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Abstract—Many online services running in datacenters
are implemented using a microservice software architecture
characterized by strict latency requirements. Consequently,
this popular software paradigm is increasingly used for
the performance evaluation of server systems. Due to the
scale and complexity of datacenters, the evaluation of server
optimization techniques is usually done on a smaller scale
using a client-server model. Although the experimental
details of the server side are excessively described in most
publications, the client side is often ignored. This paper
identifies the hardware configuration of the client side as an
important source of performance variation that can affect the
accuracy and the correctness of the conclusions of a study that
analyzes the performance of microservices. This is partially
attributed to the strict latency requirements of microservices
and the small scale of the experimental environment.

In this work we present, using a widely used online-
service, several examples where the accuracy and the trends
of the conclusions differ based on the configuration of the
client-side. At the same time we show that the experimental
evaluation time can be significantly affected by the hardware
configuration of the client. All these provoke the discussion
of the right way to configure the experimental environment
for assessing the performance of microservices.

Index Terms—performance variability, client-side, hardware
configuration, microservices

I. Introduction
Online applications running in today’s datacenters, such

as social networks and web search, have moved from a
monolithic to a microservice-based architecture. In this archi-
tecture, a monolithic application is decomposed into smaller,
interconnected services that communicate explicitly with each
other over the network through well-defined interfaces. These
microservices can be independently developed, deployed, and
scaled. However, due to the increased network overhead
arising from the need for communication among services,
each service must now adhere to stricter Quality-of-Service
(QoS) constraints compared to its monolithic counterpart.
Previous work reports tight QoS constraints for individual
services, with 99th percentile latency targets that range from
250us to 500us [6], [7], [22], [49].

Given the rising prevalence of latency-critical applications
based on microservices in today’s datacenters, the scientific
community has increasingly turned to microservices to
evaluate the performance of proposals targeting modern
datacenter systems. This includes widely-used services, such
as Memcached [1], which is typically deployed as a distributed
caching service to accelerate user-facing applications [5], and

TABLE I: Hardware characterization in previous work.
Characterization Publications
Client only 0
Server only 8
Client and server 2
None 10
Total 20

new benchmark suites, such as MicroSuite [38], DeathStar [14],
and TrainTicket [52], which implement representative appli-
cations based on microservices.
Experimental evaluation utilizing the above frameworks

typically entails deploying them on a small test cluster, fol-
lowing a client-server model. The test cluster often has fewer
machine nodes compared to larger-scale production clusters,
primarily due to complexity, scale, and cost constraints [4], [8],
[26], [46]. Under this deployment, the test cluster comprises
a set of server-side and client-side machines. Server-side
machines are usually configured to host a few services rather
than the whole application to keep the test cluster size under
control while still achieving a representative setup. Client-side
machines host the workload generator, which (i) generates a
representative workload for the application to process, and
(ii) accurately measures the end-to-end performance of the
system under a target load, such as average response latency
and tail latency (e.g., 99th percentile).
We observe that while experimental evaluations typically

specify the server-side hardware configuration to ensure
reproducibility of results, they often overlook the client-side
configuration. Table I surveys the client- and server-side
hardware configuration in recent publications (from the years
2021, 2022, and 2023) across various system and architecture
conferences, including ISPASS, IISWC and MICRO. We find
that only 10% of the papers studied specify the client-side
hardware configuration. We attribute this limitation partially
to the implicit assumption that the end-to-end response
latency is dominated mainly by the server-side execution time.
This assumption is rooted in past practices in experimental
evaluations that were based on monolithic applications with
millisecond-scale response latencies. However, this assumption
no longer holds with microservices having microsecond-scale
response latencies where any client-side microsecond-scale
overhead can significantly impact the response latency. For
example, waking up of a client-side processor core from a
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power sleep state takes from 2us to 200us [48] (depending on
the sleep state). This overhead can significantly impact the
response latency of a microsecond-scale microservice, such
as Memcached with an average server-side processing time
of 10us [4], [7], resulting to an end-to-end response latency
that can reach up to hundreds of microseconds.

To analyze the effect of client-side hardware configuration
on performance evaluation, we conduct an experimental study
based on representative, microservice-based services and appli-
cations with microseconds/few milliseconds response latencies,
including Memcached [1], HDSearch from MicroSuite [38],
Social Network from DeathStar [14] and synthetic workloads.
Our experimental analysis reveals that client-side microsecond-
scale hardware overheads, such as waking up from a power
sleep state and dynamic voltage frequency scaling (DVFS [15]),
can impact the accuracy of the end-to-end measurements
leading to incorrect conclusions and additionally introducing
performance variation. We find that the extent of the impact
depends on a combination of (i) workload generator design,
(ii) hardware configuration parameters, and (iii) server-side
processing latency.
This behavior has several ramifications. In an academic

setup, an analysis without consideration of the client-side
hardware configuration can lead to inaccurate or wrong
conclusions. At the same time, it renders the work unrepeat-
able as important details are missing from the experimental
methodology of the paper. Finally, it degrades the validity
of comparisons among techniques optimizing similar met-
rics in similar environments. In an industrial environment,
performance evaluation is crucial for determining the load a
machine can sustain without any QoS violations and guiding
resource allocation for data centers [32], [33]. Ignoring client-
side hardware configuration in this context can result in
overprovisioning or underprovisioning of resources.

In summary, we make the following key contributions:
• We identify client-side configuration as a key source of
performance variation in experimental evaluation.

• We demonstrate experimentally how and when client-side
configuration can influence the accuracy and validity of
the conclusions.

• We analyse the impact of different client-side configurations
on the experimental evaluation time.

• We provide recommendations for how an experimental
environment should be configured to improve representa-
tiveness and thus mitigate measurement inaccuracy caused
by client-side configuration.

