
Serverless? RISC more!
Roberto Starc

Systems Group, D-INFK, ETH Zurich
Zürich, Switzerland

Tom Kuchler
Systems Group, D-INFK, ETH Zurich

Zürich, Switzerland

Michael Giardino∗
Huawei Technologies, Computing Systems Group

Zürich, Switzerland

Ana Klimovic
Systems Group, D-INFK, ETH Zurich

Zürich, Switzerland

ABSTRACT
The growth of serverless computing has led to a widespread reex-
amination of the cloud software upon which it is based. In parallel,
the flattening of single core performance has led to a resurgence
of interest in manycore systems, trading absolute performance for
system throughput, an appropriate match for the serverless par-
adigm. However, the combination of deep cloud system software
stacks and slow hardware simulation techniques has limited the
exploration of serverless-native CPUs. We argue that the RISC-V
ecosystem offers an opportunity to tackle the intersection of these
topics. We present an exploratory comparison of several RISC-V
SoC configurations and commercial products running serverless
workloads. We find that the RISC-V cores offer reasonable perfor-
mance, but more importantly provide researchers the ability to run
more realistic software workloads. This allows for meaningful ex-
ploration of the interactions between system software, serverless
workloads, and specialized hardware.

CCS CONCEPTS
• Computer systems organization → Cloud computing; Ar-
chitectures; Reduced instruction set computing; • Hardware
→ Best practices for EDA.

KEYWORDS
serverless,risc-v,system software,fpga,synthesis,function as a ser-
vice,faas,cloud software,simulation,microarchitecture,co-design
ACM Reference Format:
Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic. 2024.
Serverless? RISCmore!. InThe 2ndWorkshop on SErverless Systems, Applica-
tions and MEthodologies (SESAME ’24), April 22, 2024, Athens, Greece. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3642977.3652095

1 INTRODUCTION
Serverless computing, also known as Function-as-a-Service (FaaS),
is increasingly being adopted in many application domains due to
its ease-of-use, high elasticity, and fine-grained billing benefits [66,
∗work partially done while at ETH Zurich

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SESAME ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0545-8/24/04
https://doi.org/10.1145/3642977.3652095

25, 26, 39, 19, 20, 59]. The rise of FaaS has prompted researchers
and developers to rethink nearly every aspect of the cloud comput-
ing software stack, from the high-level programming model to the
low-level system execution implementations, including the design
of primitives for secure task isolation, networking, and storage.
Serverless functions’ unique characteristics (i.e. stateless, short-lived,
and sporadically invoked functions with small resource footprints)
have motivated new systems software to quickly boot and exe-
cute functions with secure isolation [2, 30], densely pack functions
per machine [49, 64], and manage resources efficiently at cluster
scale [84, 50, 42, 62].

As serverless computing’s share of the cloud is growing [66, 20],
it is important to not only consider the implications for cloud soft-
ware stacks, but also for cloud hardware. While FaaS was origi-
nally imagined as a technique for using spare capacity in other-
wise used machines, the reality is that cloud providers have dedi-
cated clusters of standard servers to serve function requests. These
FaaS clusters must aggressively multiplex hundreds or thousands
of incoming and running functions in order to obtain acceptable
throughput.

However, initial studies have found that modern CPU features
often provide limited benefits for short-lived functions [68, 65].
For example, the effective (but complex) branch predictors found
in server-class CPUs take time to warm up for maximum perfor-
mance, making them less effective for short-running tasks [68].
Thus there is renewed interest [70, 72, 54] in exploring manycore
CPU architectures of the past [35, 57, 52, 67]. These systems have
CPUswith simplermicroarchitectures, trading single-threaded per-
formance for greater computing density and overall throughput.

Unfortunately, the performance implications of new CPU archi-
tecture features for serverless computing have been explored pre-
dominantly in slow and/or simplified simulators. This approach,
discussed further in Section 2.3, limits researchers’ ability to run
the deep software stacks that are used in modern serverless sys-
tems. High-level programming language runtimes with memory,
file, and network accesses are significantlymore difficult to explore
in simulators. This difficulty is exacerbated when one includes vir-
tualization, containerization, orchestration, and scheduling present
in serverless systems. Put another way, unlike hardware design
space exploration for compute intensive workloads that results in
application specific accelerators (e.g. a TPU), FaaS hardware explo-
ration must include the system software (hypervisor, kernel, con-
tainers), disk I/O, and networking (TCP/IP, RPC) in addition to a
broad swath of diverse workloads. To fully explore the promise of
co-designed, application-specific hardware [34], we need tools that
work at the system level.

15

https://orcid.org/0009-0004-3807-1522
https://orcid.org/0009-0002-8091-0313
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3642977.3652095
https://doi.org/10.1145/3642977.3652095
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642977.3652095&domain=pdf&date_stamp=2024-04-22

SESAME ’24, April 22, 2024, Athens, Greece Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic

In this paper, we argue that systems researchers should look to
the RISC-V ecosystem to explore the design of future, cloud- and
serverless-native CPU architectures. Modern out-of-order RISC-V
cores [13, 86, 87, 83] are quite capable and this work demonstrates
that they can offer reasonable performance for common server-
less workloads. These cores are developed in frameworks which
allow for agile, parameterized development of pipelines, caches,
branch predictors, prefetchers, and even coherence protocols [6,
83, 81].The large community (both academic and commercial) built
around RISC-V has lead to a broad improvement of performance
and features including hardware threads, vectorization instructions,
virtualization support, and more. Moreover, these designs can be
evaluated in a cycle-accurate way while running full-stack work-
loads at interactive speeds (25–100 MHz).

Linux RISC-V supports a full range of runtimes and applica-
tions, providing accurate experiments using full systems includ-
ing memory hierarchies and networking [43]. The synthesized de-
signs can be used to accurately estimate power consumption and
silicon area [51]. These same designs can even be taped-out SoCs
for real-world prototyping [83, 86, 10]. Independently of the role
commercial RISC-V silicon ends up playing in datacenters—if any
at all—we argue that using more accurate CPU models and SoC
infrastructure will lead to more meaningful and impactful archi-
tecture and systems research.

Section 2 discusses the characteristics of serverless workloads,
previous cloud-native systems, and current techniques for hard-
ware simulation. We present the opportunities available for hard-
ware/software co-design in Section 3. In Section 4 we demonstrate
the feasibility of this ecosystem for research by evaluating server-
less workflows on parameterized RISC-V SoCs.We conclude in Sec-
tion 5 with a discussion of the missing pieces for a broader adop-
tion of RISC-V as a research platform, and perhaps as a serverless-
native CPU.

2 BACKGROUND
Much like HPC or ML workloads, serverless computing possesses
several unique characteristics (§ 2.1), suggesting that systems re-
searchers should look beyond traditional server processors and ex-
plore a broader hardware space. We give a brief overview of other
attempts at cloud-native CPUs (§ 2.2) and discuss limitations of
current hardware simulation techniques (§ 2.3).

2.1 FaaS Characteristics
Data about what functions users are running on FaaS offerings is
limited, however we do have some data on how functions are run-
ning.The clearest sources are industry serverless function traces [69,
75, 40]. These reveal that functions running on commercial FaaS
offerings show markedly different behavior than traditional data-
center applications.These functions are extremely short-lived with
median execution times reported anywhere from seconds [75], less
than a second [69], to as low as 60 ms [20]. Functions also demon-
strate highly variable invocation patterns [21, 40], both in periods
of large peak demand followed a low trough (up to 500× [75] dif-
ference between peak and trough). The time between invocations
varies aswell, withmediansmeasured from seconds [75] to hours [69].
As Wang et al. point out [75], almost half the functions request a

new instance to be cold started every second or less. Shahrad et
al. [69] are not as explicit about the frequency of cold starts but
they highlight that 45% of all applications are invoked less than
once per hour, which strongly indicates that these functions are
highly likely to experience a cold start. FaaS applications have small
resource footprints. 90% of functions use less than 400 MB and the
median application uses only 170 MB of memory [69]. These prop-
erties stand in contrast tomore traditional cloud applications, which
usually run for a long time on a fixed amount of resources.

