Experimental Validation

- Compared FootPrinter's simulated power draw to ground truth power
 - No data source provided
- Mean Absolute Percentage Error (MAPE)
 - MAPE total error: 3.15%
 - Underestimation error: 3.19%
 - Overestimation error: 2.93%

$$MAPE[\%] = \frac{1}{n} \sum_{t=0}^{n} |\frac{P_t - P'_t}{P_t}| \times 100$$

- Normalized Absolute Difference (NAD)
 - NAD total error: 3.17%
 - Underestimation error: 3.22%
 - Overestimation error: 2.83%

$$NAD[\%] = \frac{\sum_{t=0}^{n} |P_t - P'_t|}{\sum_{t=0}^{n} P_t} \times 100$$

In which P_t and P'_t are the actual and simulated power draw at sample t and n is the number of samples. Comparing FootPrinter

 Percentage of time points with an error less the specified threshold

Author's Conclusions

- FootPrinter is the first simulation tool to determine operational carbon footprint of a data center
- Open-source and available for extension for additional tools
- Simulates power draw with MAPE < 3.15% & NAD < 3.17%

- Addresses the carbon footprint generated by data centers through predictive simulation
- FootPrinter can simulate the operational carbon footprint of a data center regardless of the type of energy source
- Low total MAPE (3.15%) and NAD (3.17%)

2	i -	+		Maa	2n	~~~	~ ~
υ	IΤ	ιца	ue	wea	KII	ess	es

- Focus seems to be within the European region
 - Would like to see more of a US focus for more complex examples
- Small dataset for initial evaluation and validation
 - Only one data center, SURF Lisa, was used for the experiment and validation
 - Additional data centers for experiment and validation would create more confidence in FootPrinter
- No reference for ground truth power draw data
 - Creates very little confidence in their validation efforts without a data source

- FootPrinter needs additional evaluation and validation with additional workload traces from data centers
- No discussion on the results of the use cases
 - Results were stated, but no discussion on why the results appeared as they were (e.g. dip in power draw)
- No discussion of threshold or listing a specific threshold for the distribution of errors graph

- Supporting hardware upgrades & impact to performance and carbon footprint
- Future work:
 - Additional elements that influence energy usage: temperature & humidity
 - Extend to incorporate embodied carbon emissions

THANK YOU!

Questions?