II. Client-caused Performance Variability

Due to the large scale of datacenters and web-based
applications, researchers and practitioners typically evaluate
data center related optimizations on test clusters with few
nodes before propagating the optimization to the rest of
the infrastructure. Measuring the performance of a service
typically involves using a workload generator running on a
set of client machines, as illustrated in Figure 1.

Workload
Generator

Client
MachineClient

MachineClient
Machine

Service

Server 
MachineServer 

MachineServer 
Machine

Fig. 1: Typical experimental methodology.

A workload generator is a software component that acts
as a client that (i) generates requests for the service under
study following a representative workload, and (ii) accurately
measures the end-to-end latency (i.e., average latency, 99th
percentile latency). Workload generators include the load
intensity which represents the inter-arrival time of requests
and resource demands which represents characteristics like
the type and size of a request. Most previous work on
experimental evaluation focuses on the workload generator
(design and configuration), often neglecting the configuration
of the client machines on which the generator runs.
Our key hypothesis is that client machine configuration

can significantly impact workload and measurement accuracy,
and the derived conclusions. The extent of the impact
depends on a combination of (i) workload generator design,
(ii) hardware configuration parameters, and (iii) service
latency. Below, we qualitatively discuss how each such
dimension may impact measurement inaccuracy. Later, in
Section V, we present empirical evidence supporting our key
premise.

Workload generator design: A workload generator times-
tamps generated requests and corresponding replies to model
a target workload and measure end-to-end latency. This
timestamp-based design makes the generator sensitive to
timing inaccuracy in two ways. First, an open-loop generator
models an infinite number of requests [24], sending requests
to the target service according to an inter-arrival time
distribution that represents the time between successive
requests. Any inaccuracy in timing can disrupt the inter-
arrival times, causing requests to shift in time and deviate
from the target distribution. A closed-loop generator further
limits the number of outstanding requests to model a finite
number of blocking clients [24]. Because the timing of the
next request depends on when the response to the previous
request arrives, any timing inaccuracy can further impact
the time when a successive request is sent. Overall, for both
generator types, any timing inaccuracy can impact the timing
of requests, causing the generated workload to deviate from
the target workload.
Second, a workload generator can measure latency at

various points in the system, such as the network interface
card (NIC), the in-kernel socket layer, or the generator
itself, collectively referred to as points of measurement [24].



With most typical workload generators, the measurement
point resides within the workload generator itself. Therefore,
measuring end-to-end latency depends on when the response
reaches the generator and when the generator timestamps the
response accordingly, rendering the measurement accuracy
susceptible to any delay.
Hardware configuration parameters: The client-side hard-
ware configuration refers to different configuration settings
of the client-side system, including hyperthreading, turbo
mode, C-states and CPU frequency. Such hardware settings
can impact timing accuracy, potentially impacting both the
generated workload and latency measurements in combination
with the design of the workload generator.

For example, consider a time-sensitive workload generator
with a point of measurement inside the generator itself,
operating on a system with enabled c-states, allowing the
system to sleep when idle. Upon issuing a request, the system
may enter a sleep state until the corresponding response
arrives. When the response arrives, the system must first wake-
up and ramp up its frequency before the workload generator
can timestamp the response and measure the end-to-end
latency, consequently increasing the measured response time.
Although this scenario may seem straightforward to avoid
by configuring the client system to disable hardware features
affecting timing accuracy to eliminate any variability, this
approach may not always align with the target environment.
For a target environment enabling c-states for low power, the
point of measurement shall include any latency introduced by
sleep state transitions. Otherwise, the experimental analysis
may not be representative in terms of end-to-end latency.
Since these types of analysis estimate the speedup of an
optimization and ultimately guide the number of resources
required to serve a target load, an inaccurate experimental
environment may cause either overprovision or underpro-
vision of resources. Unfortunately, enabling c-states with a
time-sensitive workload generator to capture a representative
point of measurement, may disrupt the generated workload,
thus leading to conflicting choices.

Additionally to HW configuration parameters, kernel param-
eters (e.g., choice of idle governor), or compiler optimization
flags can possibly cause similar effects on the accuracy of
the end-to-end measurements. In this work we focus only on
HW configuration parameters.
Service latency: With the emergence of the microservice soft-
ware paradigm based on which applications are decomposed
to several interconnected smaller services, the QoS of latency
critical applications like search and social network has reduced
significantly from milliseconds to microseconds while the
request rates requirements have remained the same. Hardware
overheads that are negligible for monolithic applications
are now detrimental for the performance of microservice-
based applications. As a result, microservices are especially
vulnerable to the overhead introduced by the configuration of
the client side since it is in the same order as the response time
of the microservice (i.e., 250us). For example C-state transition
overhead can take from 2us up to 200us depending on the

processor, while legacy DVFS takes several microseconds
(i.e., 30us [15]). In the case of monolithic applications or
microservice-based applications with higher response time
the client side HW configuration shouldn’t affect significantly
the accuracy.

III. Statistics Primer
In this section we present the background of the statistical

methods used in our analysis.
Confidence Intervals (CI): When we display values for
summarized datasets such as mean and average it is important
to quantify their accuracy. In other words, since we gather
empirical statistics in our experiments, confidence intervals
(CI) [24], [25] offer some confidence that the empirical
distribution collected experimentally is close to the actual
distribution of the measured population. CI are ranges in
which, we are x% sure that the population mean lies, where
x represents the confidence level. A sampled mean of 20,
x=95% and CI of 19.8 - 20.2, means that the true mean of the
population distribution lies within 1% error from the estimated
sampled mean. In order to be confident that a mean is higher
than another, their CI should not overlap.

