
12/5/2024

1

Optimizing Resource
Utilization with Jaigu
A review by:
Jackson A. Goldberg

Table of Contents

Slides:
3-5: Identifying the Problem
6-7: Related Works
8-12: Jaigu and explanation
13-15: Experiment Evaluation
16-19: Critique
20: Gaps
21: Questions

1

2

12/5/2024

2

Problems with AWS and Azure

> At present AWS Lambda and Azure Functions
allocate too many resources.

> AWS and Azure do not adapt efficiently to changes
in workload

> Current Mindset: better to be prepared and use
more resources to ensure good performance.

Effects of this Mindset

> Increased utilization of resources means the
developers are charged more for resources that
aren't being used.

> Lack of good adaptability to traffic means that
during high usage users suffer poor performance,
and during low traffic developers suffer additional
costs.

3

4

12/5/2024

3

Benefits of Solving this Problem

> Money saved for developer
– Less resources used

> More consistent performance for the user
– More resources during high traffic

Related Works

> Machine learning research
– Kumari et al. (2022) - Directed Acyclic Graph

– Mampage et al. (2023) - deep reinforcement learning

> Decoupled Resource Allocation
– Bilal et al. (2021) - memory and cpu decoupling

> Delayed decision making
– Sinha et al. (2024) - postponing resource decisions

5

6

12/5/2024

4

Important Ideas

> Cloud service providers provide a good default
option for serverless functions but individual
systems can be improved for efficiency.
– “Guessing” upcoming traffic

– Independently provisioning resources

Jaigu

> Traffic Prediction

> Cheat Sheet Creation
– Capacity Table

> Dual-Staged Scaling

7

8

12/5/2024

5

Traffic Prediction

> Decoupling prediction and scheduling
– Pre-decision Scheduling

– maximum number of instances without violating Quality
of Service (QoS)

> Random Forest Regressor
– Tested on data from: Huawei Cloud

Capacity Table

> Make quick decisions
– Preloads table with instructions for various workloads

– Created using ML

– Significantly reduces decision making

> Maximum Capacity of each Function
– Stores max capacity for each function without violating

QOS

9

10

12/5/2024

6

Dual-Staged Scaling

> “Pauses” unused instances
– Essentially caching them

– If unused for a significant amount of time they are
deleted

> Solves cold start problem
– Cached instances are started much faster than

completely new instances.

Key contributions

> Pre-decision scheduling
– Decoupling prediction and scheduling

> Dual-Staged Scaling
– Release

– Eviction

> Capacity Tables

11

12

12/5/2024

7

Experimental Evaluation pt. 1

> Hardware Setup
– 24 machines

> Intel Xeon E5-2650 CPU (48 logical cores)

> 128GB memory

– One machine dedicated to control plane

– Other machines are worker nodes

Experimental Evaluation pt. 2

> Baseline Systems
– Kubernetes

– Gsight

– OWL

> Functions
– Model inference

– Batch processing applications (img resize, linpack)

– Log processing

– File processing (gzip)

13

14

12/5/2024

8

Experimental Evaluation pt. 3

> Scheduling Costs
– Reduced by 81%-93% compared to Gsight

> Cold Start Latency
– Lowered by 57%-69% using container fork

> Function Density
– 54.8% higher than Kubernetes

Author’s Conclusions

> Main Points
– Pre-decision Scheduling

– Dual-Staged Scaling

– Performance Gains

– Adaptability

– Practicality

> Future Directions
– More seamless integration

15

16

12/5/2024

9

Critique: Strength

> Performance improvements
– Faster with less resources

– More practical for the intended usage

> Solves a important problem
– Saves developer money

– Maintains QOS

Critique: Weakness

> Complexity of implementation
– Requires data for ML task

– Capacity table reliance requires set up

> Edge cases
– Caching instances in edge cases cause more resource

utilization

17

18

12/5/2024

10

Critique: Evaluation

> Strong statistics measured
– Hits at the most important stats for serverless

computing

> Well documented process
– Easy to replicated if desired

> Well explained
– Easy for reader to understand why specific tests were

chosen

Gaps

> Still new
– While tested this paper has much to gain from more

tests

> More deployments of different sizes
– Testing on different machines with different hardware

> Comparisons over time
– Showing how much this could save with a real world

implementation

19

20

12/5/2024

11

Questions??

21

	Slide 1: Optimizing Resource Utilization with Jaigu
	Slide 2: Table of Contents
	Slide 3: Problems with AWS and Azure
	Slide 4: Effects of this Mindset
	Slide 5: Benefits of Solving this Problem
	Slide 6: Related Works
	Slide 7: Important Ideas
	Slide 8: Jaigu
	Slide 9: Traffic Prediction
	Slide 10: Capacity Table
	Slide 11: Dual-Staged Scaling
	Slide 12: Key contributions
	Slide 13: Experimental Evaluation pt. 1
	Slide 14: Experimental Evaluation pt. 2
	Slide 15: Experimental Evaluation pt. 3
	Slide 16: Author’s Conclusions
	Slide 17: Critique: Strength
	Slide 18: Critique: Weakness
	Slide 19: Critique: Evaluation
	Slide 20: Gaps
	Slide 21: Questions??