ServerlessCPUDesignExploration.The aforementioned FaaS
workload properties suggest that serverless functions do not bene-
fit as much from many performance optimizations built into mod-
ern CPUs as long-running applications do [68, 74, 65]. Microarchi-
tectural state that needs to be warmed up, e.g., branch predictors
and caches, is not as effective as it is for traditional applications,
motivating exploration into faster training predictors and smaller
LLC-to-core ratios [68]. The significant data movement required
to pull function snapshots has lead to software mechanisms for
prefetching data [74], which could be augmented by hardware ex-
tensions. To handle the challenge of ephemeral data in serverless
scenarios Wang et al. propose Memento [77], a set of architectural
mechanisms to allocate and free directly in cache, and effectively
manage a memory pool. Due to the high degree of function inter-
leaving on a system, instruction cache misses are a major source of
slowdown, prompting proposals for hardware mechanisms to save
instruction state [65].

The large caches, heavy-duty predictors, aggressive reordering,
and specialized instruction set extensions all take up a large amount
of silicon space and energy budget, especially for short-lived func-
tions that often spend a significant amount of time blocking for
data. This growing body of work indicates that existing server-
class processors are not necessarilywell-matched to short-running,
independent, bursty functions.

2.2 Cloud Hardware Architectures
Therise of newhardware architectures.As the single-core CPU
performance gains decreased over the past decade, other consid-
erations besides absolute per-core performance have come into
play [73]. Factors such as maximum power consumption, energy
efficiency, and core density are playing an increasing role. This
has lead to the prevalence of specialized hardware such as GPUs,
TPUs [41], VCUs [58] and FPGAs, as well as core-dense, energy-
efficient SoCs. Several recent and upcoming systems favor sim-
ple cores to achieve high density and compute throughput: ARM-
based cloud SoCs [4, 5, 7], manycore supercomputing platforms [27],
and recent announcements of AMD Zen4 [1] and Intel Sierra For-
est [36]. There is also ongoing work in commercializing RISC-V-
based cloud chips such as the Xuantie 910 [14] and Ventana Vey-
ron [12].This trend suggests that cloud providers justify significant
hardware engineering costs to improve performance-per-watt and
compute density.

Compute density optimized CPUs. The desire to trade-off
single-threaded performance for compute density in the cloud has

16

Serverless? RISC more! SESAME ’24, April 22, 2024, Athens, Greece

been explored by both academic and industrial researchers. “Scale-
out” processors [52] for the cloud attempt tomaximize overall through-
put of a given size die, with the goal of greater performance den-
sity. Early commercial attempts to increase compute density by us-
ing simpler cores include Intel’s Single-chip Cloud Computer [35],
Tilera [57], and Cavium ThunderX-1 [15]. The SPARC M7 [45] at-
tempted to increase density via symmetric multithreading (SMT),
offering up to 256 threads per socket. These products were primar-
ily aimed at monolithic multi-threaded applications, which, while
offering significant parallelism, are not as short-running and in-
dependent as serverless functions. Building upon this work into
early so-called “cloud-native” CPUs [52, 35, 57], a new generation
of manycore systems has been developed [54, 10]. Other work aims
to maximize compute density while adding cloud- and serverless-
specific features such as RPC acceleration and hardware support
for context switching [72].

The evaluation of these scale-out systems has takenmany forms
over the years, spanning a large number of cloud benchmarks [24,
56, 29]. These workloads are complex and have varying execution
characteristics not only between applications but in different phases
within the same application.While this newest generation of cloud-
native CPUs has not yet been thoroughly evaluated, there are in-
dications that less-powerful, simpler CPUs can offer an attractive
price-to-performance ratio [16].The complexity of communication,
scheduling, and orchestration is an integral part of cloud work-
loads, andwork has shown that the performance of interdependent
services have far-reaching effects on the system as a whole [15, 29].
Even if the functions themselves are fairly short-lived, the complex
interactions and depth of the software stack make simulation and
modeling challenging.

2.3 Hardware Simulation
Given this rapidly changing landscape, systems programmers need
to explore hardware architectures for specific workloads. However,
simulating even a simple CPU is a complex process, and there are
dozens of simulators for all aspects of computer systems. There ex-
ist several commonly used simulators for CPU architectures (gem5 [53],
ZSim [63], Sniper [11]), memory simulation (e.g. DRAMSim [76, 61,
48]) and cache simulation (e.g. CMP$im [38]). While detailing the
broad array of methods for computer architecture simulation is be-
yond the scope of this paper (or indeed a book!), we will briefly dis-
cuss its current state and its challenges. For more details, Akram et
al. [3] offer an overview of several common simulators, assessing
their accuracy and performance.

As with most techniques of modeling, there is a trade-off be-
tweenmodel accuracy, simulation speed, and cost. A functional sim-
ulation is much faster to run and update than a cycle-accurate (CA)
simulator, while a CA model can give much more accurate results.
For most simulators, speed is often between one thousand and one
million instructions per second (1 KIPS–1 MIPS). For comparison,
our simple image processing workflow executes about three bil-
lion instructions in ≈0.5 s. For a simulation running at the high
end (1 MIPS), this is nearly an hour of simulation time. At the low
end (1 KIPS), as is often the case in complex cycle-accurate mod-
els, simulating this function would require over a month. While

simulation techniques are continuously improving [32, 31], we ar-
gue that for system-level analysis, these models are still too slow,
low-fidelity, and don’t map directly into hardware.

On the other end of the spectrum are register-transfer level (RTL)
models of CPUswhich, historically, have been chip designers’ most
closely guarded secrets. With the advent of the RISC-V ISA, and
open, agile toolchains for generating RTL from high-level descrip-
tions, researchers can design, simulate, and synthesize for FPGAs,
and even tape out SoCs. With FPGAs, RTL models can be synthe-
sized and simulated on dedicated simulation engines [22], or run
in a cluster using FireSim [43]. FPGA-accelerated simulation offers
interactive speeds (up to 100 MHz), allowing for full-system simu-
lations which map directly to real systems. Until now, this was not
possible for almost anyone, requiring resources only found inside
major chip designers.

3 CO-DESIGN OPPORTUNITIES
The ability to run full system stacks on synthesizable hardware
has several implications for systems researchers. To evaluate the
performance effects of hardware features (e.g. vector instructions),
researchers use a set of representative benchmarks (e.g. SPEC or
PARSEC). Because these traditionalworkloads are highly optimized
and computationally intense, monolithic applications, one can ex-
tract meaningful traces to feed into architectural simulators. How-
ever, the cloud is built upon deep software stacks consisting of
some combination of user code, runtimes (including JIT), contain-
ers, virtual machines, operating systems, and hypervisors. There-
fore, gaining meaningful insight into the impact of microarchitec-
tural features on cloud workloads requires a much more complex
simulation. The interplay between application code, guest kernel,
hypervisor, and the hardware eliminates the possibility of obtain-
ing realistic results from simplified simulations (e.g. gem5 syscall
emulation mode).

