AWSOMEPY: A DATASET AND
CHARACTERIZATION OF
SERVERLESS APPLICATIONS

RAFFA, GIUSEPPE, JORGE BLASCO ALIS, DAN O'KEEFFE, AND
SANTANU KUMAR DASH

DEC 05 2023 TCSS 562 Presentation
Review by: SHERRY LIU
KEWEI LIU

Introduction of the

paper

g

Related work




INTRODUCTION

» Server management eliminated

. Stateless, Event-Driven Model
Serverless

» Costs align with usage Computing

» Focus shifts to product
development, not infrastructure

- Dataset - AWSomePy

WHY CONCERN * Performance optimization needed
ABOUT THESE * Event traceability is tough
CHALLENGES? * Security concerns are paramount




RELATED WORK

Serverless Framework
Wonderless: A dataset of 1,877 real-world Serverless
applications.
Limitations of Wonderless: Lacked focus on Python-based
AWS applications.
Why AWSomePy?:

» Addresses gaps in Wonderless for Python-based AWS

serverless applications.

5

[1] Nafise Eskandani and Guido Salvaneschi. 2021. The Wonderless Dataset for Serverless Computing. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 565-569.

METHODOLOGY

Step 1. Configuration Files Gathering
Step 2. Configuration Files Filtering

Step 3. Repositories URLs Identification
Step 4. Repositories Filtering by Language &
Cloning

Step 5. Repositories Filtering by Invalid
Configuration

Step 6. Repositories Filtering by Immature
Projects

Step 7. Repositories Filtering by Metadata
Step 8. Repositories Fork Analysis

Step 9. Metadata Gathering

Table 1: Summary of the dataset generation process.

Step YAML Files Repositories Dataset Size

1
2
S
4
5
6
7

9,096 X X
7,912 X X
X

8.7 GB

8.5 GB

1.6 GB

1.6 GB

1.6 GB

1.6 GB

O




New dataset - AWSomePy

Characterization of the dataset
Key Contribution Analysis of Serverless Applications

Service and API Utilization Metrics

Evaluation and Insights

Configuration & Architectural Analysis
Plugin analysis

Experimental Evaluation

Table 2: Top eight plugins in AWSoMEPY.

Plugins Occurrences

serverless-python-requirements
serverless-pseudo-parameters
serverless-domain-manager
serverless-step-functions
serverless-offline
serverless-dotenv-plugin
serverless-prune-plugin
serverless-iam-roles-per-function




Configuration & Architectural Analysis

Experimental Evaluation  complexity analysis

-
(=3
o

o
S © © ©

Average: 4, 468
Min: 26
Max: 132, 658

Repos Cml Fraction [%]
N WA U N @
o O o O

—_
(=}

102 107
LOC

Figure 2: Cumulative distribution of the lines of code in AW-
SoMEPY (cumulative fraction of repositories on the y axis).

Configuration & Architectural Analysis

Experimental Evaluation Complexity analysis

No. of Events
[~

N )
’
[ L]
LU [}

[
L L L L L L

103 104 6 8 10 12 14 16 18
LOC No. of Handlers

Figure 3: Number of handlers vs lines of code in AWSomMEPY. Figure 4: Number of events vs handlers in AWSomMEPY.




Experimental Evaluation

Cloud Service Analysis

Services Systems Manager
Simple Queue Service
Simple Notification Service
Security Token Service

Table 3: Top eleven AWS services in AWSoMEPY. The column
Occurrences reports the number of boto3 client and resource
objects instantiations within the relevant repositories.

Services

No. of Repositories

Occurrences

s3
dynamodb
lambda
ssm
sgs
sns
ec2
sts
rekognition

cloudformation
stepfunctions

59
47
24

217
201
47
46
41
30
29
26
15
14
14

Experimental Evaluation

Cloud API Usage Analysis

Table 4: Occurrences of the six most widely used APIs for the top five AWS services in AWSomMEPY. The occurrences of all the other
detected APIs are aggregated in the entry other. The ssm APIs get_parameters_by_path and describe_instance_information
are abbreviated as get_parameters_by_p and describe_instance_i, respectively.

s3 dynamodb
API : API

lambda
API

ssm
API

sqs
API

put_object put_item
get_object scan
create_bucket query
upload_file get_item
download_file update_item
list_objects_v2 create_table
other other

invoke
add_permission
list_functions
get_policy
get_function
list_tags
other

get_parameter
put_parameter
get_parameters
get_parameters_by_p
list_commands
describe_instance_i
other

send_message
get_queue_url
delete_message
create_queue
receive_message
send_message_batch
other




Author’s Conclusions

AWSomePy - A dataset of 145 AWS serverless applications developed in Python
Most frequently used cloud services and APIs
* Data storage and NoSQL services are by far the most commonly used
* Developers tend to use plugins to facilitate the configuration of their applications and the
deployment of complex pieces of functionality
Only in 7 AWSomePy applications used the security plugin
serverless-iam-roles-per-function

Critique: Strengths

Comprehensive dataset by progressively filtering and refining the selection

Low financial cost since the method primarily utilizes data from GitHub and open-source
tools

Highly scalable in terms of dataset size




Critique: Weaknesses

Might be time-intensive, especially in manual steps like repository metadata analysis and
may become less feasible as the dataset grows.

May not capture the full dynamism and variability inherent in serverless architectures,
especially where configurations are not standard or involve multi-file setups.

Critique: Evaluation

Graphs and tables in the paper are clear

Detailed evaluation in its analysis of plugin usage and service/API interactions
'serverless-iam-roles-per-function' plugin will not cause too much security problems.
The evaluation parts only made a general analysis with only few concrete conclusions or
suggestions.




Identify GAPS

* Apply with languages other than python
* Automation for data extraction and data analysis
* Comprehensive security analysis

Questions




KEY CONTRIBUTIONS

Creation of the AWSomePy Dataset
Analysis of Serverless Applications
Service and API Utilization Metrics

Evaluation and Insights




