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Motivation: Why Containers?
● Modern CPU designs have ever increasing number of CPU cores to improve 

performance.
● Dilemmas: 

○ How should these powerful servers be best shared to run multiple-user 
workloads concurrently?  

○ Which abstractions minimize performance interference and "sandbox" 
overhead?

● Containers vs VMs: Containers are more lightweight and efficient
○ Allows more containers to run on the same host.

● Containers vs running applications on the host: Containers provide improved 
security and isolation. 

● Identifying Containers as best of both extremes, this study focuses on diving 
deeper into containers to identify the container runtime with the best resource 
isolation capabilities. 
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● Virtualization hypervisors abstract the system CPU, memory, and I/O devices 
introducing overhead resulting from sharing the hardware. 

● Container overhead is from the Linux kernel at the OS level. 

Prior work 

1. Benchmarks run in containers performed better than VMs due to the minimal 
overhead added by containers. [1] 

2. Performance of runc, gVisor, and Kata containers were found to be in the 
following order: runc > Kata  > gVisor. [2]

This paper extends the prior work by comparing concurrent performance of popular 
container runtimes. 

[1] R oberto Morabito, Jimmy Kjällman, and Miika Komu. 2015. Hypervisors vs. Lightweight Virtualization: A Performance Comparison. In 
2015 IEEE International Conference on Cloud Engineering. 386–393. https://doi.org/10.1109/IC2E.2015.74
[2] Xingyu Wang, Junzhao Du, and Hui Liu. 2022. Performance and isolation analysis of RunC, gVisor and Kata Containers runtimes. Cluster 
Computing 25 (04 2022), 1–17. https://doi.org/10.1007/s10586-021-03517-8

Container Runtime Performance Overhead
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● Our study focuses on 3 runtimes: runc (Docker), runsc (gVisor) and crun.
● gVisor's container runtime engine, runsc, implements it own application kernel (Sentry) 

and file system (tempfs). 
○ Pro: Improved isolation between container runs. 
○ Con: Increased time for disk I/O and system calls.

● Previous work found that gVisor was at least 2.2x time slower at making system calls, 
and 11x slower at reading small files as compared to Docker.[3]

○ This performance loss is because gVisor’s architecture has considerable 
duplication of functionality in the Sentry and tempfs.

● crun was developed in C to improve on the efficiency of Golang based container runtimes 
(like runc and runsc). [4][5]

○ As a result, crun’s compiled binaries are 50 times smaller than runc.

[3] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-Dusseau, and Remzi H.  Arpaci-Dusseau. 2019. The True Cost of 
Containing: A gVisor Case Study. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX, Renton, WA.
[4] Giuseppe Scrivano Dan Walsh, Valentin Rothberg. 2020. An introduction to crun, a fast and low-memory footprint container runtime. 
https://www.redhat.com/sysadmin/introduction-crun.
[5] Redhat. 2023. crun Source Code. https://github.com/containers/crun.

Differences in Container Runtimes
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Research Question - Performance Isolation

● What is the degree of performance isolation 

provided by current container runtimes? 
○ Do some runtimes provide better isolation when 

containers compete for identical resources 

simultaneously (e.g., CPU, memory)?
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Worfklow
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● To choose a complementary set of benchmarks, we first 

profiled the resource utilization of popular system 

benchmarks using the Container Profiler.

● The Container Profiler is a Linux-based tool that enables 

resource utilization profiling of scripts and container-based 

tasks.[6][7] 

● It collects metrics related to CPU, memory, disk, and 

network utilization at the VM, container, and process levels.

[6] Hoang, V., Hung, L.H., Perez, D., Deng, H., Schooley, R., Arumilli, N., Yeung, K.Y., Lloyd, W., Container Profiler: Profiling Resource Utilization 
of Containerized Big Data Pipelines, GigaScience, Volume 12, (August) 2023, giad069.
[7]  https://github.com/wlloyduw/ContainerProfiler 

Benchmark Profiling w/ Container Profiler
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Container Parallel Test Suite (CoPTS)
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● We next implemented CoPTS
● CoPTS uses Bash and Python scripts to orchestrate benchmark 

runs across container runtimes in parallel. [8]

● The configuration options are: 
○ Choice of benchmarks: Bonnie++, Linpack, Noploop, Stream, Sysbench, 

Unixbench, and Y-Cruncher
○ Choice of runtime: Supported Runtimes: runc (Docker), runsc (gVisor), 

runnc (Nabla) and crun runtime
○ Test Configurations: “x y z”,  where, 

■ ‘x’ - number of processes to create
■ ‘y’ - number of containers to launch sequentially
■ ‘z’ - number of benchmark runs per container

●  CoPTS outputs aggregated benchmarks results in a tabular format. 

