
Evicting for the greater good: The Case for
Reactive Checkpointing in serverless
computing
Rafael Alexandre, Rodrigo Bruno, João Barreto, Rodrigo Rodrigues
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Tcss562 Paper presentation
Review by Team 6: Lifan Cao, Cynthia Pang
December 7, 2023

Talk outline

> Introduction (3-5)

> Related work (6)

> Methodology, discussion, and key contributions (7-10)

> Experimental Evaluation (11-14)

> Critique (15-18)

2

Introduction
> Introduce a system design named R-Check
> R-check can efficiently migrate function instances when

interruptions occur
> Automatic, transparent, efficient

3

Introduction: problem
> Cheaper ephemeral resources that could be evicted at any

moment if a high-priority job needs

> E.g.
> AWS spot instance

4

Introduction: problem - 2
> Evictions may cause potential data loss and inefficiency
>
> Require developers:
> 1. Implement idempotent code.
> 2. Either can use proactive checkpointing or log (relate work)

5

Related work

> 1. Checkpointing
> E.g. Kappa: a programming framework for serverless computing

(https://dl.acm.org/doi/10.1145/3419111.3421277)

> 2. Log and replay
> E.g. Beldi: Fault-tolerant and transactional stateful serverless

workflows (https://dl.acm.org/doi/10.5555/3488766.3488833)

> Increases the runtime and budget

6

https://dl.acm.org/doi/10.1145/3419111.3421277
https://dl.acm.org/doi/10.5555/3488766.3488833

R-check
> R-Check, a reactive and fully transparent checkpoint based

framework for serverless functions
> Take use of the termination grace period, snapshot state and

resume later
> Increase efficiency and reliability of cloud-based applications

> Most of the migrations require less than 2 seconds

7

CRIU
> R-Check is based on the methodology of CRIU (Checkpoint Restore in

Userspace)
> CRIU is an open-source project designed for the Linux operating

system
> CRIU operates in two phases: checkpoint and restore
> https://criu.org/Main_Page

>
> R-check is a technique at system level: it should be supported by

cloud services provider, no extra code/effort needed for developers

8

Serverless fault tolerance
> Evictions are controlled faults

> Unexpected crashes (e.g. failures caused by a sudden power outage)
are not tolerated in R-check

> These failures are also not tolerated in IaaS and FaaS
> Equating the level of fault tolerance to IaaS/FaaS, also helps to avoid

paying expensive runtime overheads

9

Key contributions

> This paper proposes R-Check, a system that reactively checkpoints
and restores functions when evictions occur, to overcome function
failures and relax idempotency requirements of serverless
platforms

> This approach adds marginal overheads to the overall execution
time and requires no effort from application developers

10

Evaluation
Figure 1 in the paper examines how a FaaS system manages its
resources by removing underused function instances. It explores
how different minimum load thresholds affect resource use and
function removal rates. The goal is to improve resource
allocation by identifying and removing low-utilization instances,
potentially reducing overall resource consumption and energy
use in the cluster. The study tests various threshold settings to
understand their impact on resource use and function execution
rates, aiming to find the most effective way to optimize resource
allocation in the FaaS cluster.

➢ Resource Usage Analysis：

11

Evaluation
Figure 2 demonstrates R-Check's performance in a simulated scenario
where function invocation time steadily increases. It measures the
instance-seconds needed to run a 24-hour Azure Functions trace,
highlighting how prolonged function duration affects resource use. The
graph compares potential savings using a 20% load eviction policy
versus a 0% policy across different duration factors.

However, the plot doesn't directly address costs linked to eviction and
function migration. Function migration isn't free, especially considering
factors like memory, where higher memory can increase migration
costs. Understanding these expenses is crucial for evaluating the true
impact of function migration.

While the authors present data supporting the plot, they haven't
detailed how they considered migration costs, especially concerning
memory variations. This lack of clarity on methodology limits a
comprehensive understanding of the system's performance.
Accounting for these costs and memory considerations would provide
a more complete view of the system's behavior under varying
workloads.

➢ Simulated Workload Testing：

12

Evaluation
Figure 3 displays the evaluation of checkpoint and restore
times in R-Check, measuring the durations for both
operations concerning the memory used during function
execution. The shaded regions on the graph represent a
90% confidence interval around the measured times.

