
Understanding Container Isolation:
An Investigation of Performance Implications of Container
Runtimes

School of Engineering and Technology
University of Washington Tacoma
9th International Workshop on Container Technologies and Container Clouds
Middleware 2023

Naman Bhaia, Robert Cordingly, Ling-Hong Hung, Wes Lloyd
nbhaia@uw.edu

1

Outline
● Background and Motivation

● Research Question

● Methodology

● Results

● Conclusions

2

Motivation: Why Containers?
● Modern CPU designs have ever increasing number of CPU cores to improve

performance.
● Dilemmas:

○ How should these powerful servers be best shared to run multiple-user
workloads concurrently?

○ Which abstractions minimize performance interference and "sandbox"
overhead?

● Containers vs VMs: Containers are more lightweight and efficient
○ Allows more containers to run on the same host.

● Containers vs running applications on the host: Containers provide improved
security and isolation.

● Identifying Containers as best of both extremes, this study focuses on diving
deeper into containers to identify the container runtime with the best resource
isolation capabilities.

3

● Virtualization hypervisors abstract the system CPU, memory, and I/O devices
introducing overhead resulting from sharing the hardware.

● Container overhead is from the Linux kernel at the OS level.

Prior work

1. Benchmarks run in containers performed better than VMs due to the minimal
overhead added by containers. [1]

2. Performance of runc, gVisor, and Kata containers were found to be in the
following order: runc > Kata > gVisor. [2]

This paper extends the prior work by comparing concurrent performance of popular
container runtimes.

[1] R oberto Morabito, Jimmy Kjällman, and Miika Komu. 2015. Hypervisors vs. Lightweight Virtualization: A Performance Comparison. In
2015 IEEE International Conference on Cloud Engineering. 386–393. https://doi.org/10.1109/IC2E.2015.74
[2] Xingyu Wang, Junzhao Du, and Hui Liu. 2022. Performance and isolation analysis of RunC, gVisor and Kata Containers runtimes. Cluster
Computing 25 (04 2022), 1–17. https://doi.org/10.1007/s10586-021-03517-8

Container Runtime Performance Overhead

4

● Our study focuses on 3 runtimes: runc (Docker), runsc (gVisor) and crun.
● gVisor's container runtime engine, runsc, implements it own application kernel (Sentry)

and file system (tempfs).
○ Pro: Improved isolation between container runs.
○ Con: Increased time for disk I/O and system calls.

● Previous work found that gVisor was at least 2.2x time slower at making system calls,
and 11x slower at reading small files as compared to Docker.[3]

○ This performance loss is because gVisor’s architecture has considerable
duplication of functionality in the Sentry and tempfs.

● crun was developed in C to improve on the efficiency of Golang based container runtimes
(like runc and runsc). [4][5]

○ As a result, crun’s compiled binaries are 50 times smaller than runc.

[3] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2019. The True Cost of
Containing: A gVisor Case Study. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX, Renton, WA.
[4] Giuseppe Scrivano Dan Walsh, Valentin Rothberg. 2020. An introduction to crun, a fast and low-memory footprint container runtime.
https://www.redhat.com/sysadmin/introduction-crun.
[5] Redhat. 2023. crun Source Code. https://github.com/containers/crun.

Differences in Container Runtimes

5

Outline
● Background and Motivation

● Research Question

● Methodology

● Results

● Conclusions

6

Research Question - Performance Isolation

● What is the degree of performance isolation

provided by current container runtimes?
○ Do some runtimes provide better isolation when

containers compete for identical resources

simultaneously (e.g., CPU, memory)?

7

● Background and Motivation

● Research Question

● Methodology

● Results

● Conclusions

Outline

8

Worfklow

9

● To choose a complementary set of benchmarks, we first

profiled the resource utilization of popular system

benchmarks using the Container Profiler.

● The Container Profiler is a Linux-based tool that enables

resource utilization profiling of scripts and container-based

tasks.[6][7]

● It collects metrics related to CPU, memory, disk, and

network utilization at the VM, container, and process levels.

[6] Hoang, V., Hung, L.H., Perez, D., Deng, H., Schooley, R., Arumilli, N., Yeung, K.Y., Lloyd, W., Container Profiler: Profiling Resource Utilization
of Containerized Big Data Pipelines, GigaScience, Volume 12, (August) 2023, giad069.
[7] https://github.com/wlloyduw/ContainerProfiler

Benchmark Profiling w/ Container Profiler

10

Container Parallel Test Suite (CoPTS)

11

● We next implemented CoPTS
● CoPTS uses Bash and Python scripts to orchestrate benchmark

runs across container runtimes in parallel. [8]

● The configuration options are:
○ Choice of benchmarks: Bonnie++, Linpack, Noploop, Stream, Sysbench,

Unixbench, and Y-Cruncher
○ Choice of runtime: Supported Runtimes: runc (Docker), runsc (gVisor),

runnc (Nabla) and crun runtime
○ Test Configurations: “x y z”, where,

■ ‘x’ - number of processes to create
■ ‘y’ - number of containers to launch sequentially
■ ‘z’ - number of benchmark runs per container

● CoPTS outputs aggregated benchmarks results in a tabular format.