In fact, much of the fundamental “cloud-ness” of a workload
stems from the fact that it is virtualized (or containerized) than
from the actual computation it does. For example, video transcod-
ing and web page templating are both considered realistic “server-
lessworkloads” [18, 44], even though transcoding builds on decades
of computationally complex, highly optimized, hardware acceler-
ated code and web page templating is implemented using simple
Python scripts.Moreover, when examiningmicroservices and server-
less workflows, faithful modelingmust include the communication
between services because of their complex interplay and cascad-
ing effects [29, 15]. Therefore, if we want to examine microarchi-
tectural features that accelerate the cloud (e.g. RPC acceleration,
virtualization extensions), we need to use the entire stack. Modern
techniques for isolation such as CHERI hardware capabilities [79]
or enclaves in the context of serverless [46, 88] can be evaluated
and expanded upon in RISC-V [80, 89, 47, 23] We argue that one
of the best tools available for this type of work, the RISC-V hard-
ware/software ecosystem, is too often ignored by both systems and
computer architecture researchers in favor of off-the-shelf hard-
ware or low-fidelity simulations.

17

SESAME ’24, April 22, 2024, Athens, Greece Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic

Table 1: Per-Core Configurations

Name Core ISA OoO Issue L1 Size (I/D) L2 Size CoreMark/Mhz
Rocket Rocket riscv64 7 1 16/16 KiB 512 KiB 2.14
SmallBoom BOOM riscv64 3 3 16/16 KiB 512 KiB 2.27
MediumBoom BOOM riscv64 3 4 16/16 KiB 512 KiB 3.76
LargeBoom BOOM riscv64 3 5 32/32 KiB 512 KiB 4.88
MegaBoom BOOM riscv64 3 8 32/32 KiB 512 KiB 5.31
StarFive VisionFive2 [71] JH7110 riscv64 7 2 32/32 KiB 2 MiB 3.30
Huawei Kunpeng 920 [82] ARMv8.2 aarch64 3 4 64/64 KiB 512 KiB 7.20
Intel Xeon Gold 6238T [37] Cascade Lake x86-64 3 8 32/32 KiB 1 MiB 7.54

4 EVALUATION
To demonstrate the feasibility of our integrated systems approach
to FaaS architecture exploration, we evaluate the performance of
several RISC-V configurations and three different commercial pro-
cessors (Table 1) microbenchmarks and a set of serverless work-
flows written in Python (Table 2). Python is often cited as the most
commonly used FaaS runtime [20], and has very good support
from cloud providers. However, as shown in Table 2, these Python
scripts often call specialized libraries (e.g. OpenBLAS, OpenCV) or
compiled programs, demonstrating performance beyond the Python
runtime. Section 4.1 introduces the benchmarks, Section 4.2 presents
the test platforms, and Section 4.3 discusses the results obtained.

Table 2: Benchmarks Evaluated

Benchmark Type Language
matmul Micro Python (numpy)
floater Micro Python
linpack Micro Python (numpy)
image processing Workflow Python (OpenCV)
text processing Workflow Python
compilation Workflow Python, GCC, Make

4.1 Benchmarks
There are several serverless benchmarking suites available [44, 85,
18, 74]. However, these often model entire FaaS systems across
multiple nodes using containerization/virtualization, and orches-
tration frameworks. Our initial goal is to determine the feasibility
of running serverless workloads on open RISC-V cores, ergowe opt
to write stand-alone benchmarks inspired by the aforementioned
workloads. Additionally, because we want to evaluate the develop-
ment ecosystem for testing microarchitectural features in relation
to FaaS functions, we chose to collect data on the workloads them-
selves without containerization. Nevertheless, we do have Docker
running in our testbed and a deeper exploration of virtualization
overheads is ongoing.

Microbenchmarks.The three microbenchmarks are written in
Python and are similar to those found in other suites [44]. Matrix
multiplication (matmul) and linpack consist of floating point ma-
nipulation of 𝑛 × 𝑛 matrices. linpack is a traditional linear alge-
bra benchmark consisting of three matrix manipulations: solving
𝐴𝑥 = 𝑏 for 𝑥 , inverting matrix 𝐴, and computing 𝐴′ × 𝑥 = 𝑏. Both

use numpy which in turn calls an optimized C linear algebra li-
brary (OpenBLAS) to do the actual computation.The floating point
microbenchmark calculates a series of floating point operations
1. These microbenchmarks are a stand-in for compute-intensive
workloads, approaching a lower performance bound for the less
complex CPUs. They also demonstrate the value of vectorized and
other specialized instructions.

Figure 1: The image processing workflow consists of a
simplified dataflow graph for processing photos including,
thumbnailing, and face detection.While the graph does sug-
gest a degree of parallelism, we note that in our evaluation,
the pipeline is executed as a single thread.

Serverless Workflows. To evaluate workloads that are more
representative of those found in serverless suites, we developed
threeworkflows, each consisting of several chained functions.These
functions pass data between them, each one taking a single action,
creating a data flow graph.

We developed workflows for image processing, text processing,
and compilation, similar to those found in many serverless bench-
marks [18, 85, 74, 44]. The image processing workflow is a simpli-
fied version of cloud processing an uploaded image usingOpenCV [55,
21]. Figure 1 shows the workflow as tested. An image is passed

1

𝑎 = sin𝑥
𝑏 =

√
𝑎

𝑐 = cos𝑏
𝑑 =

√
𝑐

18

Serverless? RISC more! SESAME ’24, April 22, 2024, Athens, Greece

as input to the function and various scaling functions are called,
making thumbnails of different sizes. The image is also sent to
a face detection algorithm which pulls a classifier, and identifies
the number of faces found in the image. This workflow can be ex-
panded to include additional processing steps, such as metadata
processing, more complex inference algorithms or filtering. The
text processing workflow exercises several commonly used cloud
functions (MD5 hashing, BZ2 compression, and AES encryption).
The compilation workflow aims to replicate the functionality of a
Gitlab runner CI pipeline. The hash of a compressed source tar-
ball is checked and then the source is decompressed. The resulting
code is configured, compiled, then cleaned up. For this example,
we compile Apache v2.4.41. Note that while the benchmarks them-
selves consist of a single thread, they are running on top of the
Python runtime, which in turn is running in a full version Linux
which is regularly context switching to handle standard operating
system daemons and handles events including long-latency opera-
tions such as filesystem I/O.

101 102 103 104 105 106

Input Size (Number of elements)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

floater

64 128 256 512 1024 2048

Input Size (N for NxN Matrix)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

matmul

Rocket

SmallBoom

MediumBoom

LargeBoom

MegaBoom

VisionFive2

Huawei Kunpeng

Intel Xeon

Figure 2:We compare the instructions-per-cycle (IPC) of the
Python matmul and floatermicrobenchmarks. linpack (not
shown) shows very similar behavior to the matmul bench-
mark. The input size is on the x-axis and the instructions
retired per cycle is found on the y-axis. In all of these bench-
marks, the Xeon processor outperforms the ARM and RISC-
V cores. For small input sizes, themajority of the program is
spent on initializing the Python interpreter and importing
modules, which explains why there is little difference for
small input sizes.

4.2 Experimental Platform
We evaluated the in-order Rocket core [9] and four configurations
of the out-of-order (OoO) BOOM core [87] (Table 1). The BOOM
design exposes many parameters, which are adjusted heuristically
for each configuration according to the decode width. To evaluate

the fidelity of FPGA-based experiments, we also ran the server-
less workflows on a StarFive VisionFive2 RISC-V SBC with the
JH7110 core [71]. Additionally, to compare the performance of sim-
ple RISC-V cores with server-class CPUs, we ran all the bench-
marks on a Huawei Kunpeng 920 [82] and an Intel Xeon Gold
6238T [37]. Per-core configurations can be found in Table 1. The
BOOM and Rocket cores implement the RV64GC ISA [78], while
the JH7110 additionally supports the B extension for bit manipula-
tion [60].

