The Gap between Serverless Research and Real-world Systems

Qingyuan Liu^{1,2}, Dong Du^{1,2}, Yubin Xia^{1,2,3}, Ping Zhang⁴, Habio Chen^{1,2}

¹ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

² Engineering Research Center for Domain-specific Operating Systems (MoE)

³ Shanghai AI Laboratory

⁴ Huawei Cloud

11/28/2023 TCSS 562 Presentation Review by Lucas Lu, Yexuan Gao, Christopher Henderson

UNIVERSITY of WASHINGTON

Talk Outline

- > Paper overview and background
- > Summary, key contributions and conclusions
- > Critique
- > Q & A

Introduction: Paper overview #1

- > Discrepancy between research works and real-world systems
 - Research works are often based on oversimplified assumptions that hide real-world issues
 - Why would this happen?
 - Example: how to reduce cold start latency
- > FunctionGraph (Lambda), Huawei Cloud (AWS)
- > Knative, K8s

UNIVERSITY of WASHINGTON

Introduction: Paper overview #2

- > Challenges of Serverless Computing
 - Asynchronous Start
 - Declarative Tax
 - Scheduling Cost
 - Balancing Scheduling Policies
 - Costs of Sidecar

Introduction: Paper overview #3

- > Why is it important?
 - The paper identified challenges that represent real-world obstacles and limitations
- > Why it's of interest to solve?
 - Solving these challenges aligns with the broader goals of advancing cloud-native computing

UNIVERSITY of WASHINGTON

Background / Related Work #1

- > Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive, Interactive Microservices.
 - Nightcore: a FaaS runtime
 - Aim to optimize instance initialization
 - Fail to address other overheads including scheduling costs, and communication costs

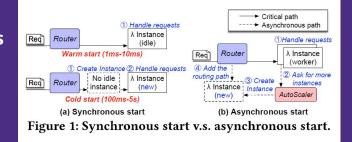
Background / Related Work #2

> Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the Gap Between Serverless and its State with Storage Functions. (Outside the paper)

"Data shipping problem" : Overheads associated with data movement

 \Rightarrow

Shredder: allow to compute on durable data at its location of record


Limitations: Relies on JavaScript

UNIVERSITY of WASHINGTON

Challenge I: Asynchronous Start

Background

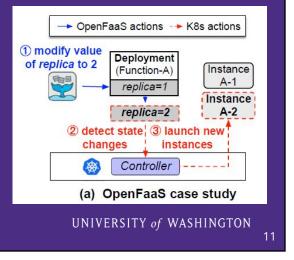
- > Synchronous starts
 - Most existing works
- > Asynchronous starts
 - Focus of this paper

8

Challenge I Asynchronous Start Gaps & Challenges

- Initialization latency is magnified by factors like >
 - **Oueue size** -
 - Execution time
 - Arrival rate of incoming requests
- > Challenges balancing initiation with queuing latency
- > Essential to consider
 - Proactive auto-scaling policies
 - Queue design

UNIVERSITY of WASHINGTON


Challenge I Asynchronous Start **Opportunities & Suggestions**

- Important to rethink design choices in >
 - Scheduling
 - Routing
 - Queuing
- > Minor adjustments in design can lead to significant performance improvements
- > Late binding with centralized queue can halve tail-latency

Challenge II: Declarative Tax

Background

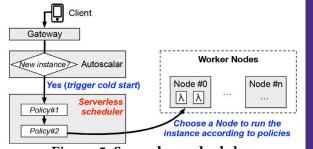
- > The declarative approach of K8s
 - Pros and cons
- > OpenFaaS case study

Challenge II Declarative Tax Gaps & Challenges

- > Declarative methods used by K8s requires extensive communication and synchronization
 - Causes non-trivial overheads
- > Challenging to provide deterministic performance guarantees
- > Difficult to program the controller
- > Bottleneck in low or real-time latency applications

Challenge II Declarative Tax Opportunities & Suggestions

- Optimize low-level infrastructure system design, balancing performance with an easy-to-use interface
- > Explore:
 - Speed up synchronization via API server/etcd
 - Adjust queuing mechanisms within controllers to reduce latency variation
- > Ensure modularity in optimizing multiple components


UNIVERSITY of WASHINGTON

13

Challenge III: Scheduling Cost

Background

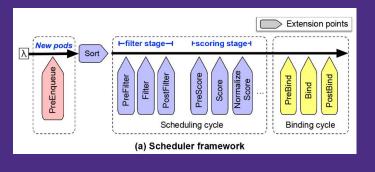
> The scheduling cost is part of cold start latency

Challenge III Scheduling Cost Gaps & Challenges

- > Scheduling costs are critical in large-scale clusters
 - Can be ~100x higher than start-up overhead
- > Existing scheduling policies
 - Have complex calculations that are infeasible for real-world platforms
 - Fail to address large-scale implications

