AWSOMEPY: A DATASET AND CHARACTERIZATION OF SERVERLESS APPLICATIONS

RAFFA, GIUSEPPE, JORGE BLASCO ALIS, DAN O'KEEFFE, AND SANTANU KUMAR DASH

DEC 05 2023 TCSS 562 Presentation Review by: SHERRY LIU KEWEI LIU

INTRODUCTION

- Server management eliminated
- Stateless, Event-Driven Model
- Costs align with usage
- Focus shifts to product
 development, not infrastructure
- Dataset AWSomePy

WHY CONCERN ABOUT THESE CHALLENGES?

- Performance optimization needed
- Event traceability is tough
- Security concerns are paramount

RELATED WORK

- Serverless Framework
- Wonderless: A dataset of 1,877 real-world Serverless applications.
- Limitations of Wonderless: Lacked focus on Python-based AWS applications.
- Why AWSomePy?:
 - Addresses gaps in Wonderless for Python-based AWS serverless applications.

[1] Nafise Eskandani and Guido Salvaneschi. 2021. The Wonderless Dataset for Serverless Computing. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 565–569.

METHODOLOGY

Step 1. Configuration Files Gathering
Step 2. Configuration Files Filtering
Step 3. Repositories URLs Identification
Step 4. Repositories Filtering by Language &
Cloning
Step 5. Repositories Filtering by Invalid
Configuration
Step 6. Repositories Filtering by Immature
Projects
Step 7. Repositories Filtering by Metadata
Step 8. Repositories Fork Analysis
Step 9. Metadata Gathering

Table 1: Summary of the dataset generation process.

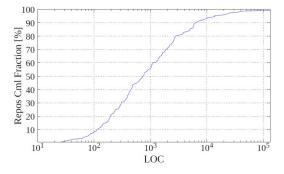
Step	YAML Files	Repositories	Dataset Size X		
1	9,096	×			
2	7,912	×	×		
3	×	7,074	×		
4	×	811	8.7 GB		
5	×	783	8.5 GB		
6	×	159	1.6 GB		
7	×	147	1.6 GB		
8	×	147	1.6 GB		
9	×	145	1.6 GB		

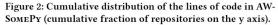
Key Contribution

- New dataset AWSomePy
- Characterization of the dataset
- Analysis of Serverless Applications
- Service and API Utilization Metrics
- Evaluation and Insights

Experimental Evaluation

Configuration & Architectural Analysis Plugin analysis


Table 2: Top eight plugins in AWSOMEPy.


Plugins	Occurrences		
serverless-python-requirements	95		
serverless-pseudo-parameters	25		
serverless-domain-manager	15		
serverless-step-functions	14		
serverless-offline	9		
serverless-dotenv-plugin	8		
serverless-prune-plugin	8		
serverless-iam-roles-per-function	7		

Experimental Evaluation

Configuration & Architectural Analysis Complexity analysis

Experimental Evaluation

 $\begin{array}{c} 20\\ 18\\ 18\\ 16\\ 10\\ 2\\ 0\\ 10^{1}\\ 10^{2}\\ 10^{2}\\ 10^{3}\\ 10^{4}\\ 10^{5}\\ 10^{4}\\ 10^{5}\\ 10^{4}\\ 10^{5}\\ 10^{5}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{6}\\ 10^{5}\\ 10^{6}\\ 10^{5$

Configuration & Architectural Analysis Complexity analysis

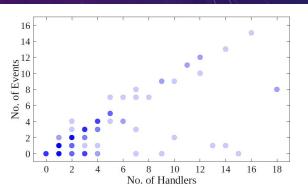


Figure 4: Number of events vs handlers in AWSOMEPy.

10

Experimental Evaluation

Cloud Service Analysis

Services Systems Manager Simple Queue Service Simple Notification Service Security Token Service Table 3: Top eleven AWS services in AWSOMEPy. The column Occurrences reports the number of boto3 client and resource objects instantiations within the relevant repositories.

Services	No. of Repositories	Occurrences	
s3	59	217	
dynamodb	47	201	
lambda	24	47	
SSM	14	46	
sqs	21	41	
sns	11	30	
ec2	12	29	
sts	9	26	
rekognition	8	15	
cloudformation	7	14	
stepfunctions	9	14	

Experimental Evaluation

Cloud API Usage Analysis

Table 4: Occurrences of the six most widely used APIs for the top five AWS services in AWSOMEPY. The occurrences of all the other detected APIs are aggregated in the entry *other*. The ssm APIs get_parameters_by_path and describe_instance_information are abbreviated as get_parameters_by_p and describe_instance_i, respectively.

s3		dynamodb		lambda		ssm		sqs	
API	#	API	#	API	#	API	#	API	#
put_object	61	put_item	143	invoke	55	get_parameter	79	send_message	27
get_object	52	scan	64	add_permission	7	put_parameter	18	get_queue_url	16
create_bucket	50	query	62	list_functions	3	get_parameters	7	delete_message	15
upload_file	48	get_item	58	get_policy	3	get_parameters_by_p	3	create_queue	14
download_file	24	update_item	57	get_function	2	list_commands	2	receive_message	13
list_objects_v2	22	create_table	41	list_tags	2	describe_instance_i	1	send_message_batch	2
other	111	other	93	other	4	other	6	other	1

1

Author's Conclusions

- AWSomePy A dataset of 145 AWS serverless applications developed in Python
- Most frequently used cloud services and APIs
 - Data storage and NoSQL services are by far the most commonly used
 - Developers tend to use plugins to facilitate the configuration of their applications and the deployment of complex pieces of functionality
- Only in 7 AWSomePy applications used the security plugin serverless-iam-roles-per-function

Critique: Strengths

- Comprehensive dataset by progressively filtering and refining the selection
- Low financial cost since the method primarily utilizes data from GitHub and open-source tools
- Highly scalable in terms of dataset size

Critique: Weaknesses

- Might be time-intensive, especially in manual steps like repository metadata analysis and may become less feasible as the dataset grows.
- May not capture the full dynamism and variability inherent in serverless architectures, especially where configurations are not standard or involve multi-file setups.

Critique: Evaluation

- Graphs and tables in the paper are clear
- Detailed evaluation in its analysis of plugin usage and service/API interactions
- 'serverless-iam-roles-per-function' plugin will not cause too much security problems.
- The evaluation parts only made a general analysis with only few concrete conclusions or suggestions.

Identify GAPS

- Apply with languages other than python
- Automation for data extraction and data analysis
- Comprehensive security analysis

Questions

KEY CONTRIBUTIONS

- Creation of the AWSomePy Dataset
- Analysis of Serverless Applications
- Service and API Utilization Metrics
- Evaluation and Insights