TheRISC-V platforms runDebianGNU/Linuxwith the soft cores
using kernel 6.2.5 and the StarFive uses 5.15.0. The Kunpeng and
Xeon systems run Ubuntu 20.04 LTS. All platforms run Python 3.11.
All FPGA-based experiments are conducted on Enzian, a CPU/FPGA
research platform [17].We obtain RTL for configuration usingChip-
yard [6] and synthesize FPGA bitstreams. We boot a full Debian
Linux image using the FPGA DRAM as both a tmpfs filesystem
and main memory. To conduct our experiments we interact with
the system over UART, which we access over ssh through the CPU.
An advantage of this experimental method is that the CPU archi-
tecture can be saved as a bitstream, while the filesystem can be
easily changed to expand the evaluation without time-consuming
resynthesis of the system.

4.3 Comparative Performance
For these preliminary results we measure the instruction and cy-
cle counts using perf stat, using taskset to pin our workloads
to a core. The measured CoreMark/Mhz [28] scores can be found
in Table 1. The instructions-per-cycle (IPC) of microbenchmarks,
run on all machines, are shown in Figure 2. We note that the IPC
is bounded by decode width, though this is only the upper-most
bound.

Instruction Count. We first compare the number of instruc-
tions required to run each workflow (Figure 3). The difference in
instruction counts indicates the relative state of the RISC-V ISA
and compiler.RISC-V is still undergoing changes to its ISA speci-
fication, and is expected to improve in this regard over time. As
we can see from ARMv8’s example, a RISC ISA can achieve sig-
nificantly higher code density than the evaluated RISC-V variants.
Both the Rocket and BOOM cores only support the RV64GC variant.
Since their release, many extensions to the RISC-V ISA have been
ratified [60], (e.g. bit manipulation extension) as well as support for
vector instructions. The VisionFive2 results show that support for
these more specialized instructions can dramatically increase code
density, reducing the total instruction count required for a given
workload. While further exploration of these results is necessary
to draw definitive conclusions, the large differential between the
number of instructions necessary to execute the same workload
suggests further exploration of specialized instructions or acceler-
ators for RISC-V and greater optimizations of compilers and run-
times.

IPC. We also compare the IPC across platforms and workloads,
shown in Figure 4. In general, the Xeon and Kunpeng significantly
outperform the RISC-V cores. Although the Kunpeng has compa-
rable IPC to theMegaBoom, both the ARMv8 and x86 cores require
significantly fewer instructions to execute the workload, resulting
in fewer cycles. Relative to MegaBoom, Kunpeng and Xeon require

19

SESAME ’24, April 22, 2024, Athens, Greece Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic

Compilation Image Processing Text Processing Mean
0.0

0.5

1.0

1.5

In
st

ru
ct

io
n

co
u

n
t,

n
o
rm

a
li

ze
d

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

5

1
.0

3

1
.0

3

1
.0

3

0
.9

7

0
.9

9

1
.0

0

0
.9

9

0
.9

6

0
.9

9

0
.9

9

0
.9

8

1
.0

4

0
.9

9

1
.0

0

1
.0

1

1
.2

2

0
.4

7

0
.1

7 0
.3

4

0
.8

7

0
.2

9

0
.1

3 0
.2

4

0
.6

7

0
.2

9

0
.1

1 0
.2

1

Rocket

SmallBoom

MediumBoom

LargeBoom

MegaBoom

VisionFive2

Huawei Kunpeng

Intel Xeon

Figure 3: FaaS pipeline relative (to Rocket) instructions. The instruction count difference is most pronounced for the text
processing pipeline. This workload consists mostly of compression and encryption operations, which benefit from highly
specialized instructions present in the ARM and x86 ISAs. Note the mean presented is the harmonic mean.

Compilation Image Processing Text Processing Mean
0.0

0.5

1.0

1.5

2.0

In
st

ru
ct

io
n

s
p

er
cy

cl
e

(I
P

C
)

0
.4

2

0
.4

1

0
.4

3

0
.4

2

0
.4

5

0
.4

2

0
.4

4

0
.4

4

0
.5

1

0
.4

7

0
.4

8

0
.4

9

0
.7

2

0
.7

8

0
.7

3

0
.7

40
.9

3

1
.0

4

1
.1

0

1
.0

2

0
.6

8 0
.8

6

0
.5

2 0
.6

6

1
.3

8

1
.2

8

1
.0

2 1
.2

0

1
.7

7

1
.7

9

1
.4

4 1
.6

5

Rocket

SmallBoom

MediumBoom

LargeBoom

MegaBoom

VisionFive2

Huawei Kunpeng

Intel Xeon

Figure 4: We compare IPC across all of the experimental platforms for each of the FaaS pipelines described in Section 4.1. The
bar height indicates the IPC for each evaluated platform. As BOOM core issue width grows, the IPC grows as well, approaching
in some cases the commercial processors. Note the presented mean is the harmonic mean.

4.55x and 7.19x fewer cycles on average for the workflows. While
wider BOOM cores show a significant improvement over their nar-
rower counterparts, we also note that the BOOM cores achieve
much less of their maximum IPC (3 and 4 for the Large- and Mega-
Boom) compared to Kunpeng andXeon processors, suggesting that
its design is bottlenecked. This difference is exacerbated for the
Pythonmicrobenchmarks, which representworkloads closer to tra-
ditional CPU application domains. Furthermore, the commercial
JH7110 core, an in-order dual-issue design, has comparable IPC
to the significantly more complex LargeBoom, further indicating
that there is much room for improvement in optimizing existing
designs.

Conclusion. While the RISC-V cores are overall less perfor-
mant than their counterparts, the MegaBoom offers an IPC compa-
rable to a modern ARMv8 core for our representative FaaS work-
loads.While the RV64GC variant of RISC-V does requiremanymore
instructions for the same computation, our evaluation of the RV64GCB
variant shows that adding support for more recent RISC-V exten-
sions can significantly improve code density.

5 CONCLUSIONS AND FUTUREWORK
Our preliminary work demonstrates the value of having an open,
fast, and accurate technique for analyzing the impact of microar-
chitectural features on native-scale workloads. These applications
make use of a complete system software stack, including system
calls and I/O. The cores are parametrically synthesized, generating
a varied set of modern SoCs, able to be tested interactively. Putting

20

Serverless? RISC more! SESAME ’24, April 22, 2024, Athens, Greece

this together, we believe that the RISC-V ecosystem shows signif-
icant maturity and therefore, computer architects and systems re-
searchers should use it as a tool to better understand the microar-
chitectural implications of cloud workloads.

Our work proceeds in three primary directions. First, we’re con-
tinuing our parametric exploration of microarchitectural features
(e.g. cache size, cache layout, ROB sizes, etc.) to make stronger
hypotheses about workload sensitivity to SoC characteristics. Sec-
ond, we want to examine virtualization and containerization over-
heads by containerizing our benchmarking suite, and incorporat-
ing more complex orchestration using vHive [74] and SeBS [18].
Finally, we aim to use our insight to better evaluate the feasibility
of a serverless-native CPU, which trades off single-threaded per-
formance for significant improvements in throughput (via density)
and power-efficiency (in instructions per Joule).

While we believe that RISC-V is a well-suited platform for both
research and ultimately production systems, there are still several
areas in which it can improve. There remains a gap between the
single-thread performance of open source RISC-V cores and mod-
ern, equivalent ARM or x86 cores. Similarly, toolchain improve-
ments (e.g. optimizing compiler support) could further improve
performance. Fortunately, there are several academic and indus-
trial groups steadily improving the performance of RISC-V cores.
Hardware threads (harts) are part of the RISC-V ISA specification,
allowing researchers to reexplore “the valley” between manycores
and many threads [33] in the context of modern architectures and
workloads. Furthermore, there are several projects to bring state-
of-the-art features such as CHERI hardware capabilities [79], per-
sistent memory support [8], and confidential computing/trusted
execution extensions [47, 23] to RISC-V.

