
Rendezvous: Where 
Serverless Functions 
Find Consistency
Mary Yang, Micaela Nomakchteinsky, Xiaoqing Zhou
Group 8

Rendezvous: Where Serverless Functions Find Consistency [1]

2

● Authors:
● Mafalda Sofia Ferreira INESC-ID, Instituto Superior Técnico, Universidade de Lisboa João

○ Ph.D. student in Computer Science and Engineering at Insituto Superior Técnico, 

Universidade de Lisboa

● João Ferreira Loff INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

○ Ph.D. candidate at Insituto Superior Técnico, Universidade de Lisboa

● João Garcia INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

○ Assistant Professor at INESC-ID focused in Distributed Systems

● Institute of Systems and Computer Engineering - Research and Development

● Higher Technical Institute

● University of Lisbon, Portugal



Talk Outline

3

● Introduction

● Related Work

● Rendezvous Framework

● Key Contributions of Rendezvous

● Experimental Evaluation

● Conclusions

● Critique

● Gaps

Problems and Challenges
● Functions used in Function-as-a-Service platforms are executed without state and 

independently of each other
● How can functions communicate with each-other, then?

○ Cloud providers have limited resources to mitigate this issue.
○ Developers have to rely on storage layers to share state between functions.
○ Developers want to have their data replicated across regions

■ Issues with delays in propagation of data
■ Access of outdated information

● Question: Is there a way to maintain consistency of data in serverless 
applications using datastores, reducing the chance of reading outdated 
information?

4



Problems and Challenges
● Geo-replicated data stores – problem with latency and outdated information as 

discussed previously.
● Lack of Coordination between functions - Functions rely on indirect communication 

meaning there is not a way to track if data produced by one function is available to other 
functions that need it

● Restriction of Datastore modifications - cloud providers don't allow direct 
modification of the datastores, so developers can’t insert and retrieve metadata. Lack of 
ways to monitor alterations to the objects in the database.
○ Ex: if application needs to add timestamp to data they might not be able to add this 

easily

5

Background and Related Work
● Communication in Serverless Applications

○ FMI and Boxer – focused on quick and direct communication between functions, instead of relying on 
storage systems for certain tasks

○ Pocket – focused on sharing temporary info between functions
○ Glider - focused on enhancing data movement between functions, but not consistency [2]

● Coordination in Serverless Applications
○ Cloud providers offer orchestration techniques to build stateful workflows, however they might miss 

inconsistencies across different parts of a system.
● Cross-Service Consistency

○ Antipode: Works to ensure all parts of a distributed application are in sync. Keeps track of information 
about service dependencies and ordering of events.

○ FlightTracker - used by Facebook. Uses a central place to keep track of metadata to keep track of what 
all services are doing.

● What is missing from previous work? 
○ The above techniques often lack a specific feature that Rendezvous combines to work with serverless 

systems
■ Consistency semantics, specialized coordination for 

serverless systems, efficient synchronization, and a centralized approach
6



Generic Workflow
Post-Notification 
Application

1. User Request for New Post:
User initiates a request to upload a new post, 
triggering a new writer function invocation.

2. Writing Post Data:
Writer function stores the 
post's data in write_p within 
the underlying datastore 
located in the EU region.
Data is asynchronously 
propagated to the US region.

3. Notification Event 
Queueing:
The identifier (p_id) 
generated from the 
write operation is 
included in a 
notification event.
Writer function 
queues this event in 
write_N.

4. Triggering Reader Function:
Upon replication of data to the US region, an event triggers the 
reader function.
The post's identifier (p_id) is extracted from the event in read_N.

5. Fetching Post Content:
The reader function retrieves 
the post's content from the US 
datastore (read_p) using the 
extracted identifier (p_id).

6. Delivering Notification 
and Post Content:
The notification along 
with the post contents 
are delivered to the 
original poster's 
followers.

5. Fetching Post Content:
The reader function retrieves 
the post's content from the US 
datastore (read_p) using the 
extracted identifier (p_id).

