
XFaaS: Cross-platform Orchestration of FaaS
Workflows on Hybrid Clouds

Aakash Khochare, Tuhin Khare, Varad Kulkarni and Yogesh Simmhan
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012 INDIA

Email: {aakhochare, tuhinkhare, varadk, simmhan}@IISc.ac.in

Abstract—Functions as a Service (FaaS) have gained popularity
for programming public clouds due to their simple abstraction,
ease of deployment, effortless scaling and granular billing. Cloud
providers also offer basic capabilities to compose these functions
into workflows. FaaS and FaaS workflow models, however, are
proprietary to each cloud provider. This prevents their portability
across cloud providers, and requires effort to design workflows
that run on different cloud providers or data centers. Such
requirements are increasingly important to meet regulatory
requirements, leverage cost arbitrage and avoid vendor lock-in.
Further, the FaaS execution models are also different, and the
overheads of FaaS workflows due to message indirection and
cold-starts need custom optimizations for different platforms. In
this paper, we propose XFaaS, a cross-platform deployment and
orchestration engine for FaaS workflows to operate on multiple
clouds. XFaaS allows “zero touch” deployment of functions
and workflows across AWS and Azure clouds by automatically
generating the necessary code wrappers, cloud queues, and
coordinating with the native FaaS engine of the cloud providers.
It also uses intelligent function fusion and placement logic to
reduce the workflow execution latency in a hybrid cloud while
mitigating costs, using performance and billing models specific
to the providers based in detailed benchmarks. Our empirical
results indicate that fusion offers up to ≈ 75% benefits in latency
and ≈ 57% reduction in cost, while placement strategies reduce
the latency by ≈ 24%, compared to baselines in the best cases.

I. INTRODUCTION

Functions as a Service (FaaS) have gained immense pop-

ularity as a means to design elastic and scalable applications

on public clouds [1]. FaaS is a micro-services pattern of

deploying cloud applications from building-block functions.

Here, users provide the logic of a single stateless function to

a cloud provider along with its dependencies. This is packaged

using a serverless computing model, typically encapsulated

as a container, deployed on the cloud, and accessed from a

service endpoint. Any invocation of this endpoint automati-

cally triggers the creation of a container for the function with

its dependencies, if an idle instance does not exist. Once the

function executes and the response is returned to the client, the

instance is retained for a short timeout period, and if no further

requests arrive, it is spun down. Instances are automatically

created if the function gets concurrent requests, and shrunk

during low demand or idle periods.

Opportunity. The clear benefits of FaaS is driving its

rapid adoption in enterprise and science [2]. They offer a

simple function abstraction and allow automatic packaging of

dependencies for deployment. Scaling to variable demand is

effortless, truly leveraging the elasticity of the cloud. They also

offer granular billing, where users only pay for the duration

for which the function executes. These make the DevOps

lifecycle easy to manage. FaaS is offered by all major public

cloud providers as a platform service: Amazon Web Services

Lambda functions [3], Microsoft Azure Functions [4], Google

Cloud Functions [5] and IBM Cloud Functions [6]. Open

source projects like OpenFaas [7] and Knative [8] are designed

for use in private clouds.

Cloud providers also offer basic capabilities to compose

these functions into workflows to design practical and complex

applications using the FaaS paradigm. FaaS functions can be

composed as a dataflow by defining a Directed Acyclic Graph

(DAG), either visually or programmatically, and deployed for

execution. Internally, these workflows use cloud queues to

exchange messages from upstream to downstream functions

upon execution. AWS Step Functions [9] and Azure Durable

Functions [10] are two such FaaS workflow platforms.

Limitations. That said, there are key gaps in FaaS work-

flows that limit their use in hybrid clouds or across data cen-
ters. FaaS and FaaS workflow models are proprietary to each

cloud service provider (CSP). This prevents the portability

of even the function logic, much less the workflow, across

CSPs. This leads to vendor lock-in and prevents leveraging

any pricing arbitrage. There are also specialized cloud services

that may only be available from certain providers or in some

regions, e.g., elastic inferencing accelerators or ARM-based

processors, which require the pinning of some functions in

the workflow to particular providers or data centers. There is

also growing regulatory requirements, like GDPR, around data

locality and sovereignty. This mandates the use of data centers

in specific regions or CSPs for functions to access certain data.

Lastly, the FaaS execution models for the two leading CSPs we

investigate, Amazon AWS and Microsoft Azure, are different.

This leads to diverse performance characteristics for different

workloads. So selecting the right cloud provider for a specific

function or for the workflow can be non-trivial.

Challenges. The proprietary nature of FaaS and FaaS

workflows requires significant effort to design FaaS workflows

that span functions running on different cloud providers or data

centers. Even deploying the same function logic to different

clouds requires changing the function interfaces, payload ob-

jects, configuration files, etc. There are few solutions available

to achieve portability even for single functions [11], [12].

Emerging standards like CNCF Serverless Workflows [13] are

complex, have low adoption and nascent implementations.

498

2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

979-8-3503-0119-9/23/$31.00 ©2023 IEEE
DOI 10.1109/CCGrid57682.2023.00053

20
23

 IE
EE

/A
CM

 2
3r

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Cl
us

te
r,

Cl
ou

d
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
CG

rid
) |

 9
79

-8
-3

50
3-

01
19

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

GR
ID

57
68

2.
20

23
.0

00
53

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

There are also well documented performance limitations of

FaaS and FaaS workflows, such as message indirection latency

and cold-starts [14], [15]. While research papers attempt to

address these bottlenecks using techniques like pilot jobs,

function fusion, etc., they require custom optimizations for

each cloud platform [16], [17]. The performance variability

of FaaS workloads on different clouds also means finding

the right way to partition a FaaS workflow across providers

is non-trivial. So going from research outcomes to practical

performance gains is a challenge.

Contribution. In this paper, we propose XFaaS, a cross-

platform deployment and orchestration engine for FaaS work-

flows to operate on multiple clouds. XFaaS allows “zero-
touch” portable deployment of functions and workflows in

hybrid clouds by automatically generating necessary code

wrappers for each FaaS provider, creating cloud queues to ex-

ecute workflows across data centers, and coordinating with the

native FaaS engine of a CSP for management and monitoring.

We provide detailed benchmarks on FaaS workflow ex-

ecutions on Azure and AWS, and draw insights on their

performance for different types of FaaS workloads. This is

used to build simple yet practical performance models for

these platforms. We leverage this knowledge to propose in-
telligent workflow partitioning and function fusion techniques
that optimize for lower latency and/or lower cost of deploying

FaaS workflows in a hybrid cloud setup. We validate XFaaS

for Amazon AWS and Microsoft Azure in this paper, but this

can extend to other public, private and edge clouds.

We make the following specific contributions:

1) We describe the architecture of XFaaS, a portable zero-

touch framework to auto-generate wrapper code and

deploy FaaS and FaaS workflows to hybrid clouds (§ V).

2) We conduct micro-benchmarks to draw insights on the

native FaaS platforms from AWS and Azure, and use this

to model their performance for diverse workflows (§ IV).

3) We develop workflow partitioning, placement and fusion

algorithms that leverage these models to intelligently

rewrite the workflow to maximize their performance and

reduce costs on multiple clouds (§ VI and VII).

4) We report detailed experiments on two realistic workflows

to evaluate the effects of our partitioning planner on the

latency. We also use one of these to analyze the impact

of function fusion on latency and cost (§ VIII).

Besides these, we discuss related work in § II, offer a

background of the FaaS platforms in § III and present our

conclusions in § IX. XFaaS is an open source project available

on GitHub1 and provide additional details in the Appendix.

A prior short paper of ours [18] sets out some of the high-

level requirements of such FaaS workflows. This paper builds

on those early ideas, implements a full system for multi-cloud

workflow orchestration, and offers detailed results.

1https://github.com/dream-lab/XFaaS

II. RELATED WORK

A. Serverless Workflows in eScience and Enterprises

Serverless workflows have found applications in scientific

computing domains like bio-informatics and Satellite image

processing [19], [20]. Scientific workflows exhibit stages with

a high degree of parallelism, making them ideal candidates

for the on-demand scale-in and scale-out enabled by server-

less computing. Serverless platforms specific to scientific

computing like FuncX [21] have emerged. FuncX supports

containerization techniques such as Singularity designed for

scientific computing. Its goal is the efficient use of libraries

such as MPI that may be installed on scientific computing

hardware. Others [22], [23] use a hybrid container plus VM

execution approach to balance monetary costs with execution

performance. These are platforms can only be deployed in

private clouds since such container optimizations are not appli-

cable in a public cloud with proprietary FaaS platform. While

these focus on building a platform for optimized execution of

scientific workflows using the serverless paradigm, in XFaaS,

we focus on leveraging existing public Cloud FaaS Platforms

with their associated benefits to enhance the flexibility and

portability for developers in a multi-cloud environment, and

to improve their performance.

