
Tiny Autoscalers for Tiny Workloads:
Dynamic CPU Allocation for
Serverless Functions
Yuxuan Zhao, Alexandru Uta

Presentation by Steven Golob

November 26, 2024

Zhao, Yuxuan, and Alexandru Uta. "Tiny autoscalers for tiny workloads: Dynamic CPU allocation
for serverless functions." 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2022.

• Client code might be throttled
▪ Users select memory, and given static, limited CPU

“Although they are short- running, serverless functions exhibit dynamic and non-trivial resource usage, which makes it difficult
for their authors to estimate correctly the amount of resources to be requested from the cloud provider”

• Provider might have overprovisioned,
under-utilized resources
▪ many containers are alive, and idle to stay warm

The Problem

• Most research has been on memory utilization
and CPU utilization for long-running jobs

• Plus, these dynamic allocation algorithms are:
▪ computationally expensive, and
▪ rely on historical data that is not available for

short-running jobs

Why it’s important

Instead of providing proportional-to-memory amount of
vCPUs, dynamically allocate vCPUs through “tiny” autoscaling

Demonstrate the efficiency and feasibility of this approach

Implemented on top of Kubernetes, overriding the default
autoscaling algorithm

Key Idea:

• Simple moving average (SMA)
• Exponential moving average (EMA)

Compare with:
• Holt-Winters exponential smoothing (HW)
• long short-term memory (LSTM)

Kubernetes Default:
• Vertical Pod Autoscaler (VPA) Recommender

Lightweight algorithms studied
(i.e. “tiny autoscalers”)

Architecture Overview

Metric Collection:

reports via “linux cgroups”

collected by a “cAdvisor” (open-source Google project)

cAdvisor integrated into kubelet (running on each node)

Also monitored with kubernetes.client.CustomObjectsApi,
and kubernetes.client.CoreV1Api,
kubernetes.client.ApiClient.

VPA

1. recommender

2. updater

3. admission controller

This is what they replace
with tiny autoscalers

VPA

Simple algorithm that provisions resources based on
decaying, “moving window” histogram of CPU usage

Main drawback: Does not respond to short, sudden
workload changes

HW and LSTM

Utilize machine learning based on observations of
past utilization

Authors do not integrate into VPA, and emulate
them

Require lots of historical “training” data

Their solution

Inspired by web-based CPU-usage prediction systems [24]

• SMA load tracker

• EMA load tracker

Drawback: parameters need to be fine-tuned to each task

Customizations

• Tuned to prefer slight over-provisioning

• a novel “bottoming” mechanism
▪ prevents rapid drops in CPU allocation
▪ ensures quick rises in response to peak CPU usage

• All parameters tuned for much more responsive
adjustments from original SMA / EMA algorithm

Experiments

One criticism:

VPA does not update resources in-place.

so experiments here do not incorporate update
mechanism, and only consider the
recommendations. So empirical evaluation is
severely hampered.

Experiments

Experiments

Experiments

Experiments

•

Conclusion