[8] https://github.com/namanbhaia/ContainerParallelTestSuite

Container Runtimes

12

● Container runtimes were selected based on their

inherent differences, adoption in industry, and state of

active maintenance.

● runc (Docker)

● runsc (gVisor)

● crun

● When reviewing container runtimes, we rejected

Kata 1.0, Nabla, and RKT as they are no longer supported.

Benchmarks

13

Benchmark Benchmark Configuration Resource Tested

Linpack Matrix size: 600x600

CPUNoploop 6 Billion NOP instructions

Sysbench-CPU 20 million prime numbers

Stream Array has 10 million elements

MemorySysbench-Memory 100GB written in 1KB blocks

Y-Cruncher 100 million digits of pi

Each container instance was allotted 2 cores and 4GB of memory.

For this paper we ran the following benchmarks using CoPTS,
first in isolation, and then with 10, 20, 30 and 40 parallel runs.

EC2 Configurations

● Initial measurements were taken on a t2.micro instance:
○ 1 vCPU

○ 1 GiB of memory

○ Intel Xeon Scalable

○ 3.3 GHz CPU Clock Speed

● Final measurements, we used a c5d.metal instance
○ 96 vCPUs

○ 192.0 GiB of memory

○ Intel Xeon Platinum 8275CL

○ 3 GHz CPU clock speed

14

Outline
● Background and Motivation

● Research Question

● Methodology

● Results

● Conclusions

15

Experiment-0: Benchmark Linux CPU Metrics

16

All benchmarks were

profiled using

Container Profiler on a

c5.xLarge AWS EC2

instance with 4 vCPUs

and 8 GiB RAM.

Experiment-1: CPU Benchmark - Linpack

17

● runsc’s performance loss
at 40 concurrent runs vs.
1 isolated run was 2x
greater than runc.

● Throughput and
performance loss was
almost identical for runc
and crun.

● For Linpack we observed
the following ordering of
container CPU isolation:
crun > runc > runsc.

Experiment-1: CPU Benchmark - Noploop

18

● Noploop performance and
degradation were similar
across all container
runtimes.

● No inference on which
container runtimes
provided better CPU
isolation.

● For an isolated run, runsc
and crun performed poorly
compared to runc.

● However, for 40 concurrent
runs, crun outperformed
runsc and runc.

● For Sysbench CPU, we infer
the following order for CPU
isolation: crun > runc >
runsc.

Experiment-1: CPU Benchmark - Sysbench CPU

19

Experiment-2: Memory Benchmark - Stream

20

● runsc performed poorly vs.
runc and crun when scaling
up the number of concurrent
runs.

● runsc’s performance loss
with 40 concurrent runs vs. 1
isolated run, however, was
less than runc.

● For Stream we infer the
following order for memory
isolation: runsc > crun >
runc.

Experiment-2: Memory Benchmark - Sysbench Memory

21

● Runsc performed poorly
compared to runc and crun
across all configurations.

● Runsc, however, had slightly
less performance loss at 40
concurrent runs vs. runc and
crun.

● We observed the following
order of memory isolation:
runsc > crun > runc.

Experiment-2: Memory Benchmark - Y-Cruncher

22

● runsc performed twice as
poorly as runc and crun.

● Performance loss when
scaling up to 40 concurrent
runs was nearly five times
less than runc and crun for
runsc.

● For y-cruncher we infer the
following order for memory
isolation: runsc > runc > crun

Benchmark Resource and
Metric

Performance Loss comparing 1 vs. 40 Parallel Runs (%)

runc (Docker) runsc (gVisor) crun

Linpack CPU (KFLOPs) ~13 ~24 ~12

Noploop CPU Clock Speed (Ghz) ~8 ~7.5 ~7.9

Sysbench CPU CPU (Events/sec) ~51 ~50 ~25

Stream Memory (MB/sec) ~65 ~60 ~63

Sysbench Memory Memory (Mb/sec) ~8 ~6 ~7

Y-Cruncher Memory perf. (sec) &
overhead (%)

~22 ~5 ~25

Average - 27.833% 25.4166% 23.316%

Result Summary: Benchmark Performance

23

Outline
● Background and Motivation

● Research Question

● Methodology

● Results

● Conclusions

24

● runsc’s CPU and Memory performance was consistently
poorer than runc and crun.

● crun and runc performance was mostly similar with crun
outperforming runc marginally.

● crun had less performance degradation compared to runc
for all benchmarks except y-cruncher.

● runsc provided better isolation only for memory
benchmarks but crun and runc offered better CPU
isolation.

Conclusion Summary

25

25

26

This research has been supported by AWS Cloud Credits for Research.

Thank You!