The data for this analysis comes from experiments
performed on an AWS EC2 t3a.large machine with 2 virtual
CPUs and 4 GB RAM. Each experiment was repeated 100
times to ensure reliable statistical insights. The goal was to
understand the overhead caused by R-Check's checkpoint
and restore mechanisms across different memory
consumption scenarios. This analysis offers insights into
how efficiently the system handles these crucial operations.

➢ Microbenchmarking：

13

Evaluation

➢ Comparison and Analysis: The evaluation in the paper compares R-Check with existing
fault tolerance mechanisms, including CRIU (Checkpoint/Restore in Userspace), emphasizing the
advantages and trade-offs of R-Check in terms of fault handling, expressiveness, and performance.
Additionally, the authors contrast R-Check with other methods supporting recovery from failure,
such as XYZ and ABC (fictitious names for other mechanisms), discussing their respective strengths
and limitations.

➢ Discussion and Future Directions: The paper discusses potential challenges and
opportunities related to the scalability and optimization of R-Check, outlining future directions for
improvement. It touches upon various avenues for optimizing snapshotting mechanisms,
considering different storage types, snapshot-aware language runtimes, and incremental
checkpointing.

14

Critique

Weaknesses:

Real-world Deployment Gaps: The study lacks extensive real-world validation, relying primarily on simulations and
microbenchmarks. It notably lacks deployment and testing within a serverless platform environment, where function
evictions might incur higher costs or behavioral complexities compared to the one-off sequential tests of making CRIU
snapshots on the t3a.large instance. This gap in real-world validation limits the applicability of R-Check's performance claims
to actual serverless computing scenarios.

Unexplored Eviction Implications: The study hasn't thoroughly investigated the implications of function evictions in a
live, operational system. Such evictions, in a serverless cluster, might bear significantly higher costs or reveal operational
complexities beyond the scope of one-off sequential tests. The absence of such exploration hinders a comprehensive
understanding of the practical viability of R-Check within dynamic serverless environments.

Scalability Concerns: The paper doesn't address how R-Check might scale with larger function instances or under
high-throughput scenarios. The absence of scalability analysis limits the understanding of R-Check's performance when
handling a significant number of function instances concurrently or managing larger memory footprints in serverless
environments.

16

Critique

Evaluation Quality:

Assessment Highlights: The evaluation employs simulated workload testing, microbenchmarking, and comparative
analyses, providing insights into the system's performance across various conditions. However, the absence of any evaluation
within a serverless platform context is a glaring gap. The reliance on a t3a.large EC2 instance for evaluations raises concerns
about the applicability of the findings to real serverless environments. This instance's differing CPU time provisioning
compared to serverless platforms significantly impacts the credibility of the paper's claims regarding performance.

Credibility and Relevance: The paper's credibility is notably limited due to the absence of evaluations within a
serverless platform. Furthermore, the proposal of preempting and evicting running functions conflicts with standard
serverless practices, where function interruptions are discouraged. The lack of consideration for this fundamental serverless
paradigm diminishes the relevance and practicality of the proposed approach.

Evaluation Limitations: The evaluation, restricted to one-off tests on an EC2 instance, overlooks the intrinsic nature
of serverless computing environments. Serverless platforms seldom preempt or evict running functions, contrasting the core
premise of the paper. This inadequacy severely affects the credibility and relevance of the paper's evaluation, calling into
question the authors' understanding of cloud computing paradigms.

17

Critique

Gaps and Future Work:

Real-world Deployment: Incorporating real-world deployments to observe R-Check's functionality in a live
production setting would substantially fortify the paper's practical relevance and validate its efficacy under real operational
conditions.

Scalability Investigations: Further exploration into the system's scalability, particularly with larger function
instances and high-throughput scenarios, is essential to comprehend its performance in diverse, demanding environments.

Refined Provider Collaboration: Collaborating closely with cloud service providers to seamlessly integrate and
support the proposed checkpoint/restore mechanisms would significantly narrow the gap between theoretical propositions
and practical implementation.

Developmental Strides: Acknowledging the substantial divergence between the paper's current stage and the scope
of related works cited in Section 4, substantial developmental strides are essential to align this research with the existing
body of literature

18

Thank you

Tcss562 Paper presentation
Review by Team 6: Lifan Cao, Cynthia Pang
December 7, 2023

19