Depending on the distribution of the collected samples, we
can either use a parametric or a non-parametric CI expression.
Parametric expressions assume that the sampled data are
derived from a known distribution (i.e., normal/Gaussian)
whereas non-parametric expressions assume that the dis-
tribution of the sampled data is unknown. Many studies
have demonstrated that data collected experimentally in
computer systems, do not follow a normal distribution [21],
[29], [47]. This is partially inline with what we have observed
in our analysis (see Section V-C). To avoid assumptions of
normality we use non-parametric confidence intervals (and
other statistical methods) unless noted for the rest of the
paper.
Non-parameric CI are computed based on the median

instead of the mean. The following equations are used to
compute the confidence intervals bounds for the median.

Lower_bound = ⌊n – z
√

n
2

⌋ (1)

Upper_bound = ⌈1 +
n + z

√
n

2
⌉ (2)

Where n is the number of samples in the set and z is the
standard score which depends on the target confidence level.
For a confidence level of 95%, z equals 1.96. Deriving confi-
dence intervals involves first sorting the set of measurements,
then using the above equations to determine the indices of the
measurements corresponding to the lower and upper bounds
of the confidence interval. The sample’s median should be
within the CI bounds.
IID samples: CI require the samples of a set to be independent
and identically distributed (iid) [24], [25]. In the case of an
experiment where the collection metric is latency, the samples
are identically distributed since latency measurements come



from the same server. Regarding independence, in the analysis
presented below we collect one sample per run. In between
runs we reset the environment and as a result the measured
samples are independent. When there is doubt for the iid-ness
of samples, several methods can be used with the standard
one being autocorrelation. Autocorrelation is a method that
calculates the degree of similarity between a time series and
a lagged version of itself. The output of the analysis can be
anything between -1 and 1, where 1 represents a positive
correlation, -1 a negative correlation and values close to 0
indicate no correlation among samples. Other methods used
for assessing the iid-ness of samples include Lag-Plots and
Turning Point Test.
Hypothesis Testing - Shapiro-Wilk Test: Hypothesis
testing [27] is a systematic procedure used in statistics to
assess whether characteristics of a population occur by chance
or not. The first step in hypothesis testing, is to define a null
hypothesis like for example two populations are equal. Then
identify a test statistic that can evaluate the hypothesis. In
our analysis we use a Shapiro-Wilk Test [37] in order to
test whether the sampled data follow a normal distribution.
Based on the test statistic results a p-value is calculated.
P-values represent the probability of finding the observed
results of a test statistic if the null hypothesis is true. The
p-value is then compared with a significance level, if it is less
than the significance level then we reject the null hypothesis.
Conventionally 5% and 1% confidence levels have been used,
which means that there is less than 1 in 20 and 1 in 100
chance of being wrong respectively.
Sample Size for Determining Mean/Median: The confi-
dence level and accuracy of a CI depends on the number of
samples. The higher the number of samples the better the
associated confidence level and accuracy. In this section we
describe 2 methods (1 parametric [18], 1 non parametric [29])
that can be used to determine what is the minimum required
number of samples (repetitions in our case) that are required
to achieve a confidence level with a certain accuracy.
Equation 3 [18] calculates the iterations for parametric

distributions:

n = (
100zs

rx
)2 (3)

where z is the normal variate of the desired confidence level
(1.96 for 95% confidence), s is the standard deviation, r is the
error % from the mean and x is the mean of the collected
samples.
For non-parametric distributions, the CONFIRM

method [29] is used. To calculate the number of repetitions
with CONFIRM: (i) for a set size n, randomly select a subset
s <= n and estimate non-parametric CI, (ii) shuffle set, select
another subset, and estimate CI, (iii) repeat this procedure c
times and then calculate the means for all the lower bounds
of CI and upper bounds of CI, and (iv) if error is less or
equal to 1% then size of the subset equals the number of
repetitions, otherwise increase subset size and repeat. The
original CONFIRM paper uses c=200 and s >= 10 assuming

that smaller subsets cannot estimate non-parametric CIs
reliably.

IV. Experimental Methodology
A. System

To conduct our experiments we use the c220g5 cluster of
the Wisconsin site from the CloudLab [13] infrastructure. Our
baseline system is a 2 socket server with 2 Skylake-based
(Intel Xeon Silver 4114) processors. There are 20 physical
cores and 40 hardware threads. The nominal frequency is
2.2GHz with the minimum frequency reaching 0.8 GHz and
the maximum Turbo Boost frequency 3 GHz. The server is
equipped with 192 GB DDR4 DRAM. The operating system
used is UBUNTU 18.04.

B. Benchmarks

Two representative microservice-based latency critical
applications are used in the analysis:
Memcached [1] is a lightweight key-value store that is
widely deployed as a distributed caching service to accelerate
user-facing applications with strict latency requirements.
Memcached has been the focus of numerous studies, including
efforts to provide low microsecond-scale tail latency. In our
experiments, we run a memcached instance with 10 worker
threads pinned on a single socket. We use an extended version
of Mutilate [26], as a workload generator. Following the
taxonomy of Section II, Mutilate is an open-loop workload
generator; it implements time-sensitive interarrival times
using a block-wait event loop that waits for elapsed time, with
the point of measurement residing within the generator itself.
We run Mutilate on 5 machines, one for the master process
and 4 for the workload-generator clients, establishing a total
of 160 connections. We configure the workload generator to
recreate the ETC workload from Facebook [5].
HDSearch [38] is one of the four information-retrieval
services of the MicroSuite microservice-based benchmark suite.
HDSearch is an image similarity search service written in
C++, which is structured as a three-tier service using RPC
for communication between tiers. It returns images from a
large dataset whose feature vectors are near to the query’s
feature vector. It uses Locality-Sensitive Hash (LSH) tables to
traverse the search space of the problem efficiently. We use
the accompanying open-loop client, which generates requests
with inter-arrival times drawn from a Poisson distribution, as
a workload generator. Following the taxonomy of Section II,
the client is an open-loop workload generator; it implements
time-insensitive interarrival times using a busy-wait loop that
actively polls for elapsed time, with the point of measurement
residing within the generator itself. We use 3 machines
to run the benchmark, 1 for each type of process: client,
midtier and bucket. Our benchmark configuration follows the
configuration of the MicroSuite paper [38]. Finally, we pin the
processes onto specific cores to eliminate process migration.
Social Network is a microservice-based application from
the DeathStar [14] benchmark suite, consisting of multiple
interconnected services. We deploy the benchmark on a single