FaaS finds use across diverse enterprise applications with

million of requests daily, including web applications, Internet

of Things (IoT) backends, Chatbots/Amazon Alexa and IT Au-

tomation [1]. IBM describes a vulnerability scanning service

for containers that uses a serverless architecture [24].

B. Tooling for Serverless Functions and Workflows

An earlier report [1] highlights the lack of a standard

programming model for serverless computing and the vendor

lock-in that it may entail as a barrier to adoption. An effort

at standardization is Cloud Native Computing Foundation’s

(CNCF) serverless workflow specification [13] with three run-

times that currently support it – Synapse [25], EventMesh [26]

based on Quarkus [27] and Kogito [28] using Kubernetes and

MiniKube [29]. These however are designed for containerized

use in private clouds. This specification yet to be adopted by

public cloud providers for wider impact. XFaaS is designed to

leverage public FaaS platforms as they exist, and perform the

necessary code generation and deployment across CSPs using

a generic specification of functions and workflows defined

as a DAG by the user – which can be extended to support

the CNCF specification. Several other workflow engines for

Kubernetes, such as Knative [8], KubeFlow [30] and Argo [31]

can be used to support serverless workflows in a private clouds.

In future, XFaaS can be extended to leverage these to span

multi-cloud deployments across both public and private clouds.

GoDeploy [11] is a framework for deployment of serverless

functions across clouds. User’s code is separated into cloud

agnostic and cloud specific sections, with the user having to

provide handlers for each serverless provider. It also does not

support workflow composition from such functions. XFaaS

instead auto-generates the wrapper code from just a single

499

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

cloud-agnostic user function, and supports workflows and their

deployments spanning clouds.

Tools such as Terraform [32] and Serverless [33] provide

templates to automate FaaS deployments across different

providers. However, they do not support code generation and

workflows. QuickFaaS [12] is a platform for interoperabil-

ity between FaaS providers, with objectives similar to ours.

However, they too do not for support serverless workflows.

While authors of QuickFaaS use entity-relationship patterns

to identify a vendor agnostic class structure for Java-based

user functions, in practise, there is a lot more code generation

that is needed for deploying functions and their workflow

compositions onto cloud providers, which XFaaS automates.

C. Optimizations for FaaS and Serverless Workflows

Cold Starts. Cold starts in FaaS are caused by containers

being spun up when a bursty workload arrives for a function

after a period of quiescence. There have been several solutions

proposed for this [34], [35]. Xanadu [15] identifies that cold

start overheads cascaded in a workflow execution and therefore

have a significant impact on the latency of the execution. They

then use branch prediction to speculatively warm up functions

along branches of the workflow ahead-of-time. While cold

starts impact highly latency-sensitive applications with vari-

able loads, we show later that for FaaS platforms like Azure,

the natural variability in inter-function latency outstrips any

cold start overheads. However, cold start mitigation techniques

are complementary to the optimizations in XFaaS and can be

incorporated in future.

Message Indirection. Passing parameters between function

invocations in a workflow does not happen point-to-point due

to the transient nature of the function containers, and typically

requires a cloud queue. This indirection causes a latency

overhead between functions, which accumulates in a workflow.

SONIC [36] evaluates three storage-based mechanisms for

message passing between functions in a private cloud. They

observe that the optimal choice depends on factors like band-

width, degree of parallelism and data size. FaastLane [17]

reduces these overheads by executing functions as threads

within a single process, which turns message passing to an in-

memory write/read. However, these optimizations are limited

to customizable FaaS platforms deployed in private clouds.

XFaaS operates with native FaaS platforms on public clouds

with little control over these message passing mechanisms.

As we show later, Azure’s Durable Functions suffers

from overheads during inter-function coordination. Microsoft’s

Natherite [16] improves the efficiency of inter-function mes-

sage passing by using EventHubs and Azure Storage Page

Blobs that are partitioned to reduce access bottlenecks. But the

intrinsic design of Durable Functions still imposes overheads

both due to workflow control messages and data exchanges.

XFaaS will benefit naturally from such platform enhance-

ments. Our focus is to identify and leverage such optimizations

for workflow-level orchestration to operate efficiently across

CSPs. Future such enhancement will require XFaaS to rebuild

our performance models used for our placement decisions but

otherwise will not fundamentally affect framework.

Function Fusion. FaaS functions are designed to be light-

weight. However, having functions that are too small can cause

the cold-start overheads to dominate the execution time. But

finding the “right size” for a function is difficult, and conflates

development design with operations tuning. One option is to

combine small adjacent functions in a workflow in a single

larger function. This also has the benefit of efficient in-memory

communication between these functions rather than through a

cloud queue.

WiseFuse [37] and others [38] address these performance

limitations by proposing fusion and bundling that couple

consecutive stages in a workflow DAG for a user-specified

latency objective or budget. However, the cost modelling of

WiseFuse is incomplete as it only considers the computation

cost of functions in the workflow. In practice, CSPs charge for

data transfers and the number of functions executed, which

will impact the billing cost. XFaaS uses a simpler greedy

heuristic for planning function fusion but complements this

with a more realistic cost model that is customized to each

CSP. That said, WiseFuse’s fusion logic can be improved with

a better cost model and be used in XFaaS in future.

III. BACKGROUND

Here, we briefly introduce the two popular FaaS platforms

from Amazon AWS and Microsoft Azure used in this paper.

A. Background: AWS Lambda and Step Functions

AWS Lambda functions [3] is the FaaS platform from

Amazon Web Services (AWS), the leading cloud provider

according to Gartner [39]. Lambda functions can be na-

tively written in Java, Go, Node.js, C#, Python, etc. using a

fixed signature provided by Lambda. Functions can then be

packaged as a zip file with dependencies, or as a Dockerfile,

and uploaded to AWS. Each Lambda function invocation is

executed inside a container. However, the same container may

get reused across invocations. Users are required to provide

the memory requirement for a Lambda function. The number

of vCPUs allocated to the function scales with the memory,

e.g., Starting from 128MB it starts with < 1 vCPU and this

can rise up to 10 GB of memory with 6 vCPUs. The billing is

based on the memory allocated and the duration of execution

of a function. Lambda functions may be event driven or use

polling, and they can be synchronous or asynchronous. E.g.,

for functions triggered from an API Gateway, the execution is

synchronous and event driven. For Amazon’s Simple Queue

Service (SQS), Lambda functions are triggered through polling

for messages that arrive on a specific queue. Lambda functions

must be short running and have a maximum timeout of

15 mins.

AWS Step Functions is a FaaS workflow orchestration

platform [9]. It can be used to design and deploy dataflows

that use AWS Lambda functions as tasks. The workflow can be

composed either visually or using the Amazon State Language

(ASL). Messages are passed between tasks as AWS event

500

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Sample FaaS workflow deployed using Azure Orches-

trator Function.

objects. The exact message-passing mechanism is opaque to

the user, though it is likely to be using SQS or EventBridge.

The maximum input or output message size for a function in

AWS Step Functions is 256 KB.

B. Background: Azure Functions and Orchestrator Functions

Azure Functions is the FaaS offering from Microsoft Azure,

the second leading cloud provider according to Gartner [39].

It allows users to develop stateless FaaS, also called activi-
ties, using .NET, TypeScript, Python, PowerShell, Java, etc.

Azure Durable Functions are a “stateful” extension that help

compose workflows programmatically using an orchestrator

logic. Users write code for an orchestrator function (O in

Fig. 1) that explicitly calls various activity functions (A–D in

Fig. 1) and passes parameters between them. This mimics the

composition, invocation and data flow of a workflow formed

from the activities. Azure Durable functions use a record-
replay mode for orchestration of a workflow execution [40].

The orchestrator creates activity functions and feeds them data

using an activity queue (AQ) for messages < 64 kB or a

Blob store for larger payloads (AB), hosted by the Azure

storage provider. The orchestrator is woken up by a trigger

message that comes on an instance queue (IQ) once an activity

invocation completes. The orchestrator then replays the history

of invocation for this workflow instance from an Azure NoSQL

Instance Table (IT) to identify the progress done so far, and

decides the next activity function to invoke. It then puts the

relevant message on that activity queue and updates the replay

log table.

Each activity or instance queue is assigned to a single

worker VM, and there is internal load balancing across

workers when placing messages on different queues. The

same worker VM can execute multiple orchestrator or activity

instances concurrently. Azure does not require the users to

specify a memory requirement for their functions. Each worker

VM has a fixed 1.5 GB of memory and 1 vCPU available

across all functions it executes. However, the billing is done

based on the peak amount of memory actually used by a

function and its duration of execution.

