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The Problem

e Client code might be throttled
= Users select memory, and given static, limited CPU

a“
Although they are short- running, serverless functions exhibit dynamic and non-trivial resource usage, which makes it difficult
for their authors to estimate correctly the amount of resources to be requested from the cloud provider”

 Provider might have overprovisioned,
under-utilized resources
= many containers are alive, and idle to stay warm



Why it’s important

 Most research has been on memory utilization
and CPU utilization for long-running jobs

* Plus, these dynamic allocation algorithms are:
= computationally expensive, and
= rely on historical data that is not available for
short-running jobs

Key Idea:

Instead of providing proportional-to-memory amount of
vCPUs, dynamically allocate vCPUs through “tiny” autoscaling

Demonstrate the efficiency and feasibility of this approach

Implemented on top of Kubernetes, overriding the default
autoscaling algorithm



Lightweight algorithms studied
(i.e. “tiny autoscalers”)

e Simple moving average (SMA)
 Exponential moving average (EMA)
Compare with:

 Holt-Winters exponential smoothing (HW)
* long short-term memory (LSTM)

Kubernetes Default:
 Vertical Pod Autoscaler (VPA) Recommender
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Fig. 1. The architecture overview of our system. We deploy a pod containing
the application on minikube. The pod is monitored and the monitoring data
is stored in a MongoDB database. A VPA is attached to the pod for resizing.



Metric Collection:

reports via “linux cgroups”

collected by a “cAdvisor” (open-source Google project)
cAdvisor integrated into kubelet (running on each node)

Also monitored with kubernetes.client.CustomObjectsApi,
and kubernetes.client.CoreV1Api,
kubernetes.client.ApiClient.

VPA
This is what they replace
with tiny autoscalers
2. updater

3. admission controller



VPA

Simple algorithm that provisions resources based on
decaying, “moving window" histogram of CPU usage

Main drawback: Does not respond to short, sudden
workload changes

HW and LSTM

Utilize machine learning based on observations of
past utilization

Authors do not integrate into VPA, and emulate
them

Require lots of historical “training” data



Their solution

Inspired by web-based CPU-usage prediction systems [24]

>
e SMA load tracker SMA(S, (t;) = Z_nifz

axs; + (1 —a)x EMA (S, (t;_1)) ifi>n

« EMA load tracker EMA (S, (t;))

Drawback: parameters need to be fine-tuned to each task

Customizations

 Tuned to prefer slight over-provisioning

e anovel “bottoming” mechanism
= prevents rapid drops in CPU allocation
= ensures quick rises in response to peak CPU usage

« All parameters tuned for much more responsive
adjustments from original SMA / EMA algorithm



Experiments

One criticism:

VPA does not update resources in-place.

so experiments here do not incorporate update
mechanism, and only consider the
recommendations. So empirical evaluation is
severely hampered.

Experiments
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Fig. 3. Result of video_processing_127m with default VPA (metrics interval 1

minute). On this workload, the default VPA recommendation stays unchanged
and cannot react with changes of the actual CPU usage.
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Fig. 4. Result of video_processing_127m with default VPA (metrics interval
1 second). The default VPA with metrics interval as 1 second can follow the
trend of the actual CPU usage at the beginning but stays unchanged in the
following warm starts.
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Fig. 5. Default ema5-3 dynamic CPU allocation (before tuning). Notice how
the default EMA method consistently allocates insufficient CPU.
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Fig. 6. Dynamic CPU allocation using ema5-3 including our tuning defined
in Section III! Notice how the tuned EMA version has a much more balanced
CPU allocation.
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Fig. 11. Comparing HW and LSTM with our ema5-3 running on
video_processing_17m workload. Notice our method follows the CPU usage
trend more closely than HW and LSTM, offering better performance.
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Fig. 12. Average CPU slack for all workloads under all autoscalers. The
applications were run several times to emulate serverless warm starts.
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Fig. 7. Cold starts for HW and LSTM compared to ema5-3 when running
image_rotate_shorter workload. Due to lack of historical information and
training, LSTM and HW cannot allocate sufficient CPU. LSTM and HW

curves overlap.
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Fig. 8. Comparing the average slack and insufficient CPU among all the
methods in this paper when running image_rotate_shorter workload in the
cold start. Due to the training process of LSTM and HW, they do not perform
well in both slack and insufficient CPU as a result of presenting a preset value.
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Fig. 9. Cold starts for HW and LSTM compared to ema5-3 when running
video_processing_17m workload in the first run. Due to lack of historical
information and training, LSTM and HW cannot allocate sufficient CPU.
LSTM and HW curves overlap
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Fig. 10. Comparing the average slack and insufficient CPU among all the
methods in this paper when running video_processing_17m workload in the
cold start. Due to the training process of LSTM and HW, they do not perform
well in both slack and insufficient CPU as a result of presenting a preset value.