node using Docker Swarm. We initialize the social graph
using the provided small dataset namely "Reed98 Facebook
Networks" [36]. We use the accompanying open-loop client,
which is an extended version of the wrk2 workload generator.
We configure the client to (i) establish 20 connections with
the server, (ii) send requests using an exponential distribution,
and (iii) only use read-user-timeline requests. Following the
taxonomy of Section II, the client is an open-loop workload
generator; it implements time-sensitive interarrival times
using a block-wait event loop that waits for elapsed time,
with the point of measurement residing within the generator
itself. Finally, before each run we fill the database of the
application with posts using compose-post queries.
Synthetic Workload is a program with tunable service
latency, implemented to perform a sensitivity analysis. It
can accept an input parameter, the value of which specifies
by how long the processing time of a request should be
extended. The processing time is implemented using a busy
wait loop instead of a normal wait loop to prevent the core
from serving other requests, as the additional wait time should
be accounted as service time rather than sleep time. We run
our service instance with 10 worker threads pinned on a single
socket. Following the taxonomy of Section II, the client of
the synthetic workload, is an open-loop workload generator;
it implements time-sensitive interarrival times using a block-
wait event loop that waits for elapsed time, with the point of
measurement residing within the generator itself.

Unless stated otherwise, each experiment is the average of
50 runs. The duration of each run is 2 minutes. We collect
several metrics during the execution of each experiment with
the most important one being the average response time and
99th tail latency. We use the non-parametric expressions to
calculate CI with a confidence level of 95%. In each experiment
we tune several hardware knobs. The description of each HW
knob is mentioned in Section IV-C and the scenarios evaluated
are mentioned in Section IV-D.

C. Hardware Knobs

In this section we describe the different HW knobs of the
analysis and how we tune them.
C-states [16] are power saving states that enable a core to
reduce it’s power consumption during idle periods. Skylake-
based processors support 4 C-states C0, C1, C1E and C6. We
use the intel_idle.max_cstate flag and the idle=poll flag to
enable/disable any C-states through the grub file.
Frequency Driver [23] is a component of the CPUFreq
subsystem of Linux that enables the OS to scale the frequency
and voltage. The frequency driver is responsible for communi-
cating the Frequency/Voltage settings to the hardware. Usually
a linux system supports 2 frequency drivers, intel_pstate and
acpi-cpufreq. We pass the intel_pstate flag to the grub file to
enable/disable them.
Frequency Governor [23] is also a component of the
CPUFreq subsystem. It is the component responsible to decide
the suitable frequency/voltage of the system based on some
heuristics. We use cpupower, which is a tool that act as

a wrapper around the sysfs kernel interface to specify a
frequency driver.
Turbo mode [16] is a feature in modern processors that
allows CPU to dynamically increase it’s clock speed above
its nominal frequency under certain conditions (i.e., thermal
capacity, number of active cores). We use the Model Specific
Register (MSR) 0x1a0 to enable/disable turbo mode.
Simultaneous Multithreading (SMT) [42] is a feature in
modern processors that allow multiple threads to execute on
the same physical core at the same time. We use the sys
interface to enable/disable this feature.
Uncore Frequency [16] refers to the operating frequency
of the uncore components of the CPU. These components
include the Last Level Cache (LLC), IO interfaces etc. We use
the MSR 0x620 to tune the uncore frequency.
Tickless [40] is a characteristic of kernels that do not omit
clock-scheduling interrupts during idle periods. We pass the
nohz flag to the grub file to enable/disable this feature.

D. Client/Server Configuration
In our analysis we use 2 configurations for the client-side,

the low-power (LP) configuration and the high-performance
(HP) configuration. The LP configuration represents the
default configuration of the system and thus the case where
a user is agnostic of the client-side configuration. The HP
configuration represents a configuration tuned empirically to
achieve high performance. The details of the configuration
can be found in Table II.

The server side baseline configuration is presented also in
Table II. We choose empirically a configuration that does not
introduce high variability and achieves good performance.
In the experimental evaluation whenever a HW knob of the
server side changes it is explicitly mentioned.

TABLE II: Client- and server-side hardware configurations
Client Side Server Side

Configuration LP HP Baseline
C-states C0,C1,C1E,C6 off C0,C1

Frequency
Driver intel pstate acpi cpufreq acpi cpufreq

Frequency
Governor powersave performance performance
Turbo on on off
SMT on on off

Uncore
Frequency dynamic fixed fixed
Tickless off off on

Table III describes the scenarios tested in the experimental
analysis (Section V) using the terminology introduced in
Section II. The last column of the table, indicates which one
of the scenarios can cause wrong conclusions (e.g. X) and the
sections each scenario is evaluated in.

V. Experimental Analysis
We study the impact of client-side hardware configuration

on performance variation under different scenarios (Sec-
tion V-A) and how this impact varies with services with



TABLE III: Scenarios Tested in Section V.
Workload Generator

Design Client
Conf.

Response
Time

Risk/
Sectioninter.

rate
point of
meas.

open-loop
time-sensitive in-app tuned small (5.1,5.3)
open-loop

time-sensitive in-app not-tuned small X(5.1,5.3)
open-loop

time-insensitive in-app tuned big (5.2)
open-loop

time-insensitive in-app not-tuned big (5.2)

higher response time (Section V-B). Finally, we examine the
impact of the client-side configuration on the execution time
of the experimental evaluation (Section V-C).