Given the heterogeneity of bothmodern hardware and software,
we believe that in the era of co-design, cloud researchers cannot
afford to ignore hardware design, and hardware designers must
use more realistic cloud workloads. While developing in RISC-V
has its challenges, the combination of accuracy, performance, and
speed of simulation for real workloads makes a strong argument
for a prominent space in the systems researcher’s toolbox.

REFERENCES
[1] Advanced Micro Devices. 2023. 4th gen AMD EPYC proccessor architecture

whitepaper. Advanced Micro Devices. (June 2023). https://www.amd.com/en
/campaigns/epyc-9004-architecture.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: light-
weight virtualization for serverless applications. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Associa-
tion, Santa Clara, CA, (Feb. 2020), 419–434. isbn: 978-1-939133-13-7. https://w
ww.usenix.org/conference/nsdi20/presentation/agache.

[3] Ayaz Akram and Lina Sawalha. 2019. A survey of computer architecture sim-
ulation techniques and tools. IEEE Access, 7, 78120–78145. doi: 10.1109/ACCE
SS.2019.2917698.

[4] Alibaba Cloud. 2021. Alibaba cloud unveils new server chips to optimize cloud
computing services. Alibaba Cloud. (Oct. 19, 2021). https://www.alibabacloud
.com/blog/598159.

[5] Amazon Web Services. 2023. AWS graviton processor. Amazon Web Services.
Retrieved July 5, 2023 from https://aws.amazon.com/ec2/graviton/.

[6] AlonAmid, David Biancolin, AbrahamGonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, JohnWright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: integrated design, simulation,
and implementation framework for custom SoCs. IEEE Micro, 40, 4, 10–21. doi:
10.1109/MM.2020.2996616.

[7] Ampere Computing. 2023. Ampereone family product brief. Ampere Comput-
ing. (May 2023). https://amperecomputing.com/briefs/ampereone-family-pro
duct-brief.

[8] Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso.
2024. Skip it: take control of your cache! In Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2024). Association for Computing Machinery, La
Jolla, United States, (Apr. 2024), 434–451. isbn: 9798400703850. doi: 10.1145/3
620665.3640407.

[9] Krste Asanović, RimasAvizienis, Jonathan Bachrach, ScottBeamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Al-
bert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg,
Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Tech. rep.
UCB/EECS-2016-17. EECSDepartment, University of California, Berkeley, (Apr.
2016). http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.ht
ml.

[10] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov,Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
Matthew Matl, and David Wentzlaff. 2019. Openpiton: an open source hard-
ware platform for your research. Commun. ACM, 62, 12, (Nov. 2019), 79–87.
doi: 10.1145/3366343.

[11] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven
Eeckhout. 2014. An evaluation of high-level mechanistic core models. ACM
Transactions on Architecture and Code Optimization (TACO), Article 5, 23 pages.
doi: 10.1145/2629677.

[12] Aaron Carman. 2022. Server-class RISC-V core unveiled by Ventana at RISC-V
summit. All About Circuits. (Dec. 19, 2022). https://www.allaboutcircuits.co
m/news/server-class-risc-v-core-unveiled-by-ventana-at-risc-v-summit/.

[13] Christopher Celio, David A. Patterson, and Krste Asanović. 2015. The Berke-
ley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable,
Parameterized RISC-V Processor. Tech. rep. UCB/EECS-2015-167. EECS De-
partment, University of California, Berkeley, (June 2015). http://www2.eecs.b
erkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html.

[14] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu,
Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, Chunqiang Li, Yu Pu, Jianyi
Meng, Xiaolang Yan, Yuan Xie, and Xiaoning Qi. 2020. Xuantie-910: a commer-
cial multi-core 12-stage pipeline out-of-order 64-bit high performance risc-v
processor with vector extension : industrial product. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA), 52–64. doi:
10.1109/ISCA45697.2020.00016.

[15] Shuang Chen, Shay GalOn, Christina Delimitrou, Srilatha Manne, and José F.
Martínez. 2017. Workload characterization of interactive cloud services on big
and small server platforms. In 2017 IEEE International Symposium onWorkload
Characterization (IISWC), 125–134. doi: 10.1109/IISWC.2017.8167770.

[16] Xinghan Chen, Ling-Hong Hung, Robert Cordingly, andWes Lloyd. 2023. X86
vs. arm64: an investigation of factors influencing serverless performance. In
Proceedings of the 9th International Workshop on Serverless Computing (WoSC
’23). Association for ComputingMachinery, Bologna, Italy, 7–12. isbn: 9798400704550.
doi: 10.1145/3631295.3631394.

[17] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam Tur-
owski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Licciardello, Kristina
Martsenko, Reto Achermann, Gustavo Alonso, and Timothy Roscoe. 2022. En-
zian: an open, general, cpu/fpga platform for systems software research. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’22). Association for
Computing Machinery, Lausanne, Switzerland, 434–451. isbn: 9781450392051.
doi: 10.1145/3503222.3507742.

[18] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. Sebs: a serverless benchmark suite for function-as-a-
service computing. In Proceedings of the 22nd International Middleware Con-
ference (Middleware ’21). Association for Computing Machinery, Québec city,
Canada, 64–78. doi: 10.1145/3464298.3476133.

[19] Datadog. 2020. The state of serverless 2020. Datadog. https://www.datadoghq
.com/state-of-serverless-2020.

[20] Datadog. 2022. The state of serverless 2021. Datadog. (June 2022). https://ww
w.datadoghq.com/state-of-serverless.

[21] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Jo-
hannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup.
2022.The state of serverless applications: collection, characterization, and com-
munity consensus. IEEE Transactions on Software Engineering, 48, 10, 4152–
4166. doi: 10.1109/TSE.2021.3113940.

[22] Mahyar Emami, SahandKashani, KeisukeKamahori,Mohammad Sepehr Pourghan-
nad, Ritik Raj, and James R. Larus. 2023. Manticore: hardware-accelerated rtl
simulation with static bulk-synchronous parallelism. (2023). arXiv: 2301.09413
[cs.AR].

21

https://www.amd.com/en/campaigns/epyc-9004-architecture
https://www.amd.com/en/campaigns/epyc-9004-architecture
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1109/ACCESS.2019.2917698
https://doi.org/10.1109/ACCESS.2019.2917698
https://www.alibabacloud.com/blog/598159
https://www.alibabacloud.com/blog/598159
https://aws.amazon.com/ec2/graviton/
https://doi.org/10.1109/MM.2020.2996616
https://amperecomputing.com/briefs/ampereone-family-product-brief
https://amperecomputing.com/briefs/ampereone-family-product-brief
https://doi.org/10.1145/3620665.3640407
https://doi.org/10.1145/3620665.3640407
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/3366343
https://doi.org/10.1145/2629677
https://www.allaboutcircuits.com/news/server-class-risc-v-core-unveiled-by-ventana-at-risc-v-summit/
https://www.allaboutcircuits.com/news/server-class-risc-v-core-unveiled-by-ventana-at-risc-v-summit/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/IISWC.2017.8167770
https://doi.org/10.1145/3631295.3631394
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/3464298.3476133
https://www.datadoghq.com/state-of-serverless-2020
https://www.datadoghq.com/state-of-serverless-2020
https://www.datadoghq.com/state-of-serverless
https://www.datadoghq.com/state-of-serverless
https://doi.org/10.1109/TSE.2021.3113940
https://arxiv.org/abs/2301.09413
https://arxiv.org/abs/2301.09413

SESAME ’24, April 22, 2024, Athens, Greece Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic

[23] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable memory protection in the PENGLAI
enclave. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). USENIX Association, (July 2021), 275–294. isbn: 978-1-
939133-22-9. https://www.usenix.org/conference/osdi21/presentation/feng.

