
12.03.24

AWS
Amplify
Andrew Nguyen
Pavel Braginskiy

Lorem Ipsum 01

What is AWS Amplify?
● An AWS service for building and deploying full stack applications to the cloud
● What can you build with Amplify? (source)

○ Server-side rendered web applications
○ Single page web apps and static websites
○ Native mobile applications
○ Cross-platform applications

● Interfaces with other AWS services like CloudFront and S3

02

What is AWS Amplify?

Figure: https://aws.amazon.com/amplify/ 03

History

04

History of AWS Amplify: Why?
Released in 2017 as an open-source JavaScript library to make it easier to develop cloud-connected
mobile and web apps (source).

05

History of AWS Amplify: Why?
Motivations:

● Server-Side Rendering (SSR)
● Full-stack frameworks such as Next.js, Nuxt

that allow developers to handle both front end
and back end in a single codebase and
deployment.
○ CSR: Client-Side Rendering
○ SSG: Server-Side Generation
○ SEO: Search Engine Optimization

Figure:
https://aws.amazon.com/blogs/mobile/evolution-of-full-stack
-development-with-aws-amplify/

06

History of AWS Amplify: How?
● How AWS Amplify has evolved:

○ 11/2017: Initial release as an open-source JavaScript library
○ 8/2018: Launch of Amplify CLI
○ 12/2020: Launch of Amplify Studio, a GUI to build backends
○ 12/2021: Addition of UI building to Amplify Studio, with Figma-to-React capabilities and

form generation.
○ Gen 2 of AWS Amplify introduces infrastructure-as-code tools and AI assistance from

Amazon Q Developer
● Driving factors for evolution:

○ Generative AI
○ Faster feedback loop
○ Lower the barrier to entry for full-stack development and hosting

● (Source)

07

History of AWS Amplify: Who?
● Alternatives:

○ Google Firebase (Platform as a Service)
○ Azure App Service (Platform as a Service)
○ Vercel (Platform as a Service)
○ Heroku (Platform as a Service)
○ SST (Infrastructure as Code)

08

Features

09

Features (Front End)
● Supports hosting for popular front end

web frameworks
○ React
○ Vue
○ Angular

● Automated scaling backed by AWS
Cloudfront cloud delivery network (CDN)

● Automated build and deploy from
GitHub
○ Also works with AWS CodeCommit

● Preview deployments
● Monitoring

Figure: https://aws.amazon.com/amplify/ 10

Features (Back End)
● Serverless, scales resources

as needed (source)

● Under the hood:
○ S3
○ Lambda
○ CloudFront

● Can compose backend with
any AWS resource, including
DynamoDB, AppSync, etc.

● Simplified authentication
(leave this to the experts)

● Low code (build with GUI)

Figure: https://aws.amazon.com/amplify/extensibility/
11

Use cases

12

Example Use Case 1: Deploying a Website

Figure: https://aws.amazon.com/amplify/hosting/

13

Source: https://aws.amazon.com/amplify/customers/
Case study: https://aws.amazon.com/solutions/case-studies/neimanmarcus-case-study/

Example Use Case 2: Rapidly Developing
Back End Infrastructure

14

Advantages and disadvantages

15

AWS Amplify Advantages
● Pay as you go pricing

○ Only get charged for the infrastructure you use as opposed to buying into a fixed-price plan or by seat

● Managed solution for cloud infrastructure
○ Don’t need to know how to provision and use cloud resources when all you want to do is host a website

● Integrated with AWS
○ Amazon S3 (Storage)
○ CloudFront (Content Delivery Network)
○ Amazon Cognito (Authentication)
○ AWS Lambda (Server-Side Rendering)

● Source

16

Figure:
https://aws.amazon.com/blogs/mobile/evolution-of-full-stack-developm
ent-with-aws-amplify/

AWS Amplify Disadvantages
● Uncompetitive free tier vs competing services

○ AWS Amplify free tier (left)
○ Vercel free tier (right)

17

AWS Amplify Disadvantages
● Slow build times (more on this later)

○ Build and deploy time for demo app as reported by Amplify:

18

Developer experience

19

Usability Impressions
● Simple to use, but the build times were quite slow

○ For a continuous iteration workflow this can be very frustrating
○ Build and deploy time for demo app:

20

Usability Impressions
Experiment: Build time comparison for create-react-app, a
simple React website:

Steps:

● Initialize create-react-app project
○ (npx create-react-app my-app)

● Push to GitHub
● Deploy to cloud service with default settings

21

Usability Impressions
AWS Amplify: 1 min, 21 sec

22

Usability Impressions
Vercel: 50 sec (38% less time!)