IV. A TALE OF TWO SYSTEMS: PERFORMANCE ANALYSIS

AND KEY INSIGHTS

Azure Durable Functions and AWS Step Functions have

different performance characteristics for their FaaS workflow

behavior. This makes them an interesting study – to offer

key insights for DevOps personnel planning manual FaaS

workflow deployments, and for us to design performance

models to drive automated deployment planning by the XFaaS

orchestrator. This complements prior works which have in-

vestigated the performance of single functions [41], [42].

However, since cloud providers continuously improve their

platforms design, it is necessary to examine their performance

characteristics periodically.

We perform detailed micro-benchmarks of diverse functions

and small-sized workflows on both Azure Durable Functions

and AWS Step Functions to characterize the performance of

these two FaaS workflow platforms. Specifically, we run a

computer vision workflow, Object Detection Fanout (ODF)
containing a mix of image analytics functions, such as resize

using the OpenCV library and object detection using compact

DNN models with fan-out and fan-in. We also run a simple

Linear Chain workflow with n functions (LC-n), where n
varies based on the experiment. Details for these functions

and the cloud deployment are provided in § VIII.

1) Azure Durable Functions execute functions faster than
AWS Step Functions, but has higher inter-function latencies:
Fig. 3 shows the components of the workflow execution times

for both LC-8 and ODF when run fully in Azure Durable

Functions or AWS Step Functions. Fig. 3 shows the time taken

by each function in ODF (dark bars), and the latency between

two adjacent functions (light bars), when the workflow is fully

run on AWS (orange) or Azure (blue).

As we can see, Azure Durable Functions runs functions

faster since a whole VM is shared by all functions and they

have access to more compute resources while AWS limits the

functions to containers. E.g., in Fig. 2, Azure takes 0.03 sec

for the execution of the functions in LC-2 while AWS takes

0.15 sec; this contrast is higher for ODF, with Azure taking

0.2 sec against 0.5 sec for AWS.

However, Azure Durable Functions has higher inter-function

times and also a higher variability compared to AWS Step

Functions. E.g., in Fig. 3, the error bars for Azure are

much higher for its inter-function latencies (light blue bars)

compared to AWS (light orange). Here, the design of the Azure

orchestrator causes more requests to queues and tables, which

has also been identified by Microsoft [16], causing delays.

The same orchestrator may also be responsible for multiple

workflow instances. On the other hand, AWS Step Functions

have a much lower inter-function latency. E.g., Azure takes a

total of 4.9 secs for the inter-function latencies in ODF while

AWS takes just 3.1 secs.

Despite the client to these workflows executing from VMs

present in the same data center, and invoking the HTTP

endpoint gateway, Azure exhibits higher initial overheads

between the request being triggered to the first function in the

workflow being executed, e.g., 0.6 sec for ODF. AWS Step

Functions on the other hand has low initial overheads, e.g.,

0.2 secs for ODF.

As a result, for workflows with many light-weight functions,

Azure is likely to be slower as these inter-function overheads

dominate, while AWS will be faster. And for workflows with

501

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Time taken for different phases of the workflow: Initial
Overheads, Function Execution and Inter-function Latency, for

the two workflows on Azure and AWS platforms.

Fig. 3: Latency for different stages of Object Detection Fanout

(ODF) workflow execution.

fewer and more resource-intensive functions, Azure is likely

to be faster.

2) Azure Durable Functions’s message-passing latency
grows faster with the payload size than AWS Step Functions,
but supports larger payload sizes: Azure Durable Functions

and AWS Step Functions internally use their Cloud queues

to transfer messages between adjacent functions in the work-

flow, with the payload sizes limited to 64 kB and 256 kB,

respectively. But Azure Durable Functions also allows larger

payloads to be sent between functions using their disk-based

Blob storage, and this is transparent to the end-user.

We measure the inter-function latency by running the linear

chain workflow with different payload sizes being passed

between functions. As Fig. 4 shows, the latency for message

passing using queues is slower for Azure than AWS for

comparable message sizes. For messages larger than 64 kB,

Azure shows a higher relative latency and more variability

due to disk-based transfers. Hence, while Azure relaxes the

message size constraint compared to AWS, it has higher inter-

function latencies.

3) AWS Step Functions exhibits consistent cold-start delays
while Azure Durable Functions’s cold-starts are dwarfed by
workflow initialization overheads: A key benefit of FaaS

is their automated elasticity, where additional container/VM

resources are auto-provisioned by cloud providers when the

number of function requests increases, and scaled down to zero

when the function is not invoked beyond a timeout duration.

Fig. 4: Scatter plot of inter-function latency against payload

size on Azure Durable Functions and AWS Step Functions.

This can cause cold-starts, as discussed above. This provision-

ing time is observed as part of the latency for that function

execution. For workflows, such a cold-start accumulates for

each downstream function when the workflow is executed

afresh after the timeout period.

In AWS Step Functions, every function runs in its own

container while in Azure Durable Functions, all functions for a

workflow share the same pool of workers (VMs). As a result,

it is easier to discern the cold-start overheads in AWS. We

deploy the ODF workflow on AWS with the function timeouts

set to 5 mins, and invoke the workflow every 4 mins and every

6 mins. The end-to-end latency for the workflow is plotted in

Fig. 5 for both these request rates.

When requests arrive every 4 mins, the functions’ timeouts

have not yet elapsed and the existing (warm) containers exe-

cute the new requests within, e.g., 1.5 secs, without additional

latency – other than the very first request to the workflow

which takes 11.7 secs. At 6 min intervals between requests,

the cold-start overhead is seen for every workflow invocation

and their constituent functions since all prior containers have

spun down after 5 mins. This shows a steadily high latency at

11.8 secs.

We also notice a higher cold-start overhead if the function’s

deployment size on disk is larger, e.g., taking ≈ 500 ms with

a 100 kB package size for the Resize function, and ≈ 2000 ms

for a 120 MB package size for the ResNet inference function.

Many sophisticated techniques have been proposed at the

OS, container and application levels [34], [43] to handle cold-

starts. The deterministic behavior of AWS makes it amenable

to some of the application-level mitigation techniques while

the high latency and variability of Azure’s workflow ini-

tialization masks the addition impact of cold starts. That

said, the downside of cold-start is limited to highly bursty

workloads while also requiring strong latency guarantees for

every workflow invocation.

4) AWS Step Functions exhibits consistent elastic scaling:
Each warm container in AWS Step Functions can only execute

one function at a time. As the number of concurrent function

executions increase, we expect the number of containers to

grow. The expected number of active containers at a given

time is calculated as Function execution duration × Rate of
requests. Fig. 6 shows the expected number of AWS containers

(X axis) using this formula, against the observed number. For

502

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: End to end latency for ODF workflow on AWS Step

Functions with timeout of 5 mins, when executed at intervals

of every 4 mins and 6 mins.

Fig. 6: The number of observed and expected AWS containers

at different execution rates of a function.

this experiment, we make requests at 1, 2, 4, 8 rps for a dura-

tion of 5 mins each to a No-op function which has an execution

duration of 6 secs. As we see, there is a strong correlation

(R2 = 0.99) between the two at different invocation rates and

this indicates a deterministic scaling behavior.

Discussion. These results indicate that AWS Step Func-

tions in general has lower overheads and more deterministic

behavior compared to Azure Durable Functions, while the

latter has faster function execution times and supports larger

payloads. Both have comparable costs. If forced to pick just

a single FaaS platform for workflows, AWS Step Functions

comes out ahead. However, there are enough benefits for Azure

Durable Functions to prove competitive for some parts of a

workflow, which can be leveraged when intelligently splitting

and deploying a workflow to span both these clouds. This is

also beneficial when data locality constraints and governance

policies require running certain functions of the workflow on

specific cloud data centers. Lastly, some of the Azure Durable

Functions overheads can be mitigated using techniques like

function fusion that we discuss in § VI.

Later, we use these and other detailed micro-benchmarks

Fig. 7: XFaaS Cross-cloud Deployment Architecture

to model the expected execution time of functions on Azure

Durable Functions and AWS Step Functions, and the inter-

function latencies for given message sizes. These help make

intelligent placement, partitioning and fusion decisions.

V. XFAAS WORKFLOW ORCHESTRATOR

Fig. 7 shows the architecture of our proposed XFaaS Work-
flow Orchestrator. The core capability of XFaaS is to take a

set of user functions defined using a generic function signature

along with a workflow defined as a DAG based on these

functions, and generate glue functions, wrapper code and pack-

aging for the functions and the DAG specific to a CSP’s FaaS

and workflow platform, and deploy the DAG with this native

FaaS workflow orchestrator. The functions of a workflow may

also be placed across different public cloud providers, with

all adjacent functions within CSP forming a sub-DAG – how

such placement decisions are made intelligently is discussed in

future sections. XFaaS handles creating queues, glue functions

and other wiring for cross-cloud operations, and deploying

the sub-DAGs with the native FaaS workflow platforms of

the respective CSPs. Intra-cloud workflow orchestration is

managed by the native FaaS provider, and XFaaS is not

actively involved at runtime other than for monitoring. This

prevents it from becoming a scalability bottleneck.

