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Overview

What is Amazon SageMaker?

® A suite of tools and services provided by Amazon 1in
assisting with the creation, training, and deployment
of machine learning models using AWS’s cloud resources.

® Machine learning requires many moving parts

® Sagemaker aims to provide a collaborative end-to-end
machine learning platform.

The Machine Learning Pipeline

Rollout

Data Preparation Model Creation

- Data Cleaning - Model Building - Deployment

- Data Aggregation - Model Training - Serving

- Data Analysis and - Model Validation - Monitoring, Logging,
Transformation - Scaled Training Explainability

- Data Validation - Visualization

- Feature Engineering
- Data Splitting



History of SageMaker

2019: SageMaker Studio

2020: SageMaker Pipelines, SageMaker Distributed, SageMaker Data Wrangler,
SageMaker Model Registry

2021: SageMaker Canvas, SageMaker Endpoints
2022: SageMaker Collaboration, Geospatial Capabilities
2023: New SageMaker Experience, Code Editor



Launch of SageMaker - 2017

Data Preparation

Model Creation

TensorFlow
BlazingText
DeepAR

Rollout

Deployment
Scaled Deployment
CloudTrail

SageMaker Neo, SageMaker Marketplace - 2018

Data Preparation

SageMaker Ground Truth

Model Creation

SageMaker Marketplace
- Sharing of a wide
variety of models for
use on AWS
infrastructure

Semantic Segmentation
Reinforcement Learning

Rollout

Deployment

Scaled Deployment
CloudTrail
Inference Pipelines



SageMaker Studio - 2019

Data Preparation Model Creation Rollout

SageMaker Ground Truth

Main Feature




Some Features of SageMaker

® Built-in Algorithms: Includes XGBoost, Linear Learner, and
K-Means for diverse ML tasks.

® Training, Tuning & Deployment: Automated tuning and
$c?1ab1e endpoints for real-time, batch, and asynchronous
inference.

® Notebook Instances: Managed Jupyter notebooks for
development.

® SageMaker Pipelines: Automates end-to-end MLOps workflows.

® Integrations & Framework Support: Works with AWS services
(S3, Lambda, Athena) and frameworks like PyTorch,
TensorFlow, and Scikit-Learn.
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JupyterLab Integration

What 1s JupyterLab?

e Interactive development environment

e Launched with a diverse array of instances
e Run multiple individual Jupyter notebooks

e Develop and test scripts for data processing
or machine learning.

e With SageMaker, provides a shared
collaborative workspace on the cloud.
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Creating a JupyterlLab

Instance for Model
Training

Creating a SageMaker Domain
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aunching SageMaker Studio

r Studio

Applications (6)
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™ Take the tour
CodeEditor
Quick tour highlights where you can find key
features and how to navigate the new experience.
See what's new and where to locate the tools you

need to be productive

Automatically available in private spaces.
Try Jupyterlab

Take the

Not ready to use the new experience? Revert to Studio Classic experience in domain settings.
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Pickup where you left off and access your Studio
Classic apps from within the updated Studio
experience.

w Studio Classic
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Monitor
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Create JupyterLab Instance

Key Features:

Shared Workspace
Comes with pre-configured environment
Code Editor - development environment
Jupyter Notebooks

Running instances
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Example Use Case:

Distributed Training

Introduction to Distributed Training

Challenge: Training models with Billions of parameters on a
single system -

Challenge: Massive datasets (e.g., terabytes of image or
text data) cannot fit into the memory of a single machine.

Challenge: Long training cycles on high-end instances can
cost tens of thousands of dollars.



Challenges in Distributed Training (Traditional Setup)

High barriers to entry:

e Setting up and maintaining clusters.
e Managing data distribution and model synchronization.
e Monitoring and debugging distributed workloads.

Risk of inefficiencies:

e Uneven resource utilization.
e Long runtimes due to poorly optimized parallelism.

Save Model Artifacts

Fetch Training data

| i
i Training code Save Inference Image

Amazon ECR

ML Training Service!

Matrix Factorization

Regression

Principal Component Analysis .
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Key Features of SageMaker Distributed Training

Scalability
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Monitoring and Debugging



C  less than 20 seconds ago

SageMaker Debugger

Monitor and profile your training jobs in real time.

® Monitoring ®
@ Profiling @

Download report

Overview

v Training job summary Insights

The following list shows a summary of Debugger rule analysis on your
Time spent in phases of training Training job details training job. Expand the following rule items to find suggestions and
additional details, such as the number of times each rule triggered,
the rule parameters, and the default threshold values to evaluate your

@ Initialization: 3m 17s 94ms End time 2020-10-19 14:06:59:580 training job performance.
@ Training loop: 20m 30s 36ms - .
@ Finalization: 130ms Job duration 1427.000 seconds Showing 8 suggestions

Total training time: 23m 47s Start time 2020-10-19 13:43:12:579

Training loop start 2020-10-19 13:46:29:674 v GPUMemorylncrease - Issue Found

Training loop end 2020-10-19 14:06:59:711 Choose a larger instance type with more memory (if it is not a

Training loop duration 1230.036 seconds memory leak) or apply model parallelism

Initialization 197.095 seconds Number of times the rule triggered: 78

Finalization 0.131 seconds Number of violations: 78

Initialization (%) 13.81% T e

Ruls ters:
Training loop (%) 86.20% ule parameters:

- - 5%
Finalization (%) 0.01% increase: 5%

patience: 1000
window: 10

Training progress over time For more information, see the ) D rute
description.

BatchSize - Issue Found

Run on a smaller instance type or increase batch size
Nov 19 01:45 PM Nov 19 01:50 PM Nov 19 01:55 PM Nov 19 02:00 PM Nov 18 02:05 PM

Number of times the rule triggered: 64

@ nitialization @ Training loop @ Finalization @ Spot interruption Number of violations: 64

Number of datapoints: 2854

model copy 1

L GPU 1 GPU2

Data parallelism

model copy 2
GPU 2

Tensor parallelism

Model parallelism







Access to AWS HPC Clusters enhancements



Real-World Use Cases

The researchers also conducted experiments in which they
used SDP to train Mask—-RCNN, a neural network with
roughly 44 million parameters, on a computer vision task
with about 118,000 training examples. The training time
was six minutes and 45 seconds on PyTorch and six
minutes 12 seconds on TensorFlow, approximately 24%
better than the previous record.

Example Use Case: Distributed Training with PyTorch

What is Distributed Training?

® Splits training tasks across multiple machines and/or
GPUs.

SageMaker's Distributed Training Framework:
® Fasily configure training clusters.

® Automatic management of resource scaling.
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Steps Taken:

- Create a Training Script for the Distributed Job

- Create an Estimator to launch training script across
instances

- Set training configurations (i.e. instance-type,
preprocessor-worker count, etc.) 1in estimator.

- Launch from JupyterLab
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Conclusion

Criticism of SageMaker

- Prototyping very difficult
- Very expensive and time consuming to prototype
- Rebuilds instances from scratch each launch
- Many libraries are proprietary to SageMaker
- Vendor lock-1in
- Document is sparse for the libraries
- Difficult dependency management

- High learning curve
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Comparison of Costs

Benefits of SageMaker

- Customizable



Questions?

Conclusion

Key Takeaways:

® Amazon SageMaker provides an end-to-end managed
environment for building, training, and deploying
machine learning models.

® SageMaker Studio is an interface for launching
instances, viewing training jobs and accessing metrics.
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