A. Client-side Configuration Impact
We present two case studies that aim to evaluate the impact

of two server-side features, specifically SMT and C-states, on
the performance of the Memcached service. Our findings
demonstrate that the choice of client-side configuration can
lead to varying performance results and differing conclusions
regarding the effects of the features under study.
SMT: The aim of the analysis is to investigate whether SMT
can improve the performance of Memcached under different
load (10K - 500K QPS) and corresponding utilization (5% - 55%).
Figure 2 shows the performance evaluation of Memcached
running on a server machine configured with SMT disabled
(baseline) or SMT enabled. Each server-side hardware config-
uration is examined with two client configurations, namely
LP (low power) and HP (high performance).
Depending on the client configuration, the end-to-end

measurements differ. Specifically, the LP end-to-end measure-
ments are between 80% to 150% higher than the end-to-end
measurements of HP client, that is if we compare similar
server-side configurations. Additionally, the 99th percentile
latency is 33% to 200% higher for LP clients compared to
HP clients. We argue that this is a result of the additional
overhead introduced by the client-side hardware configuration.
Since the point of measurement of the workload generator
is inside the generator itself, a query must experience at
least a C-state transition (2us - 200us), a DVFS transition
(∼ 30us), and a context switch (∼25us) before the workload
generator is able to capture the timestamp that will mark the
completion of the query. This behavior is especially important
in a datacenter setup. Let us assume a service with a QoS of
99th percentile latency equal to 400us. The LP client finds that
the service can handle only 300K queries without violating
any QoS constraints. In contrast, the HP client finds that
the service can handle 500K queries. In other words, the LP
client determines that a deployment will require 1.6x more
machines than the HP client, to satisfy the same load without
violating any QoS constraints.

Another important observation from Figure 2c and Fig-
ure 2d is that the measured degradation depends on the
client-side hardware configuration. The LP client determines

that enabling SMT on the server side improves the 99th
percentile latency by at most 3% (see Figure 2d). In contrast,
the HP client determines that the 99th percentile latency
can improve by 13%. We believe this is partially because the
absolute performance improvement caused by SMT is more
pronounced for the HP client end-to-end time compared to
the LP client.

Finding 1: The client-side hardware configuration can
impact the accuracy of an experiment. Specifically, it can
(i) affect the end-to-end measurements, leading to higher
or lower measurements, and (ii) produce different speedups
for the same feature or technique under study.

C1E: The aim of the analysis is to investigate whether
C1E can improve the performance of Memcached under
different load (10K - 500K QPS) and corresponding utilization
(5% - 55%). Figure 3 shows the performance evaluation of
Memcached running on a server machine configured with C1E
disabled (baseline) or C1E enabled. Each server-side hardware
configuration is examined with two client configurations,
namely LP (low power) and HP (high performance).
Similarly to the SMT study above, the choice of client

configuration leads to different end-to-end average response
latency and 99th percentile latency. Specifically, the average re-
sponse latency differs from 64% to 145% and the 99th percentile
latency from 0% to 200%. Additionally, the observed slowdown
caused by C1E differs based on the client configuration. For
the HP client, the slowdown of C1E goes up to 19% for average
latency and 18% for the 99th percentile latency. For the LP
client, the slowdown caused by C1E goes up to 13% for the
average latency and 7% for the 99th percentile latency.

More importantly, the client choice shows different trends
for high load (400K and 500K QPS), leading to conflicting
conclusions about the effect of C1E on performance. The LP
client reports that for high load the C1E enabled configuration
is worse than the C1E disabled (since the confidence intervals
do not overlap). However, the HP client reports that for all
loads (except of the 10K QPS load) the C1E enabled and C1E
disabled configurations have the same performance.

Finding 2: The client-side hardware configuration can
impact not only the accuracy but also the observed trends
of an experiment, leading to conflicting conclusions.

B. Impact Relative to Service Latency

We examine the impact of client-side hardware configura-
tion on the performance of applications with different end-
to-end latencies. We present three studies: (i) a single-service
study, which investigates the performance of a microservice-
based service benchmark, (ii) a multi-service application study,
which investigates the performance of a microservice-based
application consisting of multiple services, and (iii) a synthetic
workload study, which performs a sensitivity analysis. Our
findings demonstrate that the client-side hardware configu-
ration has minimal impact on services with high response
latency.
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Fig. 2: Performance evaluation of SMT impact on Memcached service latency with LP and HP clients. (a) Average Response
Time (median) for HP/LP client and SMT ON/OFF server, (b) 99th Percentile Latency (median) for HP/LP client and SMT
ON/OFF server, (c) Slowdown (avg) caused by disabling SMT on the Average Response Time for HP and LP client and (d)
Slowdown (avg) caused by disabling SMT on the 99th Percentile Latency for HP and LP client.
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Fig. 3: Performance evaluation of C1E impact on Memcached service latency with LP and HP clients. (a) Average Response
Time (median) for HP/LP client and C1E ON/OFF server, (b) 99th Percentile Latency (median) for HP/LP client and C1E
ON/OFF server, (c) Slowdown (avg) caused by enabling C1E on the Average Response Time for HP and LP client and (d)
Slowdown (avg) caused by enabling C1E on the 99th Percentile Latency for HP and LP client.

Single-Service: We use the HDSearch service, which operates
with millisecond-scale latency, to examine the impact of client-
side configuration on performance variation when analyzing
the performance of services with high response latency.
Figure 4, presents the performance evaluation of HDSearch
running on a server machine configured with SMT or C1E.
Each server-side HW configuration is examined with two
client configurations, namely LP (low power) and HP (high
performance).