[24] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Moham-
mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anas-
tasia Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerg-
ing scale-out workloads on modern hardware. In http://infoscience.epfl.ch/re
cord/173764.

[25] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Chris-
tos Kozyrakis,Matei Zaharia, andKeithWinstein. 2019. From laptop to lambda:
outsourcing everyday jobs to thousands of transient functional containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Associa-
tion, Renton, WA, (July 2019), 475–488. isbn: 978-1-939133-03-8. http://www
.usenix.org/conference/atc19/presentation/fouladi.

[26] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, fast and slow: Low-Latency video
processing using thousands of tiny threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, (Mar. 2017), 363–376. isbn: 978-1-931971-37-9. https://www.use
nix.org/conference/nsdi17/technical-sessions/presentation/fouladi.

[27] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xi-
aomeng Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao, et al. 2016.
The sunway taihulight supercomputer: system and applications. Science China
Information Sciences, 59, 1–16. doi: 10.1007/s11432-016-5588-7.

[28] Shay Gal-On and Markus Levy. 2012. Exploring coremark a benchmark maxi-
mizing simplicity and efficacy. The Embedded Microprocessor Benchmark Con-
sortium.

[29] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, YuanHe, Brett Clancy, Chris Colen, FukangWen, Catherine
Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling
Liu, Jake Padilla, and Christina Delimitrou. 2019. An open-source benchmark
suite formicroservices and their hardware-software implications for cloud and
edge systems. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (AS-
PLOS ’19). Association for Computing Machinery, Providence, RI, USA, 3–18.
isbn: 9781450362405. doi: 10.1145/3297858.3304013.

[30] Google. 2023. gVisor. Google. https://gvisor.dev.
[31] Qi Guo, Tianshi Chen, Yunji Chen, and Franz Franchetti. 2016. Accelerating

architectural simulation via statistical techniques: a survey. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 35, 3, 433–446.
doi: 10.1109/TCAD.2015.2481796.

[32] Xuan Guo and Robert Mullins. 2020. Accelerate cycle-level full-system sim-
ulation of multi-core RISC-V systems with binary translation. arXiv preprint
arXiv:2005.11357.

[33] Zvika Guz, Evgeny Bolotin, Idit Keidar, AvinoamKolodny, AviMendelson, and
Uri C.Weiser. 2009. Many-core vs. many-thread machines: stay away from the
valley. IEEE Computer Architecture Letters, 8, 1, 25–28. doi: 10.1109/L-CA.200
9.4.

[34] John L. Hennessy and David A. Patterson. 2019. A new golden age for com-
puter architecture. Commun. ACM, 62, 2, (Jan. 2019), 48–60. doi: 10.1145/328
2307.

[35] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan,
Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom,
Fabrice Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, SravenMarella, Praveen
Salihundam, Vasantha Erraguntla, Michael Konow, Michael Riepen, Guido
Droege, Joerg Lindemann, Matthias Gries, Thomas Apel, Kersten Henriss, Tor
Lund-Larsen, Sebastian Steibl, Shekhar Borkar, Vivek De, Rob Van Der Wijn-
gaart, and TimothyMattson. 2010. A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS. In 2010 IEEE International Solid-State Circuits Con-
ference - (ISSCC), 108–109. doi: 10.1109/ISSCC.2010.5434077.

[36] Intel Corporation. 2023. Four takeaways from Intel’s investor webinar. Intel
Corporation. (Mar. 29, 2023). https://www.intel.com/content/www/us/en/ne
wsroom/news/four-takeaways-from-intel-investor-webinar.html.

[37] Intel Corporation. 2023. Intel Xeon Gold 6238T processor ARK. https://ark.in
tel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-pro
cessor-30-25m-cache-1-90-ghz.html.

[38] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. 2008. Cmp$im:
a pin-based on-the-fly multi-core cache simulator. In Proceedings of the Fourth
AnnualWorkshop onModeling, Benchmarking and Simulation (MoBS), co-located
with ISCA, 28–36.

[39] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: distributed computing for the 99%. In Proceedings of

the 2017 Symposium on Cloud Computing (SoCC ’17). Association for Comput-
ing Machinery, Santa Clara, California, 445–451. isbn: 9781450350280. doi: 1
0.1145/3127479.3128601.

[40] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,
Jianfeng Wang, and Adam Barker. 2023. How does it function? characterizing
long-term trends in production serverless workloads. In Proceedings of the 2023
ACM Symposium on Cloud Computing (SoCC ’23). Association for Computing
Machinery, , Santa Cruz, CA, USA, 443–458. isbn: 9798400703874. doi: 10.114
5/3620678.3624783.

[41] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, GauravAgrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, GordonMacKean, AdrianaMaggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy
Nix,ThomasNorrie,MarkOmernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing,Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter
performance analysis of a tensor processing unit. SIGARCH Comput. Archit.
News, 45, 2, (June 2017), 1–12. doi: 10.1145/3140659.3080246.

[42] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2022. Hermod:
principled and practical scheduling for serverless functions. In Proceedings of
the 13th Symposium on Cloud Computing (SoCC ’22). Association for Comput-
ing Machinery, San Francisco, California, 289–305. isbn: 9781450394147. doi:
10.1145/3542929.3563468.

[43] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan
Bachrach, andKrste Asanovic. 2018. Firesim: fpga-accelerated cycle-exact scale-
out system simulation in the public cloud. In 2018 ACM/IEEE 45th Annual In-
ternational Symposium on Computer Architecture (ISCA), 29–42. doi: 10.1109
/ISCA.2018.00014.

[44] Jeongchul Kim and Kyungyong Lee. 2019. Functionbench: a suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), 502–504. doi: 10.1109/CLOUD.2019.00091.

[45] Georgios K. Konstadinidis, Hongping Penny Li, Francis Schumacher, Venkat
Krishnaswamy,Hoyeol Cho, SudesnaDash, Robert P.Masleid, ChaoyangZheng,
YuanjungDavid Lin, Paul Loewenstein, Heechoul Park, Vijay Srinivasan, Dawei
Huang, ChangkuHwang,WenjayHsu, CurtisMcAllister, Jeff Brooks, Ha Pham,
Sebastian Turullols, Yifan Yanggong, Robert Golla, Alan P. Smith, and Ali
Vahidsafa. 2016. SPARC M7: a 20 nm 32-core 64 MB L3 cache processor. IEEE
Journal of Solid-State Circuits, 51, 1, 79–91. doi: 10.1109/JSSC.2015.2456902.

[46] Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023.
Function as a function. In Proceedings of the 2023 ACM Symposium on Cloud
Computing (SoCC ’23). Association for Computing Machinery, Santa Cruz,
USA, 81–92. isbn: 9798400703874. doi: 10.1145/3620678.3624648.

[47] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20) Article 38. Association for Computing Machinery, Her-
aklion, Greece, 16 pages. isbn: 9781450368827. doi: 10.1145/3342195.3387532.

[48] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob.
2020. Dramsim3: a cycle-accurate, thermal-capable dram simulator. IEEE Com-
puter Architecture Letters, 19, 2, 106–109. doi: 10.1109/LCA.2020.2973991.

[49] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin
Zha, Qiang Wang, Weidong Han, and Minyi Guo. 2022. RunD: a lightweight
secure container runtime for high-density deployment and high-concurrency
startup in serverless computing. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). USENIX Association, Carlsbad, CA, (July 2022), 53–68. isbn:
978-1-939133-29-27. https://www.usenix.org/conference/atc22/presentation/l
i-zijun-rund.