[8] https://github.com/namanbhaia/ContainerParallelTestSuite

Container Runtimes
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● Container runtimes were selected based on their 

inherent differences, adoption in industry, and state of 

active maintenance.

● runc (Docker)

● runsc (gVisor)

● crun

● When reviewing container runtimes, we rejected

Kata 1.0, Nabla, and RKT as they are no longer supported.



Benchmarks
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Benchmark Benchmark Configuration Resource Tested

Linpack Matrix size: 600x600

CPUNoploop 6 Billion NOP instructions

Sysbench-CPU 20 million prime numbers

Stream Array has 10 million elements

MemorySysbench-Memory 100GB written in 1KB blocks

Y-Cruncher 100 million digits of pi

Each container instance was allotted 2 cores and 4GB of memory. 

For this paper we ran the following benchmarks using CoPTS,
first in isolation, and then with 10, 20, 30 and 40 parallel runs.

EC2 Configurations

● Initial measurements were taken on a t2.micro instance:
○ 1 vCPU

○ 1 GiB of memory

○ Intel Xeon Scalable

○  3.3 GHz CPU Clock Speed

● Final measurements, we used a c5d.metal instance
○ 96 vCPUs

○ 192.0 GiB of memory

○ Intel Xeon Platinum 8275CL

○ 3 GHz CPU clock speed
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Experiment-0: Benchmark Linux CPU Metrics
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All benchmarks were 

profiled using 

Container Profiler on a 

c5.xLarge AWS EC2 

instance with 4 vCPUs 

and  8 GiB RAM.



Experiment-1: CPU Benchmark - Linpack
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● runsc’s performance loss 
at 40 concurrent runs vs. 
1 isolated run was 2x 
greater than runc.

● Throughput and 
performance loss was 
almost identical for runc 
and crun. 

● For Linpack we observed 
the following ordering of 
container CPU isolation: 
crun > runc > runsc. 

Experiment-1: CPU Benchmark - Noploop
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● Noploop performance and 
degradation were similar 
across all container 
runtimes.

● No inference on which 
container runtimes 
provided better CPU 
isolation.



● For an isolated run, runsc 
and crun performed poorly 
compared to runc.

● However, for 40 concurrent 
runs, crun outperformed 
runsc and runc. 

● For Sysbench CPU, we infer 
the following order for CPU 
isolation: crun > runc > 
runsc. 

Experiment-1: CPU Benchmark - Sysbench CPU
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Experiment-2: Memory Benchmark - Stream
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● runsc performed poorly vs. 
runc and crun when scaling 
up the number of concurrent 
runs. 

● runsc’s performance loss 
with 40 concurrent runs vs. 1 
isolated run, however, was 
less than runc. 

● For Stream we infer the 
following order for memory 
isolation: runsc > crun > 
runc.



Experiment-2: Memory Benchmark - Sysbench Memory
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● Runsc performed poorly 
compared to runc and crun 
across all configurations. 

● Runsc, however, had slightly 
less performance loss at 40 
concurrent runs vs. runc and 
crun. 

● We observed the following 
order of memory isolation: 
runsc > crun > runc.

Experiment-2: Memory Benchmark - Y-Cruncher
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● runsc performed twice as 
poorly as runc and crun.

● Performance loss when 
scaling up to 40 concurrent 
runs was nearly five times 
less than runc and crun for 
runsc. 

● For y-cruncher we infer the 
following order for memory 
isolation: runsc > runc > crun



Benchmark Resource and 
Metric

Performance Loss comparing 1 vs. 40 Parallel Runs (%)

runc (Docker) runsc (gVisor) crun

Linpack CPU (KFLOPs) ~13 ~24 ~12

Noploop CPU Clock Speed (Ghz) ~8 ~7.5 ~7.9

Sysbench CPU CPU (Events/sec) ~51 ~50 ~25

Stream Memory (MB/sec) ~65 ~60 ~63

Sysbench Memory Memory (Mb/sec) ~8 ~6 ~7

Y-Cruncher Memory perf. (sec) & 
overhead (%)

~22 ~5 ~25

Average - 27.833% 25.4166% 23.316%

Result Summary: Benchmark Performance

23

Outline
● Background and Motivation

● Research Question

● Methodology 

● Results

● Conclusions

24



● runsc’s CPU and Memory performance was consistently 
poorer than runc and crun.

● crun and runc performance was mostly similar with crun 
outperforming runc marginally. 

● crun had less performance degradation compared to runc 
for all benchmarks except y-cruncher.

● runsc provided better isolation only for memory 
benchmarks but crun and runc offered better CPU 
isolation. 

Conclusion Summary
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