
Amazon SageMaker

Andrew K Jang
Naga Venkata Sai Rama Krishna Rohan Avireddy

Shrey Srivastava

Outline
● Introduction to Amazon SageMaker
● Core Features and Advantages
● Built-in Algorithms and Supported Endpoints
● Distributed Training Deep Dive
● Use Cases and Cost Structure
● Advanced Metrics and Optimization Tips
● Real-Time Model Monitoring
● Hybrid Deployment Strategies
● Integrating SageMaker with MLOps
● Case Study: Accelerating NLP with SageMaker
● Expanding SageMaker Applications
● Live Demo Preview
● Challenges and Future Directions
● Key Takeaways and Q&A

2



Overview
What is Amazon SageMaker?
●A suite of tools and services provided by Amazon in 
assisting with the creation, training, and deployment 
of machine learning models using AWS’s cloud resources.

●Machine learning requires many moving parts
●Sagemaker aims to provide a collaborative end-to-end 
machine learning platform.

3

The Machine Learning Pipeline

4

Rollout

- Deployment
- Serving
- Monitoring, Logging, 

Explainability
- Visualization

Data Preparation

- Data Cleaning
- Data Aggregation
- Data Analysis and 

Transformation
- Data Validation
- Feature Engineering
- Data Splitting

Model Creation

- Model Building
- Model Training
- Model Validation
- Scaled Training



History of SageMaker

5

6

2019: SageMaker Studio

2020: SageMaker Pipelines, SageMaker Distributed, SageMaker Data Wrangler, 
SageMaker Model Registry

2021: SageMaker Canvas, SageMaker Endpoints

2022: SageMaker Collaboration, Geospatial Capabilities

2023: New SageMaker Experience, Code Editor



Launch of SageMaker - 2017

7

Rollout

Deployment
Scaled Deployment
CloudTrail

Data Preparation Model Creation

TensorFlow
BlazingText
DeepAR

SageMaker Neo, SageMaker Marketplace - 2018

8

Rollout

Deployment
Scaled Deployment
CloudTrail
Inference Pipelines

Data Preparation

SageMaker Ground Truth

Model Creation

SageMaker Marketplace
- Sharing of a wide 

variety of models for 
use on AWS 
infrastructure

Semantic Segmentation
Reinforcement Learning



SageMaker Studio - 2019

9

RolloutData Preparation

SageMaker Ground Truth

Model Creation

Main Feature

10



Some Features of SageMaker

● Built-in Algorithms: Includes XGBoost, Linear Learner, and 
K-Means for diverse ML tasks.

● Training, Tuning & Deployment: Automated tuning and 
scalable endpoints for real-time, batch, and asynchronous 
inference.

● Notebook Instances: Managed Jupyter notebooks for 
development.

● SageMaker Pipelines: Automates end-to-end MLOps workflows.
● Integrations & Framework Support: Works with AWS services 
(S3, Lambda, Athena) and frameworks like PyTorch, 
TensorFlow, and Scikit-Learn.

11

JupyterLab Integration
What is JupyterLab?
● Interactive development environment
● Launched with a diverse array of instances
● Run multiple individual Jupyter notebooks
● Develop and test scripts for data processing 

or machine learning.
● With SageMaker, provides a shared 

collaborative workspace on the cloud.

12



Creating a JupyterLab 
Instance for Model 
Training

13

Creating a SageMaker Domain

14



Launching SageMaker Studio

15

16



Create JupyterLab Instance
Key Features:

- Shared Workspace
- Comes with pre-configured environment
- Code Editor - development environment
- Jupyter Notebooks

17

18



Example Use Case: 
Distributed Training

19

Introduction to Distributed Training

Challenge: Training models with Billions of parameters on a 
single system -

Challenge: Massive datasets (e.g., terabytes of image or 
text data) cannot fit into the memory of a single machine.

Challenge: Long training cycles on high-end instances can 
cost tens of thousands of dollars.



Challenges in Distributed Training (Traditional Setup)

High barriers to entry:

● Setting up and maintaining clusters.
● Managing data distribution and model synchronization.
● Monitoring and debugging distributed workloads.

Risk of inefficiencies:

● Uneven resource utilization.
● Long runtimes due to poorly optimized parallelism.

Why Choose SageMaker for Distributed Training?



Key Features of SageMaker Distributed Training

Scalability



Monitoring and Debugging



Support for Different kinds of distributed training strategies





Access to AWS HPC Clusters enhancements



Real-World Use Cases

The researchers also conducted experiments in which they 
used SDP to train Mask-RCNN, a neural network with 
roughly 44 million parameters, on a computer vision task 
with about 118,000 training examples. The training time 
was six minutes and 45 seconds on PyTorch and six 
minutes 12 seconds on TensorFlow, approximately 24% 
better than the previous record.

Example Use Case: Distributed Training with PyTorch
What is Distributed Training?

● Splits training tasks across multiple machines and/or 
GPUs.

SageMaker's Distributed Training Framework:

● Easily configure training clusters.

● Automatic management of resource scaling.

34



35

Notebook
Instance

estimator.py

training.py

Instance 1

training.py

Instance 2

training.py

Instance 2

training.py

Steps Taken:
- Create a Training Script for the Distributed Job
- Create an Estimator to launch training script across 

instances
- Set training configurations (i.e. instance-type, 

preprocessor-worker count, etc.) in estimator.
- Launch from JupyterLab

36



Conclusion

37

Criticism of SageMaker
- Prototyping very difficult

- Very expensive and time consuming to prototype
- Rebuilds instances from scratch each launch

- Many libraries are proprietary to SageMaker
- Vendor lock-in
- Document is sparse for the libraries
- Difficult dependency management

- High learning curve
-

38



Comparison of Costs

39

Benefits of SageMaker
- Customizable
-

40



Questions?

41

Conclusion
Key Takeaways:

● Amazon SageMaker provides an end-to-end managed 
environment for building, training, and deploying 
machine learning models.

● SageMaker Studio is an interface for launching 
instances, viewing training jobs and accessing metrics.

42