[50] Zijun Li, Yushi Liu, Linsong Guo,Quan Chen, Jiagan Cheng,Wenli Zheng, and
Minyi Guo. 2022. Faasflow: enable efficient workflow execution for function-
as-a-service. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
’22). Association for Computing Machinery, Lausanne, Switzerland, 782–796.
isbn: 9781450392051. doi: 10.1145/3503222.3507717.

[51] Harrison Liew, Daniel Grubb, John Wright, Colin Schmidt, Nayiri Krzyszto-
fowicz, Adam Izraelevitz, Edward Wang, Krste Asanović, Jonathan Bachrach,
and Borivoje Nikolić. 2022. Hammer: a modular and reusable physical design

22

https://www.usenix.org/conference/osdi21/presentation/feng
http://infoscience.epfl.ch/record/173764
http://infoscience.epfl.ch/record/173764
http://www.usenix.org/conference/atc19/presentation/fouladi
http://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1145/3297858.3304013
https://gvisor.dev
https://doi.org/10.1109/TCAD.2015.2481796
https://doi.org/10.1109/L-CA.2009.4
https://doi.org/10.1109/L-CA.2009.4
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1109/ISSCC.2010.5434077
https://www.intel.com/content/www/us/en/newsroom/news/four-takeaways-from-intel-investor-webinar.html
https://www.intel.com/content/www/us/en/newsroom/news/four-takeaways-from-intel-investor-webinar.html
https://ark.intel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-processor-30-25m-cache-1-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-processor-30-25m-cache-1-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-processor-30-25m-cache-1-90-ghz.html
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3542929.3563468
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1109/JSSC.2015.2456902
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1109/LCA.2020.2973991
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://doi.org/10.1145/3503222.3507717

Serverless? RISC more! SESAME ’24, April 22, 2024, Athens, Greece

flow tool: invited. In Proceedings of the 59th ACM/IEEE Design Automation Con-
ference (DAC ’22). Association for Computing Machinery, San Francisco, Cal-
ifornia, 1335–1338. isbn: 9781450391429. doi: 10.1145/3489517.3530672.

[52] Pejman Lotfi-Kamran, Boris Grot,Michael Ferdman, Stavros Volos, Onur Kocber-
ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer,
and Babak Falsafi. 2012. Scale-out processors. SIGARCH Comput. Archit. News,
40, 3, (June 2012), 500–511. doi: 10.1145/2366231.2337217.

[53] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant
Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Car-
valho, Jerónimo Castrillón, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst,Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya
Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope,Thomas Grass, Bagus
Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes,
Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Han-
hwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth,
Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, TommasoMarinelli,
Christian Menard, Andrea Mondelli, Tiago Mück, Omar Naji, Krishnendra
Nathella, HoaNguyen, Nikos Nikoleris, Lena E. Olson,Marc S. Orr, Binh Pham,
Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sand-
berg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul
Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas,
Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil
Yoon, and Éder F. Zulian. 2020.The gem5 simulator: version 20.0+.CoRR, abs/2007.03152.
https://arxiv.org/abs/2007.03152 arXiv: 2007.03152.

[54] MichaelMcKeown, Alexey Lavrov,Mohammad Shahrad, Paul J. Jackson, Yaosheng
Fu, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi Zhou, and DavidWent-
zlaff. 2018. Power and energy characterization of an open source 25-coremany-
core processor. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 762–775. doi: 10.1109/HPCA.2018.00070.

[55] OpenCV team. 2023. OpenCV documentation. OpenCV team. Retrieved July 5,
2023 from https://docs.opencv.org/index.html.

[56] Tapti Palit, Yongming Shen, and Michael Ferdman. 2016. Demystifying cloud
benchmarking. In 2016 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). (Apr. 2016), 122–132. doi: 10.1109/ISPASS.2
016.7482080.

[57] Carl Ramey. 2011. TILE-gx100 manycore processor: acceleration interfaces
and architecture. In 2011 IEEE Hot Chips 23 Symposium (HCS), 1–21. doi: 1
0.1109/HOTCHIPS.2011.7477491.

[58] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubra-
manian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Ni-
ranjani Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin,
Yoshiaki Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indu-
palli, Indira Jayaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen,
Yuan Li, Fong Lou, Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Ma-
hony, David Alexander Munday, Srikanth Muroor, Narayana Penukonda, Eric
Perkins-Argueta, Devin Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda
Ripley, Amir Salek, Sathish Sekar, Sergey N. Sokolov, Rob Springer, Don Stark,
Mercedes Tan, Mark S. Wachsler, Andrew C. Walton, David A. Wickeraad,
Alvin Wijaya, and Hon Kwan Wu. 2021. Warehouse-scale video acceleration:
co-design and deployment in the wild. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2021). Association for ComputingMachinery, Vir-
tual, USA, 600–615. isbn: 9781450383172. doi: 10.1145/3445814.3446723.

[59] Ali Raza, IbrahimMatta, Nabeel Akhtar, Vasiliki Kalavri, and Vatche Isahagian.
2021. SoK: function-as-a-service: from an application developer’s perspective.
Journal of Systems Research, 1, 1. doi: 10.5070/SR31154815.

[60] RISC-V International. 2023. RISC-V recently ratified extensions. RISC-V Inter-
national. Retrieved July 16, 2023 fromhttps://wiki.riscv.org/display/HOME/Re
cently+Ratified+Extensions.

[61] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: a cy-
cle accurate memory system simulator. IEEE Computer Architecture Letters, 10,
1, 16–19. doi: 10.1109/L-CA.2011.4.

[62] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. Icebreaker: warming
serverless functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22). Association for Computing Machinery,
Lausanne, Switzerland, 753–767. isbn: 9781450392051. doi: 10.1145/3503222.3
507750.

[63] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: fast and accurate microar-
chitectural simulation of thousand-core systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). Associa-
tion for ComputingMachinery, Tel-Aviv, Israel, 475–486. isbn: 9781450320795.
doi: 10.1145/2485922.2485963.

[64] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya Akella.
2022. Memory deduplication for serverless computing with medes. In Proceed-
ings of the Seventeenth European Conference on Computer Systems (EuroSys
’22). Association for Computing Machinery, Rennes, France, 714–729. isbn:
9781450391627. doi: 10.1145/3492321.3524272.

[65] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and
Boris Grot. 2022. Lukewarm serverless functions: characterization and opti-
mization. In Proceedings of the 49th Annual International Symposium on Com-
puter Architecture (ISCA ’22). Association for Computing Machinery, New
York, New York, 757–770. isbn: 9781450386104. doi: 10.1145/3470496.3527390.

[66] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. 2021. What serverless computing is and should become:
the next phase of cloud computing. Commun. ACM, 64, 5, (Apr. 2021), 76–84.
doi: 10.1145/3406011.

[67] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
PradeepDubey, Stephen Junkins, AdamLake, Jeremy Sugerman, Robert Cavin,
Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. 2008. Larrabee:
a many-core x86 architecture for visual computing. ACM Trans. Graph., 27, 3,
(Aug. 2008), 1–15. doi: 10.1145/1360612.1360617.

[68] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architec-
tural implications of function-as-a-service computing. In Proceedings of the
52nd Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO
’52). Association for Computing Machinery, Columbus, OH, USA, 1063–1075.
isbn: 9781450369381. doi: 10.1145/3352460.3358296.

[69] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). USENIX Association, (July 2020), 205–218.
isbn: 978-1-939133-14-4. https://www.usenix.org/conference/atc20/presentat
ion/shahrad.

