
Sandboxing Functions for Efficient 
and Secure Multi-tenant
Serverless Deployments

Soumith Kondubhotla- ksoumith@uw.edu
Siva Srinivasa Aditya Jayanti- sjayan@uw.edu
Sri Sailesh Mylavarapu- srisail@uw.edu

Presentation Date- 11/26/2024Paper Presentation:

Paper Published on 2024-04-22

1

Table of Content
1. Introduction
2. Proposed Solution
3. What is serverless
4. Problem with containers
5. Unikernels
6. Serverless Architecture
7. Motivation
8. Unikernels for serverless
9. Experimental Setup

10. Evaluation
11. The benefits of Sandboxing
12. Conclusion

2



Overview
● Serverless computing optimizes resource usage and simplifies development, 

but isolation in multi-tenant environments is a key challenge.

● In this work, we identify the need for sandboxing mechanisms to extend the 
tenancy model of Knative and enhance the security and efficiency of 
multi-tenant serverless deployments. Existing solutions like gVisor and 
kata-containers provide a level of isolation but do not meet the requirements 
for allowing the execution of untrusted workloads in a Knative cluster.

● We consider the option of unikernels in serverless environments. We build an 
end-to-end serverless system based on unikernels and compare its 
performance and isolation characteristics to existing sandbox solutions.

. 

3

Why SandBoxes?

Drawbacks of traditional containers

● Containers do provide resource restriction and isolation 
using technologies like namespaces. This prevents the 
container from accessing unauthorized parts of the 
system and ensures that each container has limited 
access to files, network, CPU, and memory.

● However, containers share the host kernel, which makes 
their isolation less strict compared to typical sandboxing 
techniques that focus primarily on security. Sandboxing, 
on the other hand, is generally stricter, offering deeper 
isolation

4



5

Why SandBoxes?
● Sandboxing is a technique to run code or applications in a restricted environment (sandbox) 

where they have limited access to system resources and are isolated from the host system. The 
purpose of sandboxing is to provide security by limiting the potential damage if the application 
or code behaves maliciously.

● Key Features:

● Resource Restriction: Sandboxing runs code in a way that restricts its access to system 
resources such as files, network, or hardware devices. This prevents the code from affecting 
other parts of the system.

● Security Focused: Unlike containers and VMs, sandboxing primarily focuses on security and 
limiting what the application can do to the host system.

● No Full OS Requirement: Sandboxed environments do not require a full OS but rather use 
system-level configurations and restrictions to provide isolation.

6



7

Introduction

• Serverless computing optimizes resource usage and simplifies 
development, but isolation in multi-tenant environments is a key 
challenge.

• Current isolation mechanisms like gVisor and Kata Containers add 
overhead and are insufficient for untrusted workloads in serverless 
environments.

8



• Use unikernels to balance 
performance and security.

• Introduce urunc, a unikernel-based 
container runtime for better isolation 
and reduced service response 
latency.

Proposed Solution

9

What is Serverless?

• Serverless architectures allow 
developers to focus on code while 
the infrastructure is abstracted.

• Applications are modular, stateless, 
and event-driven, scaling dynamically 
with demand.

10



Problem with containers

• Containers share the same OS kernel, leading to 
security risks (e.g., privilege escalation attacks).

• Enhanced isolation mechanisms like gVisor and 
Kata Containers exist but add overhead:

• Higher memory/storage usage.
• Slower startup times compared to lightweight 

containers.

11

Unikernels

• Lightweight, application-specific OS 
designed for a single task.

• Advantages:
• Faster startup.
• Reduced memory/storage usage.
• Improved security by minimizing the attack 

surface.

12



Serverless Architecture
Kubernetes

What is Kubernetes (K8s)?
• A container orchestration platform managing 

deployment, scaling, and failovers.
• Core components:
• API SERVER:Processes API requests
• Scheduler:Allocates workloads to nodes
• Kubelet:Executes containers within pods.

13

Serverless Architecture
Knative

What is Knative?
• Knative is tailored for serverless, enabling 

features like "scale-to-zero" and event-driven 
workflows.

• Core components:
• Activator:Manages pod lifecycle
• Autoscaler:Scales resources dynamically
• Queue Proxy:Handles request flow and 

communicates with other Knative components.