There is a single instance of the XFaaS platform hosted on

any public Cloud VM and this can support any number of

workflow deployments. For simplicity, XFaaS is configured

with a single set of user credentials and permissions for

each CSP, and these credentials are used to deploy all FaaS

functions and workflows. Currently, we support Python-based

functions due to their popularity in FaaS applications, but a

similar approach can be taken for other languages as well.

Next, we describe the steps for deploying a single workflow

and its functions within any single CSP using XFaaS.

1) User Functions: To provide compatibility across FaaS

providers, XFaaS defines a common and simple function

signature for the user to implement their function logic:

function(XFaaSObject) → XFaaSObject

Currently, we support HTTP or queue-based means of

invocation that is common across FaaS providers. The

XFaaSObject exposes a getPayload() method to return

the function’s request parameters as a JSON, which arrives

over some transport such as HTTP or a cloud queue. In

503

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

addition, it has metadata fields for performance telemetry

tracked by XFaaS. At the end of the user’s function logic,

they will create a similar XFaaSObject whose payload is

populated with the JSON for the output from the function.

At deployment-time, XFaaS auto-generates a runner code
for each function specific to the CSP where it is being

deployed. This serves as a wrapper around the user function,

and extracts the request payload from the appropriate message

transport for the deployment, such as a HTTP Request object

or the relevant cloud message object, and places it in the

XFaaSObject before invoking the user’s function. It also

populates the metadata fields from the relevant transport ob-

ject. Similarly, it will access the payload present in the output

XFaaSObject from the function invocation for downstream

processing.

While this signature works for a linear chain of functions,

we also support fan-ins (joins) where multiple upstream func-

tions can pass a message to one downstream function. For

this, we provide an alternate function signature for users to

implement:

function(XFaaSListObject) → XFaaSObject

The XFaaS runner code we generate will automatically pop-

ulate the XFaaSListObject with the XFaaSObjects

received from the upstream edges and make it available to

the user logic through the getPayloads() method.

Each function is self-contained within its own sub-directory,

and this contains the Python entry point file implementing the

function signature, any dependent data files, model files, code

and/or config files, and a file with the list of external Python

packages to import when instantiating a deployment. As part

of their execution logic, the user function may access such files

that are deployed. The FaaS deployments of CSPs host these

files in diverse base folders within which the user functions

run, e.g., a relative path in AWS Step Functions or in a path

under the root folder for Azure Durable Functions. To make

access to these user files transparent, the XFaaSObject and

XFaaSListObject expose a getBasepath() method

which returns the custom directory path for the CSP where

the dependencies are hosted.

A sample user function defined in XFaaS is given below:

1 def function(inputXFaaSObject):
2 # Implement user logic here
3 # access inputXFaaSObject.getPayload()
4 # access inputXFaaSObject.getBasepath() -> data

files
5 # process payload
6 # place output in outputXFaaSObject.setPayload()
7 return outputXFaaSObject

2) Workflow Description: The workflow can be defined

in XFaaS as a DAG specified in JSON. It contains a

WorkflowName, Nodes representing functions, and Edges
denoting the dataflow dependency between functions. Each

Node specifies a user-friendly NodeName, a globally-unique

NodeId, a local Path to the user code for that function’s

deployment, the EntryPoint Python file that implements

the user function signature, the expected peak memory usage

for the function as MemoryInMB, and optionally the CSP
where the function must be pinned to. The Edges are an

adjacency list from a source node to sink nodes. The default

dataflow convention is for fan-outs/forks (nodes with > 1
out-edges) to duplicate their XFaaSObject output from an

execution along all out-edges to sink nodes, and for fan-

ins/joins (nodes with > 1 in-edges) to have the upstream task

output to be assembled in a XFaaSListObject list and

provided to the sink node for execution.

A sample LC-2 DAG can be defined in XFaaS as below:

1 {
2 "WorkflowName": "XFaaSUserDagName",
3 "Nodes": [
4 {
5 "NodeName": "func1",
6 "Path": "examples/complex-dag-1/src/func1",
7 "EntryPoint": "func1.py",
8 "MemoryInMB": 256,
9 "NodeId": 1

10 },
11 {
12 "NodeName": "func2",
13 "Path": "examples/complex-dag-1/src/func2",
14 "EntryPoint": "func2.py",
15 "MemoryInMB": 512,
16 "NodeId": 2
17 }
18],
19 "Edges": [
20 {
21 "func1": ["func2"]
22 }
23]
24 }

3) Packaging and Deployment: When deploying a work-

flow and its dependent functions to a CSP, the user provides

JSON of the DAG and a zipped file containing the sub-folders

hosting the user functions and their dependencies, as listed

above. The XFaaS platform exposes a REST endpoint where

the users can submit this DAG JSON and the functions zip

file. The XFaaS Planner analyzes the DAG definition and

function descriptions to determine a deployment plan based

on the latency, cost and function pinning for the workflow.

This decides the placement of each function on specific CSPs.

The planner may rewrite the DAG structure as part of function

fusion, and decide to split the DAG into two parts with each

running on a different CSP. These are described in the next

sections.

The output of the planner is one or more (sub)DAGs along

with the CSP on which each has to be deployed on. For

each DAG, XFaaS generates automatic code for the runners

that wrap functions in the DAG that is specific to the CSP

where it will run. This includes code for marshalling and

unmarshalling of the native FaaS platform function inputs

to the XFaaS input object type to be consumed by the user

function, and generating code for provenance and telemetry.

The user implemented function and it’s dependent Python

modules are converted into a single Python file using the

stickytape tool [44]. There is also workflow level code that is

generated for each CSP. This can be ASL to specify AWS step

504

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

functions or Python code generated for the Azure orchestrator

to call the relevant functions in the DAG.

Post the code generation, the native Command Line In-

terface (CLI) commands of the relevant CSP are invoked to

deploy the functions and the DAG(s) using their native FaaS

platform. Once deployed and available, XFaaS returns the

unique HTTP endpoint created for that DAG by the native

FaaS workflow for clients to submit requests to. Subsequently,

the XFaaS platform is not actively involved in orchestrating

the execution of each invocation of the deployed workflow.

This is managed completely by the native CSP FaaS workflow

platform.

In the case of workflow plans that span multiple clouds,

there are a few additional steps. We create a cloud queue for

each edge-cut in the DAG that spans two CSPs. This queue

is created in the CSP hosting the sink function, and used by

the source function to send its execution output to the sink.

To make this transparent to the users, we automatically create

code for a Push-to-Queue Function that takes the output of the

upstream function and puts it on the cloud queue, and a Queue
Triggered Function that subscribes to this queue and sends

the received payload to the downstream function. These two

functions are respectively added to the sub-DAGs deployed to

the two CSPs.

Along with the function response payload being passed

between functions in the workflow, we also attach telemetry
metadata to the XFaaSObject object as we move through

the DAG execution. This contains the workflow invocation

ID, the workflow start timestamp, the payload timestamp

at the source and sink functions, and the start and end

timestamps for every function execution. This metadata is

also published to a provenance store, currently maintained

using a DynamoDB NoSQL store. The telemetry metadata

is published as messages to a cloud queue at the end of

the workflow’s last function’s execution by the runner code

we generate. An XFaaS service subscribes to this queue and

inserts the message into the Workflow Invocation Table of the

NoSQL store. This NoSQL store also maintains details of the

user-submitted DAG, the refactored DAG after function fusion

(discussed next), and deployment details of the DAG and its

sub-DAG(s) on one or more CSPs. This metadata is useful for

performance monitoring and debugging of the workflow and

its functions, and also helps develop the performance models

that we use later.

VI. FUNCTION FUSION PLANNER

A user may submit a workflow where each function is an

atomic unit of logic that is easy to implement, modular and

tractable. However, the complex billing and platform internals

of FaaS workflow platforms can cause a user provided DAG

structure to be sub-optimal for the CSP platform – on cost

and/or latency for executing the workflow. We adopt function

fusion in XFaaS to mitigate these effects. The goal of function
fusion is to minimize function latency without exceeding a
user-defined cost budget. The fusion planner greedily and

incrementally attempts to fuse adjacent nodes in the user-

provided DAG such that each fusion either reduces the esti-

mated latency or the estimated cost for the workflow execution.

Once the fusion plan is decided, we generate automated code

at deployment time for each fusion function that sequentially

executes the series of component functions being fused. This

single fusion function replaces the fused functions in the DAG

structure.

1) Impact of Fusion on Latency: Fusing linear function
chains on the critical path of the DAG will reduce the

latency of the workflow by avoiding inter-function data trans-

fer overheads. However, since fused functions are executed

sequentially by the generated fusion function, the fusing of

task-parallel functions in the DAG can increase the execution

latency due to reduced task concurrency. The magnitude of

latency gains depends on the ratio of computation to data

transfer overheads of the functions being fused.