[70] Harsh Sharma, Sumit K.Mandal, Janardhan RaoDoppa, Umit Ogras, and Partha
Pratim Pande. 2023. Achieving datacenter-scale performance through chiplet-
based manycore architectures. In 2023 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 1–6. doi: 10.23919/DATE56975.2023.1013712
5.

[71] StarFive. 2023. VisionFive2 Technical Documentation. https://doc-en.rvspace
.org/Doc_Center/visionfive_2.html.

[72] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrellas. 2023.
𝜇Manycore: a cloud-native CPU for tail at scale. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (ISCA ’23) Article
33. Association for Computing Machinery, Orlando, FL, USA, 15 pages. isbn:
9798400700958. doi: 10.1145/3579371.3589068.

[73] Neil C. Thompson and Svenja Spanuth. 2021. The decline of computers as a
general purpose technology. Commun. ACM, 64, 3, (Feb. 2021), 64–72. doi: 10
.1145/3430936.

[74] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. 2021. Benchmarking, analysis, and optimization of serverless function
snapshots. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’21).
Association for ComputingMachinery, Virtual, USA, 559–572. isbn: 9781450383172.
doi: 10.1145/3445814.3446714.

[75] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FaaSNet: scalable and fast provisioning of
custom serverless container runtimes at alibaba cloud function compute. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Associa-
tion, (July 2021), 443–457. isbn: 978-1-939133-23-6. https://www.usenix.org/c
onference/atc21/presentation/wang-ao.

[76] DavidWang, BrindaGanesh, NuengwongTuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. 2005. Dramsim: a memory system simulator. SIGARCH
Comput. Archit. News, 33, 4, (Nov. 2005), 100–107. doi: 10.1145/1105734.11057
48.

[77] ZiqiWang, Kaiyang Zhao, Pei Li, Andrew Jacob,Michael Kozuch, ToddMowry,
and Dimitrios Skarlatos. 2023. Memento: architectural support for ephemeral
memory management in serverless environments. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’23).
Association for Computing Machinery, , Toronto, ON, Canada, 122–136. isbn:
9798400703294. doi: 10.1145/3613424.3623795.

[78] AndrewWaterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2019.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Ver-
sion 20191214. Tech. rep. RISC-V Foundation, (Dec. 2019). https://github.com
/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-2
0191213.pdf.

[79] Robert N.M.Watson, JonathanWoodruff, Peter G. Neumann, SimonW.Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and

23

https://doi.org/10.1145/3489517.3530672
https://doi.org/10.1145/2366231.2337217
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/HPCA.2018.00070
https://docs.opencv.org/index.html
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1109/HOTCHIPS.2011.7477491
https://doi.org/10.1109/HOTCHIPS.2011.7477491
https://doi.org/10.1145/3445814.3446723
https://doi.org/10.5070/SR31154815
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3406011
https://doi.org/10.1145/1360612.1360617
https://doi.org/10.1145/3352460.3358296
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.23919/DATE56975.2023.10137125
https://doi.org/10.23919/DATE56975.2023.10137125
https://doc-en.rvspace.org/Doc_Center/visionfive_2.html
https://doc-en.rvspace.org/Doc_Center/visionfive_2.html
https://doi.org/10.1145/3579371.3589068
https://doi.org/10.1145/3430936
https://doi.org/10.1145/3430936
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1145/3613424.3623795
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

SESAME ’24, April 22, 2024, Athens, Greece Roberto Starc, Tom Kuchler, Michael Giardino, and Ana Klimovic

Munraj Vadera. 2015. Cheri: a hybrid capability-system architecture for scal-
able software compartmentalization. In 2015 IEEE Symposium on Security and
Privacy, 20–37. doi: 10.1109/SP.2015.9.

[80] Robert NM Watson, Peter G Neumann, Jonathan Woodruff, Michael Roe, He-
sham Almatary, Jonathan Anderson, John Baldwin, David Chisnall, Brooks
Davis, Nathaniel Wesley Filardo, et al. 2019. Capability hardware enhanced
RISC instructions: CHERI instruction-set architecture (version 9). Tech. rep.
University of Cambridge, Computer Laboratory, (Sept. 2019). https://www.cl
.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf.

[81] Mark Wyse, Daniel Petrisko, Farzam Gilani, Yuan-Mao Chueh, Paul Gao, Dai
Cheol Jung, Sripathi Muralitharan, Shashank Vijaya Ranga, Mark Oskin, and
Michael Taylor. 2022.The blackparrot bedrock cache coherence system. (2022).
arXiv: 2211.06390 [cs.AR].

[82] Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, and Peter Chun. 2021.
Kunpeng 920: the first 7-nm chiplet-based 64-core ARM SoC for cloud services.
IEEE Micro, 41, 5, 67–75. doi: 10.1109/MM.2021.3085578.

[83] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,
Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu, Zhigang Liu, Jiazhan Tan,
HuaqiangWang, HuizheWang, KaifanWang, Chuanqi Zhang, Fawang Zhang,
Linjuan Zhang, Zifei Zhang, Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jian-
grui Zou, Ye Cai, Dandan Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He,
QiyuanQuan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and Yungang Bao.
2022. Towards Developing High Performance RISC-V Processors Using Agile
Methodology. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 1178–1199. doi: 10.1109/MICRO56248.2022.00080.

[84] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Following the
data, not the function: rethinking function orchestration in serverless comput-
ing. In 20th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 23). USENIX Association, Boston, MA, (Apr. 2023), 1489–1504. isbn:

978-1-939133-33-5. https://www.usenix.org/conference/nsdi23/presentation
/yu.

[85] Tianyi Yu, Qingyuan Liu, DongDu, YubinXia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 11th ACM Symposium on
Cloud Computing (SoCC ’20). Association for Computing Machinery, Virtual
Event, USA, 30–44. isbn: 9781450381376. doi: 10.1145/3419111.3421280.

[86] Florian Zaruba and Luca Benini. 2019.The cost of application-class processing:
energy and performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core
in 22-nm FDSOI technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 27, 11, (Nov. 2019), 2629–2640. doi: 10.1109/TVLSI.2019.29261
14.

[87] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: the 3rd generation Berkeley out-of-ordermachine. In FourthWorkshop
on Computer Architecture Research with RISC-V. (May 2020).

[88] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang,
and Zhiqiang Lin. 2023. Reusable enclaves for confidential serverless comput-
ing. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Asso-
ciation, Anaheim, CA, (Aug. 2023), 4015–4032. isbn: 978-1-939133-37-3. https:
//www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan.

[89] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus Peinado, and
Andrew Baumann. 2023. Core slicing: closing the gap between leaky confi-
dential VMs and bare-metal cloud. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). USENIX Association, Boston,
MA, (July 2023), 247–267. isbn: 978-1-939133-34-2. https://www.usenix.org/c
onference/osdi23/presentation/zhou-ziqiao.

24

https://doi.org/10.1109/SP.2015.9
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf
https://arxiv.org/abs/2211.06390
https://doi.org/10.1109/MM.2021.3085578
https://doi.org/10.1109/MICRO56248.2022.00080
https://www.usenix.org/conference/nsdi23/presentation/yu
https://www.usenix.org/conference/nsdi23/presentation/yu
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan
https://www.usenix.org/conference/usenixsecurity23/presentation/zhao-shixuan
https://www.usenix.org/conference/osdi23/presentation/zhou-ziqiao
https://www.usenix.org/conference/osdi23/presentation/zhou-ziqiao

	Abstract
	1 Introduction
	2 Background
	2.1 FaaS Characteristics
	2.2 Cloud Hardware Architectures
	2.3 Hardware Simulation

	3 Co-design Opportunities
	4 Evaluation
	4.1 Benchmarks
	4.2 Experimental Platform
	4.3 Comparative Performance

	5 Conclusions and Future Work