Similarly to Memcached, there is a difference in end-to-end
measurements between the HP and LP client for both average
and 99th percentile latency, although it is not as pronounced
as in Memcached. Specifically, the average response latency
of LP is from 7% to 17% higher than HP. Regarding the 99th
percentile latency, LP has 5% to 29% higher 99th percentile

latency than HP. Since HDSearch has higher response latency
than Memcached, we expect the difference between the end
to end measurements of the HP and LP clients which is a
result of the client configuration overhead, to be statistically
less significant. Thus, we expect LP and HP clients determine
similar resource requirements to satisfy a target load without
violating any QoS constraints.

Contrary to Memcached, the HP and LP clients measure
same speedups (with similar trends) in the average response
latency for both the SMT and C1E server-side configurations.
Even though the LP measurements experience variability
because of the client-side hardware configuration, the high
server-side processing time of HDSearch (400us) overshadows
the client-caused variability (∼20us in Figure 5b), thus
minimally impacting the observed speedup of the evaluated
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Fig. 4: Performance evaluation of SMT and C1E impact on HDSearch service latency with LP and HP clients. (a) Average
Response Time (median) for HP/LP client and SMT ON/OFF server, (b) 99th Percentile Latency (median) for HP/LP client and
SMT ON/OFF server, (c) Average Response Time (median) for HP/LP client and C1E ON/OFF server and (d) 99th Percentile
Latency (median) for HP/LP client and C1E ON/OFF server.

server configurations. Memcached server-side processing time
(∼10us) is in the same order as the client-caused variability
(up to 10us in Figure 5a), thus making the speedup of the
evaluated server configurations more sensitive to the client-
side hardware configuration.
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Fig. 5: (a) Standard Deviation of Memcached for the Average
Response Time with LP/HP client configuration and SMT
ON/OFF server configuration, (b) Standard Deviation of
HDSearch for the Average Response Time with LP/HP client
configuration and SMT ON/OFF server configuration.

Overall, we observe that HDSearch, a service with about
10 times higher end-to-end response latency than Memcached
exhibits similar speedups and trends when run with two
different client configurations. Although the absolute end-to-
end measurements are not the same, the difference is not as
pronounced as in Memcached.
Multi-Service Application: We study the impact of the
client-side HW configuration on the performance of an appli-
cation using Social Network from the DeathStar benchmark

suite. Figure 6a presents the difference in the end-to-end
latency between the two client configurations LP and HP for
average and 99th percentile latency respectively. Similarly
to HDSearch the difference between the two clients gets
smaller while the end-to-end latency increases. Compared
to HDSearch, the gap between the two clients is small (5%
vs 17% ) on the average response time due to the fact that
Social Network has higher end-to-end latency (∼2-3ms in
Figure 6b) than HDSearch (∼1ms in Figure 4). Surprisingly
the impact of different clients on the 99th percentile latency
for Social Network, as shown in Figure 6c, is minimal. In
other words, the 99th percentile reported by both clients, LP
and HP is the same. For end-to-end latencies over 10ms, the
client-induced overhead does not appear to affect the accuracy
of the measurements, as illustrated in Figure 6c.

Overall, we observe that DeathStar validates the HDSearch
analysis. Although the absolute measurements reported by
the two clients are not identical, the difference is not as
pronounced as in Memcached and HDSearch.
Synthetic Workload: To examine the impact of client side
HW configuration at different latencies, we use the synthetic
workload. Figure 7a and Figure 7b present the performance
evaluation of the synthetic workload for different end-to-end
latencies and QPS under two client configurations LP and HP.
Although the QPS presented in Figure 7 are low compared
to the ones examined in previous sections, it is important to
note that due to the increase in processing time there is no
opportunity to achieve higher throughput. To determine the
examined QPS we use Little’s law and examine only the QPS
where the concurrency is less than the number of available
cores (i.e., 10) for all possible values of the new parameter.
Additionally, the results presented in this section are the
average of 20 runs.
As expected with the increase of the end-to-end latency,

the gap between the LP and HP reported end-to-end mea-
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Fig. 6: Performance evaluation of HP and LP clients for Social
Network. (a) Slowdown (avg) caused by changing from HP to
LP client on the Average Response Time and 99th Percentile
Latency, (b) Average Response Time Latency (median) for
HP/LP client at different QPS and (c) 99th Percentile Latency
(median) for HP/LP client at different QPS.

surements gets smaller. Specifically, the difference goes from
2.8x for 0 added delay to 1.02x for 400 us added delay at
20K QPS. Similarly, for 99th percentile latency the difference
goes from 3.5x to 1x. Between 0 to 100us added delay we
observe the highest decrease in the difference between the
end to end measurements reported by HP and LP client for
both average and 99th percentile. This analysis confirms the
findings of HDSearch, based on which the added client side
overhead becomes less statistically significant for benchmarks
with higher latencies.

Figure 7c, 7d, 7e and 7f demonstrate the absolute end-to-
end measurements for HP and LP client at 5K and 20K QPS.
At low QPS, where there is no queueing, the response time
increases linearly with the increase of the added delay which
validates the implementation of the synthetic workload. We
observe that for average response time latencies over 1ms
the accuracy difference is less than 10% between HP and LP
client. For high QPS and high added delays (end to end over
2ms) the HP and LP clients measurements converge. This is
partially because of the variability of the experiment being in
the same order as the observed overhead introduced by the
client side hardware configuration (stdev∼100us). A major
source of variability for high QPS is the queueing caused
in the server side. We conclude that when the end to end
latency is in the order of milliseconds, the impact of client
side overhead is less significant.

Finding 3: The client-side hardware configuration has
minimal impact on services with high response latency.
The client-side hardware configuration causes performance
variability when the processing time of an application is in
the same order of magnitude as the variability introduced
by the client side.