2) Impact of Fusion on Cost: When functions are fused, the

memory requirement of the fusion function will be the maxi-

mum among the memory requirement of the fused functions.

This, coupled with the longer execution time of the fusion

function relative to its individual constituent functions, can

lead to an increase in the cost for execution. However, fusion

also leads to a decrease in the number of functions in the DAG,

leading to fewer steps in the case of AWS Step Functions and

a decrease in the storage requests in Azure Durable Functions.

This can cause the overall cost of the fused DAG to decrease

since fewer control operations are billed.

3) Planning Algorithm: The nuanced interplay between

latency and cost implies that the decision of which functions to

fuse cannot be made naïvely. Alg. 1 shows the pseudo-code for

our proposed function fusion algorithm. The algorithm itera-

tively and greedily returns the fusion candidate that minimizes

the estimated latency without exceeding a user-defined cost

threshold.

It accepts as input the current DAG G, which may already

have fused nodes, the original user-submitted DAG Guser,

and the cost threshold θ. Here, θ is the maximum factor by

which the fused DAG can exceed the estimated billing cost

compared to the original user submitted DAG. We define Θ =
θ × BILLEDCOST(Guser) as the maximum allowed billing

budget after fusion. We start by enumerating all function fusion
candidates, which are nodes that are either a part of a linear

chain, or the nodes that lie between a fan-in and fan-out node

in the DAG. A fan-out node is a node with an in-degree of 1
and an out-degree > 1, while a fan-in node has an out-degree

of 1 and an in-degree of > 1. GETFUSIONCANDIDATES(G)

(Alg. 1, Line 17) returns all such fusion candidates2.

For each fusion candidate f , we evaluate its improvement

in workflow latency as, δft = (Latency before fusion −
Latency upon fusion). We also calculate the increase in cost

due to this fusion candidate as, δfc = (Cost with fusion −
Cost without fusion). The time and cost estimates come from

2Currently, only DAGs with a matching pair of fan-in and corresponding
fan-out nodes are supported.

505

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Function Fusion Planning

1: function FUSE_GRAPH(G,Guser , Θ)
2: candidates ← GETFUSIONCANDIDATES(G)
3: for f ∈ candidates do
4: δft ← (Latency with fusion f − Latency without fusion)
5: δfc ← (Cost with fusion f − Cost without fusion)

6: f.score ← δ
f
t

δ
f
c

7: end for
8: sorted ← SORTDESCENDINGBYSCORE(candidates)
9: for candidate ∈ sorted do

10: fusedG ← FUSEGRAPH(G, candidate)
11: if BILLEDCOST(fusedG) < Θ then
12: return fusedG
13: end if
14: end for
15: end function
16:

17: function GETFUSIONCANDIDATES(G)
18: candidates ← []
19: for (u, v) ∈ DFSTRAVERSAL(G) do
20: if type(u, v) = LINEAR then
21: candidates ← (u, v)
22: end if
23: if type(u, v) = FANOUT then
24: stack.push(u)
25: end if
26: if type(u, v) = FANIN then
27: u′ ← stack.pop()
28: candidates ← (u′, v)
29: end if
30: end for
31: return candidates
32: end function

simple regression models discussed next. These fusion can-

didates are then sorted in descending order by their score,

given as the ratio of the time benefit over the cost increase.

The candidate with the largest score that does not exceed Θ
is selected (Alg. 1, Line 11). If no candidate is returned, the

planner stops.

An example of function fusion in action is shown in Fig. 8.

The four fusion candidates for the DAG are enumerated. Here,

Candidate 1 has been selected for fusion based on the score

and threshold. Nodes A, B, C, and D, which form Candidate
1, have been fused into a fusion node FC1. An edge has been

added from FC1 to node E. After adding the synthetic node,

the structure of the graph has been changed, and we apply the

fusion algorithm again on this DAG, until we are not able to

find any suitable candidate.

The time complexity for evaluating function fusion for a

DAG with V nodes and E edges is as follows. Enumerating all

fusion candidates takes O(E), followed by finding the shortest

path which takes O(V + V logE). Finding the best fusion

candidate has a time of O(V − 1), since we have at most

V − 1 candidates. So the complexity for fusing one candidate

is O(E + (V + ElogV) + V). This can repeat a maximum

of V − 1 iterations. This gives a worst case time complexity

of O(EV + V 2 + EV logV). While this may appear large,

given that the vertex and edge counts for DAGs are modest at

Fig. 8: Identifying fusion candidates, estimating benefits and

applying fusion to get the updated DAG. FC1 is the fusion

function resulting from the fusing of A,B,C and D.

< 100, the wallclock time taken for this fusion logic to run is

< 1 sec.
4) Latency and Cost Models: The latency and cost esti-

mates come from simple performance and cost models we

develop based on our micro-benchmarks in § IV. In an oper-

ational setting, we can leverage the performance monitoring

by the provenance store to build such models dynamically for

new workflows. While the accuracy of these models is not

high, these are good enough to select between several choices
for fusion, and later, partitioning and placement.

The function execution duration t is maintained in the

Provenance Store either from prior executions of the function

or from benchmarks. The Provenance Store also contains

the output message size μ for each function. For the inter-
function latency on AWS Step Functions, if the message size

is < 64 KB, we use a constant value of 0.115 sec, and if the

message size is ≥ 64 KB, we do a linear regression fit over the

message size μ to get the latency as 0.0014×μ+0.071, with

R2 = 0.84 . For the inter-function latency on Azure Durable

Functions, we fit the equation 0.12 × v × r + 0.418, where

v is the number of nodes in the DAG and r is the request

rate (in requests per second). The inter-function latency for

Azure Durable Functions depends on the number of concurrent

request to the storage tables. 2×v× r is an estimate for these

concurrent requests. The number of nodes v are available in

the user DAG and a service can be used to monitor the request

rate. The total execution time for the DAG is given by the

sum of the function execution duration and the inter-function

latency of the functions that fall on the critical path in the

DAG.

The billing cost for each function invocation using AWS

Step Functions in US ¢ is given by m × t × 0.00166667 +
0.00285, where m is the memory usage of the function in

KB and t is the execution duration of the function. ¢0.00285
is the cost for each step transition (function execution). The

corresponding cost model for each invocation of an Azure

Durable Function is m × t × 0.0016 + 0.000786. ¢0.000786
is the estimated storage cost for messages transferred.

5) Implementation: We run the fusion algorithm on the

user provided DAG to get the new DAG. If it contains a

506

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

fusion node, we generate code for a proxy function for it,

which will execute the user-functions of the relevant fused

tasks sequentially. The module dependencies for the fused

functions are merged together by concatenating their pack-

age dependencies. Dependencies for the fused functions are

placed under separate sub-directories and the runner template

ensures that the basepath are appropriately populated for these

functions. The memory required for the fusion node is set as

the maximum of the memory requirements of the fused nodes.

A sample auto-generated fusion function code to fuse TaskA
and TaskB functions is shown below.

1 def function(inputXFaaSObject):
2 # Auto generated code. Do not edit.
3 xjaq = TaskA.function(inputXFaaSObject)
4 xjaq.set_basepath(basepath_modify(

inputXFaaSObject.get_basepath(), "TaskA", "TaskB
"))

5 awch = TaskB.function(xjaq)
6 return awch

VII. PARTITIONING AND PLACEMENT PLANNER

When the user submits a DAG, the XFaaS partition and
placement planner optionally partitions the DAG and decides

the placement of the functions of the DAG (or the sub-

DAGs, if partitioned) in the appropriate CSP. XFaaS currently

supports partitioning the DAG into two parts, though this can

be extended to more than two partitions, across additional

CSPs or different data centers of the same CSP.

The input to the partitioner is the user DAG, the estimated

execution latencies for each function, and the inter-function

or inter-cloud transfer latencies. These values are taken from

the cost and latency models above. Users may also provide

constraints to pin specific functions to particular CSPs, e.g.,

due to regulatory reasons. Based on these, the partitioner picks

the best possible partition point along in the DAG with the

CSPs where each part should be placed. The partitioner may

also return a single CSP where the entire DAG has to be

placed. The goal of the partitioner is to partition and place
the DAG such that the end to end latency for the workflow is
minimized.

Alg. 2 shows the partitioning and placement algorithm.

Given a user DAG and constraints on placement, the algorithm

starts by initializing the expected latency to be the smaller

of the latency from placing the DAG fully in Azure or in

AWS. Then, it finds all valid partitions for the DAG. A valid

partitioning point is after a vertex that is not a part of any fan-

in and fan-out pairs 3. For each such partitioning, the algorithm

iteratively tries placing the two sub-DAGs on the two service

providers we consider, as long as the user-defined constraints

permit such a placement. For each valid partition, a local best
placement is identified such that the latency is smaller than

the previous best latency, and iteratively, we arrive at a global
best placement.