14



Motivation
Existing Isolation Mechanisms:

Kata Containers
• Encapsulate containers in lightweight VMs for better security
• Trade-off: Slower startup times and higher resource usage.

gVisor
• Intercepts container system calls using a user-space kernel.
• Good for untrusted workloads but slower than native containers.

Knative Challenges:
• Knative’s stack (e.g., queue-proxy) coexists with untrusted workloads, risking security breaches.
• The need for isolation without compromising performance.

15

Unikernels for Serverless
Unikernels

Specialized OS containing only the components necessary for a single application.
Advantages:

•Near-instant startup times.
•Reduced resource consumption.
•Strong isolation through minimal attack surface.

16



Unikernels for Serverless
What is urunc?

•Uses Open Container Initiative (OCI) standards for compatibility with Kubernetes.
•A unikernel runtime for serverless environments.
•Handles unikernel and generic containers, assigning tasks based on container type.

Integration with Knative:
•Separates user workloads (unikernels) from Knative’s stack (generic containers like queue-proxy).
•Provides VM-level isolation while maintaining performance.

17

18



Experiment Setup and Evaluation of Knative 
with Unikernels

Experiment Setup (Overview)

Knative Setup

● Experiment focused on Knative Serving for managing 
serverless applications.

● Bare-metal Kubernetes cluster (v1.28.2) with Knative 
Serving (v1.12).

● Services pinned to a single node to reduce network noise.

Metrics Evaluated

● Service Response Latency.
● Scaling Efficiency.
● Maximum Number of Supported Instances.

19

Customizations and Tools

kperf Modifications

● Added custom HTTP headers to reduce DNS 
resolution delays.

● Introduced timeout options for handling high-latency.
● Ensured unique service instance mapping during 

scalability tests.

Knative Service Function

● Simple HTTP reply application to minimize compute 
noise.

● Latency measured from request to response.

20



 Criticisms of Experiment Setup
1. Limited Scope of Benchmarking

● Issue: Single server doesn't reflect real-world environments.
● Suggestion: Use a multi-node cluster or public cloud.

2. Unrealistic Workloads

● Issue: Simple HTTP function isn’t representative of real-world tasks.
● Suggestion: Use diverse, real-world workloads.

3. Lack of Documentation

● Issue: Custom kperf modifications are not fully documented.
● Suggestion: Provide open-source access or detailed descriptions.

4. Missing Security Metrics

● Issue: No security tests performed.
● Suggestion: Include security benchmarks like container breakout simulations.

21

 Evaluation Overview

1. Service Response Latency (Single Instance)

● Unikernel runtime (urunc): ~1.25s, similar to generic containers 
(runc).

● gVisor & Kata Containers: Higher latency (2-2.5s).

2. Concurrent Servicing (Multiple Instances)

● urunc scaled efficiently with low latency.
● gVisor & Kata Containers had delays under high load.

3. Scaling Limits

● urunc and runc supported up to 500 instances effectively.
● Kata Containers struggled with high latencies and reduced 

responsiveness.

22



Key Criticisms of Evaluation

1. Cold-Start Latency Analysis Lacks Detail

● Suggestion: Provide a breakdown of delay stages.

2. Scaling Failures Not Explored

● Suggestion: Conduct root cause analysis for failures at high instance counts.

3. Limited Comparison with Alternatives

● Suggestion: Compare with technologies like Firecracker VMs or Unikraft.

4. Inconsistent Latency Metrics

● Suggestion: Analyze resource utilization to explain discrepancies.

5. Lack of Resource Efficiency Assessment

● Suggestion: Include metrics like CPU, memory, and I/O for each mechanism.

23

Conclusion and Recommendations

Strengths

● Innovative integration of unikernels into serverless environments.
● Demonstrates potential for improved latency without sacrificing isolation.

Areas for Improvement

● Use realistic workloads and environments.
● Better documentation of methodology.
● Broader analysis of scalability, security, and resource efficiency.

Final Note

● Addressing these gaps will make this work a strong benchmark for unikernel adoption in serverless 
platforms.

24



Conclusion
Key Takeaways:

● Unikernels combine VM-like isolation with container-like performance.
● urunc provides a practical solution for secure multi-tenant serverless deployments.

Future Work:
● Further optimize cold start latency.
● Explore hardware acceleration for computationally intensive workloads.

25

Questions?

Thank you!

26