UNIVERSITY of WASHINGTON

Challenge III Scheduling Cost Opportunities & Suggestions


> Focus on

- Designing scalable scheduling policies
- Optimizing the scalability of scheduling systems
- > Try parallel binding and other mechanisms to eliminate unscalable designs in K8s
- > Utilize simulation tools like Kwok for large-scale cluster testing to model virtual nodes and Pods

Challenge IV: Balancing Scheduling Policies

Background

 Supports for multiple policies by serverless schedulers

UNIVERSITY of WASHINGTON 17

Challenge IV Scheduling Policies Gaps & Challenges

- > Platforms use multiple scheduling plugins & policies
 - Are challenging to balance effectively
 - Can conflict and/or interfere
- Current methods (e.g. plugin weights) can lead to suboptimal scheduling
- > Lack of systematic approaches to analyze and balance multiple policies

Challenge IV Scheduling Policies Opportunities & Suggestions

- > Collaborative efforts from industry and academia to
 - Design effective balancing mechanisms
 - Share data traces
- > Comprehensively define "optimal scheduling"
- Suggests using reinforcement learning to dynamically adjust weights of plugins

UNIVERSITY of WASHINGTON

Challenge V: Costs of Sidecar

Background

- > Benefits of Sidecar
 - Additional features
 - Modify functionality
 - Facilitates dynamic CPU resource allocation
 - Modular design

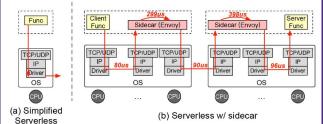


Figure 8: Comparison between serverless with and without sidecars. We label the latency for an emoji-vote application using Istio/Envoy as our sidecar. Client and server functions are running in the same machine in this case.

Challenge V Costs of Sidecar: Gaps & Challenges

- > Sidecars incur resource and performance overheads
- > Challenges include
 - Designing system software and hardware to effectively support sidecar systems
 - Sidecars introduce complexities not considered in many existing research works

Challenge V Costs of Sidecar Opportunities & Suggestions

- > Explore new software & hardware for
 - Offloading sidecar logic
 - Supporting serverless systems with sidecars
- > Decouple processing logic of sidecars and share across multiple Pods
- > Avoid using utilizing the wrapper of the function
 - compiled with the function code at deployment
 - worse modularity, no proxying and queuing

Key Contributions

- > Insight I (Asynchronous Start)
 - Novel designs for systems: scheduling, queuing systems, and etc.
- > Insight II (Declarative Tax)
 - New mechanism to optimize the costs of the declarative approach
- > Insight III (Scheduling Cost)
 - Consider the costs associated with scheduling decisions
- > Insight IV (Balancing Scheduling Policies)
 - Balance multiple scheduler policies
- > Insight V (Costs of Sidecar)
 - Design efficient and lightweight sidecar containers

UNIVERSITY of WASHINGTON

Author's Conclusions

> The authors believe their

- Observations
- Identification of challenges
- Proposed opportunities
- Will address gap between research and industry
- Create momentum for improving serverless platforms

Critique: Strengths

Case studies and concrete examples for identified issues

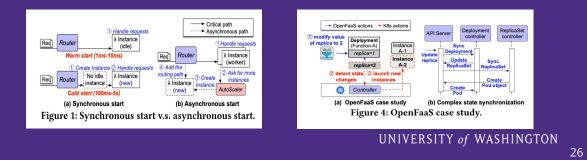
Asynchronous vs. Synchronous

 End-to-end latency in *Knative* with per-instance queueing design modelled as: *Ld* + T (1- σ) / σ

Non-trivial scheduling costs in large clusters

- 2000+ concurrent pods cluster introduces
 ~14.5s scheduling cost
- ~100x than start-up overheads in large cluster

Sidecar container costs


- 0.3~1 vCPU and 300~800 MB memory usage are observed
- Latency increased by 9.5x to 49.8x under different requests per second (RPS)

UNIVERSITY of WASHINGTON

25

Critique: Strengths

- > Effective Use of Figures
 - Demonstration of architectures and mechanisms
 - Improve problem understanding

Critique: Weaknesses

> Complexity in Reading:

– Require prior domain-specific knowledge (technologies & research)

> Few grammar mistakes

- Misuse of articles
- Misuse of common phrases

> Limited Coverage in Solutions:

 Example: optimizing sidecar creation and management; control the ratio between sidecar containers and function containers

UNIVERSITY of WASHINGTON 27

Critique: Evaluation

> Lack of Empirical Data

"The challenges and insights presented in this paper are drawn mainly from our experience of applying research optimizations to real-world serverless systems" (pp.476)

Declarative Approach of K8s costs identified

No statistical evidence supporting the claim H

How significant is its impact ?

Sidecar Container Cost identified Mor

More memory cost in low RPS

Measured under what number of request per second (RPS)?

Remaining Gaps

- > Discrepancies between research and industry in other areas such as "Security" in serverless systems are not discussed
- Evaluation on the feasibility of the authors' suggestions leads to future research

UNIVERSITY of WASHINGTON 29

Questions

A break for questions.