C. Impact on Experimental Evaluation Time

In this section, we investigate how the different client-side
hardware configurations affect the experimental evaluation
time. By experimental evaluation time, we mean the time
required for an experiment to achieve a confidence interval
with at most 1% error at a 95% confidence level. Before
estimating the number of repetitions an experiment requires
to gain statistical confidence, we first check whether the
collected samples follow a normal distribution. This is because
the closed-form expressions used to calculate the number of
iterations for an experiment assume that data follow a normal
distribution.

Figure 8 tests the normality of the data presented earlier in
Section V-A using the Shapiro-Wilk test. Data points within
a single configuration correspond to varying loads (QPS), all
collected from the same single server. The red dashed line
indicates the threshold below which configurations do not
conform to a normal distribution. We analyze a total of 42
configurations (six scenarios each with seven QPS values),
with each configuration comprising 50 runs. Approximately
50% of these configurations adhere to a normal distribution,
while the remaining 50% do not.

The above normality test results are in line with previous
work that examines data normality on a single node. Specifi-
cally, within the LP-SMToff scenario, all QPS configurations
exhibit a normal distribution. Conversely, none of the QPS
configurations within the HP-SMTon scenario adhere to a
normal distribution. In the HP/LP-SMToff and HP/LP-C1Eon
scenarios, approximately half of the QPS configurations follow
a normal distribution, while the remaining half corresponding
to the high QPS configurations do not adhere to a normal
distribution. In the HP/LP-SMToff and HP/LP-C1Eon scenarios,
about half of the QPS configurations conform to a normal
distribution, whereas the other half, comprising the high QPS
configurations, do not. We attribute this non-normality to
queuing effects that are more pronounced for higher QPS and
the reduced number of logical threads (SMToff). Looking into
the frequency charts of these high QPS configurations, a large
number of samples lies below and close to the median of the
distribution, whereas a small number of samples is scattered
in a larger range above the median, making the distribution
skewed, as shown in Figure 9.
Based on the above normality test results, we use both

parametric and non-parametric (CONFIRM) methods to calcu-
late the number of required iterations to achieve a confidence
interval with at-most 1% error and 95% confidence level for
each configuration (as explained in Section III).

Table IV presents the results of the two methods along with
the Shapiro-Wilk test results. The highest value of iterations
estimated by CONFIRM is >50 since each experiment is
executed 50 times. The lowest value estimated by CONFIRM
is 10, since the method assumes that smaller subsets cannot
estimate non-parametric CIs reliably. The two methods do not
produce exactly the same results partly due to the parametric
method’s ability to reliably estimate values and provide tight
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bounds with a fewer number of iterations, typically below
10, when the configuration adheres to a normal distribution.
As a result, there are several cases where the parametric
method estimates just one iteration, and the CONFIRM method
requires 10 iterations.
Nevertheless, the two methods support that different

client configurations require different number of iterations
to produce tight statistically confident results. For low QPS
(10K - 100K), both methods agree that the LP client requires
a large number of iterations to achieve statistical confidence

whereas the HP client requires much less. For high QPS (300K
- 500K), the HP client requires more iterations than the LP
client. This behavior agrees with our empirical observations,
that want the LP client to have higher standard deviation in
low QPS than the HP client, and the HP client to have higher
standard deviation in high QPS (see Figure 5).

Finding 4: The client-side hardware configuration can
affect the number of iterations needed for an experiment
because different configurations can exhibit different levels
of performance variability. Current experimental methods
are effective at estimating the number of iterations required
to mitigate the performance variability caused by the client.

VI. Configuration Recommendations
Drawing from the taxonomy of Section II and the ex-

perimental analysis of Section V, we now discuss recom-
mendations for how to best configure the client side in an
experimental evaluation based on latency-sensitive microser-
vices. We focus on the aspect of time-sensitivity caused by
the interarrival time implementation of open-loop workload
generators, as we find this can play a key role in performance
variation.

For a time-sensitive interarrival time implementation,
the client-side hardware configuration should be tuned for
performance. The performance configuration mitigates the
hardware timing overheads of power and energy optimizations
(i.e., C-states, DVFS), allowing the workload generator to
send requests as close as possible to the time indicated
by the interarrival time distribution. In this case however,
it is essential to consider how accurately the performance
configuration reflects the configuration within the target pro-
duction cluster. If the configuration deviates from the target
production configuration, then it may over- or under-estimate



TABLE IV: Number of iterations to gain statistical confidence
and Shapiro-Wilk results.
Configuration QPS Parametric CONFIRM Shapiro-Wilk

LP-SMToff

10K 288 >50 pass
50K 93 >50 pass
100K 15 37 pass
200K 3 11 pass
300K 2 11 fail
400K 5 19 fail
500K 19 >50 fail

LP-SMTon

10K 225 >50 pass
50K 70 >50 pass
100K 17 34 pass
200K 4 16 pass
300K 3 11 pass
400K 4 15 pass
500K 10 36 pass

HP-SMToff

10K 1 10 pass
50K 1 10 fail
100K 1 10 pass
200K 2 11 fail
300K 27 >50 fail
400K 123 >50 fail
500K 203 >50 fail

HP-SMTon

10K 1 10 fail
50K 1 10 fail
100K 1 10 fail
200K 1 10 fail
300K 8 11 fail
400K 39 41 fail
500K 77 41 fail

LP-C1Eon

10K 303 >50 pass
50K 89 >50 pass
100K 20 >50 pass
200K 3 11 pass
300K 1 10 pass
400K 2 11 pass
500K 9 21 fail

HP-C1Eon

10K 2 11 fail
50K 1 10 fail
100K 1 10 pass
200K 1 10 pass
300K 8 24 fail
400K 21 >50 fail
500K 32 >50 pass

performance metrics, such as end-to-end time (Section V-A),
and consequently affect any conclusions drawn, such as those
related to resource provisioning.