23

Cost

From Amplify pricing: https://aws.amazon.com/amplify/pricing/

24

Cost Analysis: Two Use-Cases
● Hobby Development and Rapid Prototyping
● Production Deployment

25

Cost Analysis: Rapid Prototyping

Example taken from Amplify pricing: https://aws.amazon.com/amplify/pricing/ 26

Cost Analysis: Rapid Prototyping
Compare to Vercel free tier:

● 100gb/month of data transfer out
● Unlimited build time

Vercel builds the same application in seconds vs Amplify’s minutes, which makes being charged for
build time in Amplify extremely unappealing.

Amplify doesn’t offer much to justify these downsides.

Vercel pricing: https://vercel.com/pricing 27

Cost Analysis: Production

From Amplify pricing: https://aws.amazon.com/amplify/pricing/ 28

Cost Analysis: Production
Compare to EC2

● EC2 charges data transfer at $0.09/GB. For 439.45GB, we pay 39$.
● This leaves 27$/month. We can afford a t3.small instance for 15$.
● t3.small isn’t a very powerful instance,
● 10,000 requests per day is around 7 requests per minute, which our instance should be able to handle

easily.

The biggest cost of Amplify in this use-case is the Data Transfer rate of $0.15/GB, much higher than EC2’s.
10,000 requests a day is not that many, and it’s clear that as the size of the webpage or the number of
requests increases, the cost of data transfer will greatly outpace any other costs.

29

Conclusions
● AWS Amplify provides a simple, managed solution for deploying and hosting a full stack web

application
● Good if you want to fully buy into the AWS ecosystem and you are unfamiliar with cloud

technologies and just want to get a website spun up
● Ultimately, not very cost-effective for what you get: You may want to consider other services if

you’re looking for better developer experience or more services under the free tier.

30

Demonstration

Making a to-do app with Vue and
AWS Amplify

Adapted from AWS Amplify Vue Quickstart Guide

31

Prerequisites
● AWS Account
● GitHub Account
● Node.js
● Git
● Code editor

32

Step 1: Create starter app from template
Template:
https://github.com/new?template_name=amplify-vue-tem
plate&template_owner=aws-samples&name=amplify-vue-
template&description=My%20Amplify%20Gen%202%20st
arter%20application

33

Step 2: Deploy starter app to GitHub
● Deploy to Amplify:

https://console.aws.amazon.com/amplify/create/repo-branch
● Select GitHub
● Give AWS permission to read from your GitHub account
● Install and Authorize AWS to read from the repo you just created

34

Step 2: Deploy starter app to GitHub
● Select repo for starter app,

and choose main branch
● Click “Next”

35

Step 2: Deploy starter app to GitHub
● Use default settings on App Settings screen
● Click “Next”

36

Step 2: Deploy starter app to GitHub
● Confirm everything is correct
● Click “Save and deploy”
● Deployment can take between 2 to 5 minutes
● Click “Visit deployed URL” when successfully deployed

to see your app!

37

Step 3: Test your new app!
● Add some items

38

Step 3: Test your new app!
● Click into the main branch in Amplify overview
● Click into “Data manager” under “Data” in the left sidebar to

see your todos

39

Let’s add a feature.

40

Step 4: Set up local dev environment
● Download amplify_outputs.json

○ Click into the “Deployments” tab in the sidebar
○ Scroll down and click on “Download amplify_outputs.json”

41

Step 4: Set up local dev environment
● Clone your repo to your local machine

○ git clone
https://github.com/<github-user>/ampl
ify-vue-template.git

● Navigate into the repo and install dependencies
○ cd amplify-vue-template && npm

install
● Move the “amplify_outputs.json” file you just

downloaded into the repo’s root directory
● Open the project in your favorite code editor

42

Step 5: Add delete functionality
● In src/components/Todos.vue, add :

function deleteTodo(id: string) {

 client.models.Todo.delete({ id })

}

Under the createTodo() function.

43

Step 5: Add delete functionality
● Add an onclick handler to the list elements

○ Add:

@click="deleteTodo(todo.id)"

inside the opening tag

44

Step 6: Test changes locally
● Run npm run dev
● Visit local dev server at http://localhost:5173/
● Click on a to-do item to delete it!

45

Step 7: Commit changes and push
git add src/components/Todos.vue

git commit -m "add delete on click functionality to Todos.vue"

git push

46

Step 8: See changes on Amplify!
● Amplify will automatically rebuild and redeploy the app on every commit

○ This can take between 2 to 5 minutes

47

Step 9: Teardown
● Under “App settings” > “General settings” in the sidebar, click on the “Delete app” button

● Confirm deletion:

48

Questions?

49