Notification event 
reaches the US 
before post data is 
available! Reader 
may retrieve 
outdated 
information!!!

7

Fig 1. Example of a generic request workflow in the PostNotification application

Rendezvous Framework - Architecture 
The metadata server stores branching details in 
requests, branches, and subscribers. It tracks open 
and closed branches per request and uses subscriber 
data structures to create queues of new branch IDs 
for the datastore monitor.

Datastore Monitor monitors every new 
branch created with branch ID (bid) 
provided by the metadata server. 
If the datastore is available for the region it 
notifies the Metadata server to close the 
branch

The shim layer extends 
typical datastore 
actions, adding 
Rendezvous metadata 
to track data branches

Registering new branches to 
a MetaData Server is done by 
calling a Rendezvous API 
for Opening Branches, 
specifying the targeted 
database

Rendezvous API for Closing 
Branches accompanies the 
DataStore Monitor for closing 
branches. Blocks read request 
through a Waiting call while 
write requests are not yet visible 
in the region of the request 8

Fig 2. Rendezvous Workflow



Post-Notification Application with Rendezvous

User Request for New Post:
User initiates a request to 
upload a new post, 
triggering a new writer 
function invocation.

Writer function is 
enhanced to a call to the 
Shim layer which includes 
the branch ID (bid)

A branch for the new write 
post is registered using the 
API for creating branches, 
then the metadata creates 
and opens the branch.

- OPENED status for 
both EU and US

- Returns bid

A Wait Request function is 
called to block read operations 
while branches are OPENED in 
the US. When all branches are 
closed in the US , the 
WaitRequest is released, so the 
reader can read the post

US is notified by the metadata server 
when a new branch is created

DataStore Monitor monitors 
the post and its bid

9

Fig 3. Integration with Rendezvous

Integration, Optimizations, and Fault Tolerance

● Integration with Cloud Platforms
○ Cloud providers can allow developers to enable Rendezvous when configuring their 

function
○ Cloud providers would take care of wrapping read and write calls to datastores 

through the shim layer (write operations register new branches with included 
metadata, read operation automatically perform WaitRequests)

● Optimizations
○ Local access can be achieved by placing a metadata server node in each region the 

function is executed, reducing latency and fault tolerance
○ Developers can configure the WaitRequests through timeouts or bypasses.

● Fault Tolerance
○ Achieved through replication of metadata server across regions
○ Uses a call context to monitor connections to the database 

10



Key Contributions
● Registering the branch for the write post operation for all regions. 

● The write operation to the datastore includes branch metadata (bid, regions, 
the datastore, and its OPENED or CLOSED status)

● Read operations are blocked with Wait Requests to ensure consistency across 
regions

Prevents inconsistencies in function outputs caused by weak consistency 
guarantees in geo-replicated settings. Rendezvous ensures data consistency and 
prevents the reading of outdated data.

11

Evaluation
Metrics:
1) consistency window
2) scalability

Experimental Setup:
● a pipeline of two Lambda functions
● the writer in EU and the reader in US
● notification queue: AWS SNS with notifications objects
● four backends: Redis, DynamoDB, MySQL, and S3
● deploy one server per region, provisioned in AWS EC2 t2.xlarge instances with 4 vCPU 

and 16 GiB RAM
● configured 1000 different posts for each evaluation run

12



Consistency window
The consistency window: the time between the writer function writing the post to the 
datastore in the EU and the post being read by the reader in the US

● Varies a lot depending on the 
post’s storage, which is a direct 
consequence of the duration of 
the WaitRequest call

● Most of the increase in the 
consistency window stems 
from the latency of replication 
specific to each datastore

the baseline bars the original setup

the above bars the setup with Rendezvous. 13

Fig 4. Variation of consistency window for each datastore with and without Rendezvous.