For a time-insensitive interarrival time implementation, the
choice is guided by the target environment. The configuration
of the client should match the configuration of the target
environment. When the target configuration is unknown, a
space exploration could be made to evaluate a technique under
several scenarios, using either homogeneous or heterogeneous
client and server machine configurations.
As far as the number of iterations required for an experi-

ment is concerned, well established methodologies [18], [29]
should be used based on the distribution followed by the
samples.

VII. Related Work
To the best of our knowledge, this is the first study to

investigate the impact of the client-side hardware configura-
tion on the accuracy and evaluation time of an experiment.
Previous works focus on quantifying variability arising from

other sources, including the order of experiments, process
variation, and the server-side configuration. Several studies
propose techniques to mitigate variability, including increasing
the number of repetitions, using confidence intervals, and
developing more robust workload generators.

A. Evaluating Performance using Microservices

In recent years, latency-critical applications have moved
from a monolithic to a microservice-based software architec-
ture to satisfy service-level objectives, availability, scalability,
and regular updates [19], [35], [43]. In a microservice-based
software architecture, an application is decomposed into
several services that communicate with one another via the
network through well-defined interfaces, such as gRPC and
REST APIs. The decoupled nature of these applications leads
to stricter QoS constraints per service compared to their
monolithic counterparts, ranging from 250us [7], [49] to
500us [6], [22]), due to increased network communication
overheads.
The transition to a microservice software paradigm has

prompted the community to develop new benchmark suites,
such as MicroSuite [38] and DeathStar [14], and adopt existing
services, such as Memcached [1], to effectively evaluate
designs targeting microservices. Memcached, in particular,
has been the focus of numerous studies, including tail-
latency optimizations [30], collocation [26], request scheduling
and consolidation, and C-states [3], [4], [48], due to its
critical role in enhancing response times of latency-critical
applications as a lightweight caching service [28]. To simplify
the experimental environment and facilitate reproducibility,
deploying a single memcached server process for the experi-
mental evaluation has been common practice among previous
works [4], [8], [26], [46].

B. Quantifying Performance Variability

Quantifying variability has been the focus of many works
on datacenters, supercomputers and smartphones. Maricq et
al. [29] investigate what is the inevitable variability across
nodes of the same architecture in a cluster. They conclude that
variability of up-to 10% can be attributed to the underlying
hardware. Additionally, they investigate the normality of
performance samples across nodes and conclude that the per-
formance samples follow a non-parametric distribution across
nodes. In a similar setup, Duplyakin et al. [12] investigate
the variability caused by the execution order of experiments.
The rationale is that the sequence in which experiments are
conducted can alter the microarchitectural characteristics of
the machine, inevitably affecting the performance outcomes of
each experiment. If executed in a specific order, this bias will
impact the outcome of the experiment. Such variability can be
categorized as a form of measurement bias. A measurement
bias [31] is when a technique X speedups a system O by Z
but the speedup is not only a result of the technique but is
also a bias of the experimental setup. Several works have
investigated this phenomenon in various settings, including
scheduling algorithms of supercomputers [41], architectural



simulations for multithreaded workloads [2], and O3 opti-
mizations in SPEC CPU2006 workloads [31]. Additionally to
measurement bias, other works [44], [47] have identified the
network contention as a major contribution to the variability
observed by an application. Another work [20] has developed
a methodology using the stress-ng [9] tests that can estimate
the variability across machines of different architecture and
as a result can reproduce with some error an experiment
outcome on a different machine. Finally, Srinivasa et al. [34]
manage to create a methodology that quantifies the process
variation of smartphones at system level. Although different
sources of performance variability have been investigated
there is no mention of the configuration of the client side,
even in survey papers [12], [17], even though it can affect
the accuracy of measurements.

C. Mitigating Performance Variability

Strategies aiming to improve the experimental methodology
accuracy and mitigate the performance variability have been
proposed, many of which have been implemented inside a
workload generator [10], [24], [26], [50]. For example in
Lancet [24], the authors try to create a workload generator
that accurately captures the 99th percentile latency of mi-
croservices by (i) minimizing the errors caused by excessive
user interference, (ii) using state of the art hardware-based
techniques, and (iii) using excessively statistical methods to
accurately process the samples. Their workload implements,
among others, an Anderson Darling test to check the request
arrival distribution, an Augmented Dickey Fuller test to
check the stationarity of samples, and a Spearman test to
check whether samples are independent. Apart from workload
generators, standalone tools have also been proposed, such
as CONFIRM [29] and OrderSage [12], aiming to mitigate
variability, in this case, by (i) calculating the CI for non-
parametric distributions, and (ii) randomizing the order of
experiments. Another set of works [11], [45], [51] fall under
the umbrella of variability detection (anomaly detection
or changepoint detection). Other works aim to mitigate
measurement bias by randomizing the experimental setup,
either through slight changes in the timing of requests of the
workload [41] or modifications in the simulator to change
cache-miss penalty [2]. Finally, request batching [39] has been
proposed for eliminating network variability in Memcached.
The proposals mentioned above are complementary to our
work.

VIII. Conclusions
To the best of our knowledge, this is the first work that

examines the impact of the client-side configuration on the
experimental evaluation of microservices. Our evaluation
reveals that under certain conditions that concern the de-
sign of the workload generator and the characteristics of
a microservice, the client-side configuration can influence
the accuracy of the end-to-end measurements by up-to
150% for the average and 200% for the 99th percentile
latency of Memcached. Motivated by the above, we provide

recommendations regarding the experimental environment
configuration so that any unnecessary time bias is avoided
and so that the results of the experiment reflect closely the
behaviour of the target environment. These results support
that the client-side configuration should be considered when
designing experiments.
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