The time complexity for this algorithm is given by enumer-

ating all partition points (O(V)); calculating latency using the

3Currently, XFaaS cannot process task-parallel functions that are across
multi-clouds

Algorithm 2 Partitioning and Placement Algorithm

1: function PARTITIONGRAPH(Guser, Constraints)
2: l1 ← GETLATENCY(AWS_Only,Guser)
3: l2 ← GETLATENCY(Azure_Only,Guser)
4: global_best = PICKLOCALBEST(l1, l2)
5: best_partition_point ← ∅

6: valid_parts ← GETVALIDPARTITIONS(Guser, Constraints)
7: for p ∈ valid_parts do
8: l1 ← GETLATENCY(AWS_to_Azure, p)
9: l2 ← GETLATENCY(Azure_to_AWS, p)

10: local_best = PICKLOCALBEST(l1, l2)
11: if local_best < global_best then
12: global_best ← local_best
13: best_partition_point ← p
14: end if
15: end for
16: return global_best, best_partition_point
17: end function

Fig. 9: Partitioning and deploying a user DAG

shortest path for both the sub-DAGs (O(V +ElogV)); picking

the best sub-DAG out of two (O(1)); to give a total complexity

when iterating over all V partition points as O(V 2+EV logV).
This again is practically manageable for even DAGs with 100s

of vertices and edges within 1 sec.

After the planner returns an option split point and the

(sub)DAGs, we generate the relevant code and create any

queue resources required to operate across clouds. If the DAG

is partitioned, then boundary functions like Push-to-Queue and

Queue Triggered functions will also be created, as discussed

before. XFaaS abstracts away this complexity from the user.

Fig. 9 shows how a partitioned DAG is deployed across

multi-cloud. Here, the planner has decided to place node A
in Azure and nodes B,C,D and E on AWS. Two new Push-
to-Queue and Queue Triggered functions have been added to

the sub-DAG. Also, an SQS queue has been created in AWS

that receives messages from Push-to-Queue and triggers the

Queue Triggered function.

VIII. EXPERIMENTS AND RESULTS

We evaluate the impact of partitioning and fusion on two

DAGS [45]: Smart Grid (Fig. 10a and Dumbbell (Fig. 10b).

The functions (nodes) are of four types: memory stress,

ResNet inferencing (floating point compute), XML parsing

(integer compute) or I/O stress. The execution times for these

are given in the tables inset in Fig. 10. The edges are annotated

with the data transfer size.

Our experiments are conducted in the Azure (Central-India)

and AWS (ap-south-1) data centers. For both the clouds the

client is placed a single VM within that cloud. For Azure

507

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

CSP Exec
Dur(ms)

Azure 514
AWS 4139

Nodes =
B,E,I,K,O
Type = Memory
Stress

CSP Exec
Dur(ms)

Azure 10

AWS 33

Nodes
=A,F,M,Q
Type = XML
Parse

CSP Exec
Dur(ms)

Azure 1473
AWS 3095

Nodes =C,H,L,P
Type = ResNet

A

D M

E F
H

I
K

B C

J

G

N O

L

25KB

P Q25KB25KB

25KB

25KB

25KB 25KB 25KB

25KB

25KB

25KB
25KB

25KB

25KB

25KB

25KB

25KB

25KB 25KB

CSP Exec
Dur(ms)

Azure 179
AWS 1738

Nodes =D,G,J,N
Type = I/O Stress

(a) Smart Grid DAG

A

B

C

D F

G

H

IE

CSP Exec
Dur(ms)

Azure 514
AWS 4139

Nodes = A,B,C,D
Type = Memory
Stress

CSP Exec
Dur(ms)

Azure 10
AWS 33

Nodes =F,G,H,I
Type = XML Parse

CSP Exec
Dur(ms)

Azure 1473
AWS 3095

Nodes =E
Type = ResNet

1 KB

1 KB 1 KB

1 KB
1 KB 1 KB

100 KB

100 KB 100 KB

100 KB

(b) Dumbbell DAG

Fig. 10: DAGs of the two FaaS workflows used in our experiments.

Durable Functions the VM is the Standard D8s v3 type with

8 vCPUs and 32GB RAM, while for AWS Step Functions we

use an EC2 instance of C5.4X Large type with 16 vCPUs and

32GB RAM. We execute these workflows from a client in the

same data center at a rate of 1 request per second, unless noted

otherwise.

A. Impact of XFaaS Partitioning and Placement

1) Multi-Cloud execution of workflows can yield lower
latencies than executing in a single cloud: Fig. 11b shows the

median observed latency (in seconds) on the Y axis for each

valid partition point of the Dumbbell DAG. The X axis shows

the edges which are candidate partition points in the DAG.

When the partition spans multiple edges, eg., a partition across

edges, C-D and C-D, we use C-* to represent that partition

point. The left bar (light green) gives the latency when the

sub-DAG to the left of the function is placed on AWS and the

right sub-DAG on Azure, and the right bar (dark green) means

that the left sub-DAG is on Azure and the right on AWS. The

last two bars are the latencies when the entire DAG is on AWS

(orange) or Azure (blue).

We observe that the median latency for the edge D-E Azure

to AWS is 24% lower than running the entire Dumbbell

workflow on Azure: 7.3 secs vs. 9.6 secs, and 57% lower than

running the entire workflow on AWS: 7.3 secs vs. 17.1 secs.

We attribute this behaviour to the ≈ 8× slower execution

of Memory Stress (Functions A, B, C and D) on AWS in

comparison to Azure. Partitioning the workflow helps leverage

the faster execution on Azure before switching to AWS for

better inter-function latency for the large message exchanges

between Functions F, G, H and I, which perform XML Parsing.

Fig. 11a shows the median observed latency (in seconds)

on the Y axis for each valid partition point of the Smart Grid

DAG. Even here, we observe that the multi-cloud execution C-

* Azure to AWS has 13.3% lower latency than running entirely

on Azure and 25.7% lower latency than running entirely on

AWS.

2) The partitioner can identify multi-cloud splits that yields
a low latency: While we have empirically observed that

deploying a workflow across multiple clouds can reduce

the latency of execution, we cannot realistically evaluate all

possible partition points and CSP combinations. Hence, we

rely on the partitioner to pick a multi-cloud configuration such

that the latency is minimized. For the Dumbbell DAG, the

partitioner selects E-F Azure to AWS. This configuration has

the third lowest latency as seen in Fig. 11b, 8.27 secs, but this

is very close to the actual lowest which is 7.30 secs. This is

still much better than splitting at the other spots. Analytically,

the partitioner chooses this split point to leverage the faster

execution on Azure for function E (ResNet), which takes

1.47 secs on Azure vs. 3.09 secs on AWS. For the Smart

Grid DAG, the partitioner selects C-* Azure to AWS. This

configuration has among the lowest latency in Fig. 11a, and

comparable to A-B Azure to AWS and B-C Azure to AWS.

This again uses the faster compute of Azure for function B

(ResNet), before moving to AWS for the parallel sub-DAG

with many edges, which cause higher inter-function latencies

in Azure.

3) Partitioner respects user constraints: The partitioner

also takes into account constraints like user-pinned nodes to a

particular CSP, or the intra or inter cloud payload size limits,

like < 64 Kb ingress into Azure, and < 256 KB intra-cloud

payloads in AWS. In Fig. 11b, the partition edge F-* AWS to

Azure is INVALID because of the 64KB input constraint in

Azure Durable Functions. To verify this feature, we specify

pinning constraints on node B and G of the Dumbbell DAG

to AWS, as part of the DAG. This gives only two remaining

options for the partitioner, A-* Azure to AWS, or run the

entire DAG on AWS. Our partitioner picks the former. This can

be explained from Fig. 11b, where the dark green bar shows

A-* Azure to AWS having a median latency of ≈ 14 secs,

as compared to ≈ 17 secs for the orange bar denoting that

everything runs on AWS. Our partitioner is able to rightly

estimate the expected time and choose the best partition point,

after applying the constraints.

B. Analysis of Function Fusion

Here, we evaluate the effects of function fusion on the Smart

Grid DAG. We do not perform partitioning over here, and

evaluate the benefits of fusion when running the DAG fully

on Azure or on AWS.

508

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

(a) Smart Grid DAG (b) Dumbbell DAG

Fig. 11: Impact of effective partitioning on the workflow’s E2E latency.