Scalability: Experiment 1 - Datastores

Experimental Setup: 200 threads per client program, 
AWS EC2 t2.large, 2 vCPUs, 8 GiB RAM, in the same 
region as the server (EU)

Experiment 1: 
● vary the number of datastores 

written to by a single function 
using a fixed number of 200 
concurrent clients

Results:
● the throughput remains 

approximately the same when 
ranging from 1 to 20 datastores

● adequate performance if we do 
not expect functions to employ a 
number of datastores significantly 
larger than 20

14

Fig 5. Relationship between throughput and latency observed in a Rendezvous 
metadata server by varying the number of (i) datastores, and (ii) clients.



Scalability: Experiment 2 - Clients

Experiment 2: 
● change the number of clients 

with a single datastore write 
operation

Results:
● the throughput increases with 

the number of concurrent clients, 
with a peak of approximately 
110ms of latency with 1000 
clients issuing close to 9000 
requests per second.

● the number of clients has a 
greater impact on the latency 
than datastores

15

Fig 5. Relationship between throughput and latency observed in a Rendezvous 
metadata server by varying the number of (i) datastores, and (ii) clients.

Conclusions

● Addresses the issue of inconsistent executions due to the inherent latency of 
replication, when sharing state between functions.

● Enhances stateless functions by leveraging replicated datastores. 
● Enables the synchronization of replicated data across different executions, 

aiming to eliminate inconsistent read operations while maintaining the 
consistency semantics of datastores.

● Can seamlessly integrate into cloud platforms and offer complete transparency 
to developers.

16



Critique: Strengths

● Rendezvous framework provides consistency of data in FaaS applications without incurring much 

overhead compared to generic workflows.

○ Enforcing consistency has a low effect on overhead, never exceeding 70ms and averaging 7% 

across different datastores.

○ Can be smoothly integrated into cloud platforms, providing developers with full transparency.

● Concrete examples to illustrate the difficulties of maintain consistency across geo-replicated data stores

○ Used the post-notification workflow to introduce the data inconsistency problem. 

The paper also demonstrated the importance of the Rendezvous framework.

● Rendezvous: transparency & flexibility for developers

○ Enable more control and more synchronized state for users. Meanwhile, allow trading-off 

correctness for performance.
17

Critique: Weaknesses

● Rendezvous depends on infrastructure components such as the Datastore Monitor and the 

shim layer. It lacks fault-tolerance guarantees, and it’s hard to recover from potential crash. 

○ Possible solution: implement replication of these components.

● The authors used terms before explaining them: 

○ "Consistency Window" is mentioned in sec 3.3, but the definition (explanation) is in sec 4.2.

● Poor figure layout

○ In the middle of a sentence, turn the page and insert the figure. Affect the reading 

experience.

18



Critique: Evaluation

● Limited datastore is tested.

○ Only 4 datastores were tested. S3 belongs to one of the cloud provider, 

AWS. But other datastores from other cloud provider could be tested. In this 

way, the application range of the Rendezvous framework is more wide.

● Insufficient test of scalability

○ Number of datastores is greater than 20 is not tested.

19

Remaining Gaps

● Large customized workload.

○ For practical usage, now the application only supports AWS as cloud provider and 4 kinds 

of datastores. But there are many cloud providers and more datastore types. For every 

type, the datastore monitor needs to be implemented. And their updates may need more 

adjustments. 

● Limited range of industry usage.

○ Usage of Rendezvous introduces more time overhead to ensure consistency. According to 

the evaluation part, this additional latency will influences with the number of clients. Thus 

the application scenarios are narrowed to high correctness requirements, tolerance to 

latency or small number of parallelled clients.
20



Q&A

● Thanks for listening

21

References
1. Ferreira, M. S., Loff, J. F., & Garcia, J. (2023, October). Rendezvous: Where Serverless 

Functions Find Consistency. In Proceedings of the 4th Workshop on Resource 
Disaggregation and Serverless (pp. 51-57).

2. Barcelona-Pons, D., García-López, P., & Metzler, B. (2023, November). Glider: Serverless 
Ephemeral Stateful Near-Data Computation. In Proceedings of the 24th International 
Middleware Conference on ZZZ (pp. 247-260).

22