(a) Impact of fusion on
latency

(b) Time vs Cost estimates for different
rounds of fusion

Fig. 12: Evaluating fusion on Smart Grid DAG

1) Function fusion discovers lower latency configurations:
Fig. 12a shows the bar plots for the median latencies for the

Smart Grid DAG executing completely on AWS (orange) and

Azure (blue) , but with fusion disabled (left bar) or enabled

(right bar). On AWS Step Functions, we observe a small

reduction in latency from 29.85 secs to 26.59 secs when fusion

logic is enabled. This is due to the higher function execution

times and lower inter-function times for AWS estimated by our

fusion logic. For AWS, the fusion logic fuses nodes {A,B,C}
into one node, {E,F} into another node, and {L,P,Q} into

a third node. All these nodes are linear nodes and fall on

the critical path. Overall, fusion for AWS reduces only 5
edges, and this gives a smaller reduction in latency. For Azure,

interestingly, the fusion logic fuses all 17 nodes into a single

node. Here, the inter-function latency dominates the execution

times and hence it is better to fuse all nodes together. Post
fusion, Azure Durable Functions exhibits a lower latency than
AWS Step Functions 8.67 secs vs. 26.59 secs.

2) Fusion may also reduce the cost: Fig. 12b shows a scat-

ter plot for the observed latency in seconds vs. the estimated

cost in cents, for the decisions made by the fusion logic on

the Smart Grid DAG for both AWS and Azure deployments.

The number labels indicate the series of incremental decisions

taken by the fusion agorithm and the corresponding time and

cost for these. Here, we observe a reduction in both latency

and the estimated cost. For Azure we see a drop in the cost

from ¢0.019 to ¢0.0081 per execution, and for AWS, we see

a drop from ¢0.068 to ¢0.056. Since users are billed either

directly or indirectly for the number of nodes in the workflow,

reducing the number of nodes leads to a reduction in cost for

this combination of function execution time and memory used.

IX. CONCLUSIONS

In this paper, we identified the opportunities, limitations

and challenges presented by the execution of FaaS workflows

on multiple public cloud service providers. We conduct a

review of their performance in order to gain key insights,

and also build performance models that help us estimate the

execution times and inter-function latencies. At the simplest

level, XFaaS allows automated packaging and deployment of

portable functions and DAGs across one or more clouds. As

an added capability, it intelligently applies optimizations like

function fusion and deciding partition split points to reduce the

workflow execution latency while mitigating increases in costs.

These are validated through realistic workloads executing on

Azure and AWS, and our optimizations provide practical

improvements in latency and/or cost on real clouds. They help

developers reduce the CSP-specific FaaS code they write, and

automate decisions for the operations team to pick what to run

where.

As part of future work, we plan on incorporating more cloud

service providers, support edge devices, and also expose data

external dependencies like accessing NoSQL databases etc. to

guide the placement decisions. We also plan to combine fusion

and partitioning to give more optimization choices.

ACKNOWLEDGMENTS

This work was supported through an open research grant

towards the IBM-IISc Hybrid Cloud Lab (IIHCL) from IBM

India Research Lab (IRL). The authors would like to thank

Sameep Mehta, Arvind Agarwal and Balaji Ganesan from IRL

for discussions that helped shape this paper.

509

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. C. Fox, Vatche Ishakian, V. Muthusamy, and A. Slominski, “Status
of serverless computing and function-as-a-service (faas) in industry and
research,” International Workshop on Serverless Computing (WoSC),
Tech. Rep., 2017.

[2] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12, pp.
44–54, 2019.

[3] AWS, “Aws lambda,” 2023, https://aws.amazon.com/lambda/.
[4] M. Azure, “Azure functions,” 2023, https://azure.microsoft.com/en-

in/products/functions/.
[5] Google, “Cloud functions,” 2023, https://cloud.google.com/functions.
[6] IBM, “Ibm cloud functions,” 2023,

https://www.ibm.com/cloud/functions.
[7] OpenFaas, “Openfaas: Serverless functions, made simple,” 2023,

https://www.openfaas.com/.
[8] Knative, “Serverless containers in kubernetes environments,” 2023,

https://knative.dev/docs/.
[9] AWS, “Aws step functions,” 2023, https://aws.amazon.com/step-

functions/.
[10] M. Azure, “What are durable functions?” 2023,

https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-overview.

[11] S. Ristov, S. Brandacher, M. Felderer, and R. Breu, “Godeploy: Portable
deployment of serverless functions in federated faas,” in IEEE Cloud
Summit, 2022, pp. 38–43.

[12] P. Rodrigues, F. Freitas, and J. Simão, “Quickfaas: Providing portability
and interoperability between faas platforms,” MPDI Future Internet,
vol. 14, no. 12, p. 360, 2022.

[13] CNCF, “Serverless workflow,” 2023,
https://serverlessworkflow.github.io/.

[14] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Bench-
marking, analysis, and optimization of serverless function snapshots,” in
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2021, pp. 559–572.

[15] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading
cold starts in serverless function chain deployments,” in ACM/IFIP
International Middleware Conference, 2020, pp. 356–370.

[16] S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas,
C. McMahon, C. S. Meiklejohn, and X. Zhu, “Netherite: Efficient exe-
cution of serverless workflows,” Proceedings of the VLDB Endowment,
vol. 15, no. 8, pp. 1591–1604, 2022.

[17] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Acceler-
ating Function-as-a-Service workflows,” in USENIX Annual Technical
Conference (ATC), 2021, pp. 805–820.

[18] A. Khochare, Y. Simmhan, S. Mehta, and A. Agarwal, “Toward scientific
workflows in a serverless world,” in 2022 IEEE 18th International
Conference on e-Science (e-Science), 2022, pp. 399–400.

[19] R. Crespo-Cepeda, G. Agapito, J. L. Vazquez-Poletti, and M. Cannataro,
“Challenges and opportunities of amazon serverless lambda services in
bioinformatics,” in ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics, 2019, pp. 663–668.

[20] A. John, K. Ausmees, K. Muenzen, C. Kuhn, and A. Tan, “Sweep:
accelerating scientific research through scalable serverless workflows,”
in IEEE/ACM International Conference on Utility and Cloud Computing
Companion, 2019, pp. 43–50.

[21] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric for
science,” in International symposium on high-performance parallel and
distributed computing (HPDC), 2020, pp. 65–76.

[22] M. Malawsk, “Towards serverless execution of scientific workflows –
hyperflow case study,” in Workflows in Support of Large-Scale Science
(WORKS) Workshop, 2016.

[23] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Mashup: making
serverless computing useful for hpc workflows via hybrid execution,”
in ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2022, pp. 46–60.

[24] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, and A. Youssef, “Leverag-
ing the serverless architecture for securing linux containers,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
Workshops (ICDCSW), 2017, pp. 401–404.

[25] CNCF, “Synapse,” 2023, https://github.com/serverlessworkflow/synapse.
[26] Eventmesh, “Apache eventmesh,” 2023, https://eventmesh.apache.org/.
[27] Quarkus, “Quarkus funqy portable java api,” 2022,

https://quarkus.io/guides/funqy.
[28] Kogito, “Kogito serverless workflow

guides,” 2023, https://kiegroup.github.io/kogito-
docs/serverlessworkflow/latest/index.html.

[29] Minikube, “Minikube,” 2023, https://minikube.sigs.k8s.io/docs/start/.
[30] KubeFlow, “The machine learning toolkit for kubernetes,” 2023,

https://www.kubeflow.org/.
[31] Argo, “Argo workflows - the workflow engine for kubernetes,” 2023,

https://argoproj.github.io/argo-workflows/.
[32] Terraform, 2022, https://www.terraform.io/.
[33] Serverless, 2022, https://www.serverless.com/.
[34] A. Fuerst and P. Sharma, “Faascache: Keeping serverless computing

alive with greedy-dual caching,” in ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021, p. 386–400.

[35] Z. Li, L. Guo, Q. Chen, J. Cheng, C. Xu, D. Zeng, Z. Song, T. Ma,
Y. Yang, C. Li et al., “Help rather than recycle: Alleviating cold startup
in serverless computing through {Inter-Function} container sharing,” in
USENIX Annual Technical Conference (ATC), 2022, pp. 69–84.

[36] A. Mahgoub, L. Wang, K. Shankar, Y. Zhang, H. Tian, S. Mitra, Y. Peng,
H. Wang, A. Klimovic, H. Yang et al., “{SONIC}: Application-aware
data passing for chained serverless applications,” in USENIX Annual
Technical Conference (ATC), 2021, pp. 285–301.

[37] A. Mahgoub, E. B. Yi, K. Shankar, E. Minocha, S. Elnikety, S. Bagchi,
and S. Chaterji, “Wisefuse: Workload characterization and dag transfor-
mation for serverless workflows,” ACM Measurement and Analysis of
Computing Systems, vol. 6, no. 2, pp. 1–28, 2022.

[38] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “{ORION} and the three rights: Sizing, bundling, and pre-
warming for serverless {DAGs},” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2022, pp. 303–320.

[39] B. Raj, S. Dennis, J. Kevin, W. David, and B. Miguel, Angel, “Magic
quadrant for cloud infrastructure and platform services,” Gartner, Tech.
Rep., 2022.

[40] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S.
Meiklejohn, “Durable functions: semantics for stateful serverless,” ACM
Programming Languages, vol. 5, no. OOPSLA, pp. 1–27, 2021.

[41] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “Faasdom: A bench-
mark suite for serverless computing,” in Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems, 2020,
pp. 73–84.

[42] N. Mahmoudi and H. Khazaei, “Performance modeling of serverless
computing platforms,” IEEE Transactions on Cloud Computing, vol. 10,
no. 4, pp. 2834–2847, 2020.

[43] X. Liu, J. Wen, Z. Chen, D. Li, J. Chen, Y. Liu, H. Wang, and X. Jin,
“Faaslight: General application-level cold-start latency optimization for
function-as-a-service in serverless computing,” ACM Transactions on
Software Engineering and Methodology, 2023.

[44] M. Williamson, “stickytape: Convert python packages into a single
script,” 2018, https://github.com/mwilliamson/stickytape.

[45] A. Shukla and Y. Simmhan, “Model-driven scheduling for distributed
stream processing systems,” Journal of Parallel and Distributed Com-
puting, vol. 117, p. 98–114, 2018.

510

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

ARTIFACT REPRODUCIBLITY

XFaaS allows “zero touch” deployment of Serverless func-

tions and workflows across AWS and Azure by automatically

generating necessary code wrappers, cloud queues, and coor-

dinating with the native FaaS engine of a cloud provider. In,

XFaaS we make the following contributions:

• For Single Cloud: Deploy common function logic as

workflows in AWS Stepfunctions and Azure Durable

Functions.

• For Single Cloud Fusion: Based on prior benchmarks,

deploy modified workflows with function fusion in AWS

and Azure.

• For Multi Cloud: Based on prior benchmarks, deploy a

workflow partitioned across Azure and AWS.

In this appendix, we provide instruction to verify the

functionality of these 3 contributions of our work using the

SmartGridDAG from the main paper (Fig 10 (a)). The code

is available at https://github.com/dream-lab/XFaaS under the

CCGRID2023 branch.

A. Setup

Pre-requisites: Linux desktop with docker installed and In-

ternet connection.

We provide a docker container that has all the XFaaS

dependencies pre-installed. Line 1 in Listing 1 clones the

github repository so that we can build the docker container.

Line 3 in Listing 1 builds the container using the Dockerfile

provided with the submission. Line 4 starts a docker container

in the background and line 5 provides a bash terminal inside

the container. Lines 7 and 8 provide steps needed for logging

into the cli of Azure and AWS respectively. Line 9 clones the

XFaaS repository into the root directory and line 11 installs

the necessary python3 requirements into the docker container.

With that the docker environment setup is complete. Note that

this step may have to be repeated if the docker container is

stopped.

Verification: You can check if the docker container is run-

ning using docker ps | grep xfaas on the host Linux

desktop.

1 git clone https://github.com/dream-lab/XFaaS.git
2 cd XFaaS
3 docker build -t xfaas:1.0 .
4 docker run -d --name xfaas-container xfaas:1.0
5 docker exec -it xfaas-container bash
6 <--docker exec should bring you inside the docker

container-->
7 az login -u <username> -p <password>
8 aws configure
9 git clone https://github.com/dream-lab/XFaaS.git

10 cd XFaaS
11 ./setup.sh

Listing 1: Setting up Docker container for the experiments

There are 5 folders under the serwo/examples directory each

corresponding to an experiment. This is purely for convenience

and users can verify that the code under all directories is

exactly the same by running diff. Eg: Listing 2.

1 diff smart-grid-singlecloud-aws/src/
iostress_512wr_25KB/func.py smart-grid-
singlecloud-azure/src/iostress_512wr_25KB/func.
py

Listing 2: diff across folders

The XFaaS directory structure is as follows:
XFaaS

serwo

examples

smart-grid-singlecloud-aws

smart-grid-singlecloud-azure

smart-grid-fusion-aws

smart-grid-fusion-azure

smart-grid-multicloud

run.py

run_client.py

plot_timeline.py

We provide a client (python3 run-client.py
--exp-name <experiment-name>) that uses jmeter to

make HTTP requests to the deployed workflows for 10 mins

at 1 request per second. And a plotting script (python3
plot-timeline.py <experiment-name>) that plots

the end-to-end latency of these requests and saves it as a pdf

(<experiment-name_e2e_timings.pdf>).

B. Single Cloud

Pre-requisites: A Running XFaaS docker container In this

group of experiments, we will deploy workflows to AWS Step

Functions and Azure Durable Functions.

1) AWS Deployment: Command 1 shows the command

to be executed (experiment name: smart-grid-singlecloud-
aws) – single cloud deployment of the workflow to AWS

Step Functions. The command may take a few minutes

to complete. Once the workflow has been deployed,

we encourage users to navigate to /XFaaS/serwo/
examples/smart-grid-singlecloud-aws/
build/workflow/aws and explore the auto-generated

directories and code specific to AWS Step Function

deployment. Users can also use the aws stepfunctions
list-state-machines command and verify that a new

Step Function has been created.

1 cd /XFaaS
2 python3 run.py examples/smart-grid-singlecloud-aws

dag-description.json --single-cloud aws

Command 1: Single Cloud AWS

511

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

2) Azure Deployment: Command 2 shows the command to

be executed (experiment name: smart-grid-singlecloud-azure)

– single cloud deployment of the workflow to Azure Durable

Functions. Once it executes, we encourage the users to explore

the auto-generated directories and code specific to Azure

Durable Functions in the build directory /XFaaS/serwo/
examples/smart-grid-singlecloud-azure/
build/workflow/azure.

1 cd /XFaaS
2 python3 run.py examples/smart-grid-singlecloud-azure

dag-description.json --single-cloud azure

Command 2: Single Cloud Azure

Verification: In the Single Cloud experiments, we verify

that common code can be deployed to AWS Step Functions

and Azure Durable Functions, with XFaaS auto-generating

the code in the build directory and deploying it. For both

the experiments, users can make requests to the deployed

workflow using the provided client (run_client.py) and

plot the results (plot_timeline.py) using the commands

mentioned in the Setup section.

C. Single Cloud with Fusion

Pre-requisites: A Running XFaaS docker container

1) AWS Deployment with Function Fusion:: Command 3
enables and deploys function fusion for AWS Step Functions

(experiment name: smart-grid-fusion-aws).

1 cd /XFaaS
2 python3 run.py examples/smart-grid-fusion-aws dag-

description.json --fusion aws

Command 3: Single Cloud AWS Fusion

Once the workflow has been deployed, we encourage

the users to navigate to /XFaaS/serwo/examples/
smart-grid-fusion-aws/build/workflow/aws
and explore the auto-generated directories and code

specific to AWS Step Function deployment. The fused

function code is available under serwo/examples/
smart-grid-fusion-aws/src-fused-AWS

Command 4 enable and deploy function fusion for Azure

Durable Functions (experiment name: smart-grid-fusion-
azure).

1 cd /XFaaS
2 python3 run.py examples/smart-grid-fusion-azure dag-

description.json --fusion azure

Command 4: Single Cloud Azure Fusion

Once the workflow has been deployed, we encourage

the users to navigate to /XFaaS/serwo/examples/
smart-grid-fusion-azure/build/workflow/
azure and explore the auto-generated directories and

code specific to Azure Durable Functions. The fused

function code is available under serwo/examples/
smart-grid-fusion-azure/src-fused-Azure
Verification: In the Single Cloud with Fusion experiments,

we verify that fused code can be deployed to AWS Step

Functions and Azure Durable Functions, with XFaaS auto-

generating the code in the build directory and deploying it. For

both the experiments, users can make requests to the deployed

workflow using the provided client (run_client.py) and

plot the results (plot_timeline.py) using the commands

mentioned in the Setup section.

D. Multi-Cloud partitioning

Pre-requisites: A Running XFaaS docker container

Command 5 enables and deploys a partitioned workflow

across AWS and Azure (experiment name: smart-grid-multi-
cloud).

1 cd /XFaaS
2 python3 run.py examples/smart-grid-multicloud dag-

description.json --partition

Command 5: Multi-Cloud Partitioned

Verification: Users can verify the auto-generation of code

wrappers for partitioning by navigating to the build directory.

Here, the DAG is partitioned at Task B In the Azure

build directory, only TaskA and TaskB are auto-generated

along with a few other helper functions that perform the

Egress. In the AWS build folder, code for TasksC to

TaskQ is auto-generated along with the function to Collect

Logs. An SQS queue is auto-generated and deployed

for the inter-cloud message passing. Users can find the

name of the generated queue under serwo/examples/
smart-grid-multicloud/build/workflow/
resources/aws-cloudformation-outputs.json.

The OutputValue of the "OutputKey": "SQSResource" is the

URI of the SQS queue. Using the aws sqs list-queues,

users can verify that the queue has been deployed in AWS.

512

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:48:26 UTC from IEEE Xplore. Restrictions apply.

