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ABSTRACT
For many years, the distributed systems community has struggled
to smooth the transition from local to remote computing. Trans-
parency means concealing the complexities of distributed program-
ming like remote locations, failures or scaling. For us, full trans-
parency implies that we can compile, debug and run unmodified
single-machine code over effectively unlimited compute, storage,
and memory resources.

We elaborate in this article why resource disaggregation in
serverless computing is the definitive catalyst to enable full trans-
parency in the Cloud. We demonstrate with two experiments that
we can achieve transparency today over disaggregated serverless
resources and obtain comparable performance to local executions.
We also show that locality cannot be neglected for many problems
and we present five open research challenges: granular middle-
ware and locality, memory disaggregation, virtualization, elastic
programming models, and optimized deployment.

If full transparency is possible, who needs explicit use of middle-
ware if you can treat remote entities as local ones? Can we close
the curtains of distributed systems complexity for the majority of
users?

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; Distributed computing methodologies.
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1 INTRODUCTION
Transparency is an archetypal challenge in distributed systems
that has not yet been adequately solved. Transparency implies the
concealment from the user and the application programmer of the
complexities of distributed systems. Colouris et al. [12] define eight
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forms of transparency: access, location, concurrency, replication,
failure, mobility, performance, and scalability.

But, despite all previous efforts, the problem is still open as seen
in recent literature. For example, as stated in [21]: "Our proposal in
this paper was motivated by a professor of computer graphics at
UC Berkeley asking us: Why is there no cloud button?" He outlined
how his students simply wish they could easily push a button and
have their code (existing, optimized, single-machine code) running
on the cloud.

Waldo et al. [44] explain that the goal of merging the program-
ming and computational models of local and remote computing is
not new. They state that "around every ten years a furious bout
of language and protocol design takes place and a new distributed
computing paradigm is announced". They mention messages in the
70s, RPCs in the 80s, and objects in the 90s.

In every iteration, a new wave of software modernization is gen-
erated, and applications are ported to the newest and hot paradigm.
Waldo et al. claim that all these iterations may be evolutionary
stages to unify both local and distributed computing. But they are
pessimistic, and they believe that this will not be possible because
of latency, memory access, concurrency and partial failure.

This visionary paper even considers that in the future hard-
ware improvements could make the difference in latency irrelevant,
and that differences between local and remote memory could be
masked. But they still claim that concurrency and partial failures
preclude the unification of local and remote computing. Unlike an
OS, they are telling us that a distributed system has no single point
of resource allocation, synchronization, or failure.

But, what if novel cloud technologies could make the unification
of local and remote paradigms possible? Are we close to the end of
the cycles of software modernization? Can we just compile to the
Serverless SuperComputer [43]?

This paper argues that recent reductions in network latency
[6, 36] are boosting resource disaggregation in the Cloud, which
is the definitive catalyst to achieve transparency. Even if existing
Cloud services are still in the millisecond range (100ms Lambda
overhead, 10ms in Kafka, 5-20ms in S3), disaggregation has already
fueled the creation of serverless computing services like Function
as a Service, Cloud Object Storage, and messaging. If we can go
down to µs RPCs [22, 24], novel opportunities for transparency will
emerge [6, 25].

The Serverless End Game (enabling transparency) will arrive
when all computing resources can be offered in a disaggregated
way. In this paper, we analyze the current research challenges that
need to be addressed in order to achieve this ambitious goal.
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2 DDC PATH TO TRANSPARENCY
The DDC path is probably the more direct but also the more shock-
ing for the distributed systems community. In line with recent in-
dustrial trends on Disaggregated Data centers (DDC) [15], it implies
a distributed OS transparently leveraging disaggregated hardware
resources like processing, memory or storage.

A canonical example is LegoOS: A disseminated, distributed
OS for hardware resource disaggregation [38]. LegoOS exposes a
distributed set of virtual nodes (vNode) to users. Each vNode is
like a virtual machine managing its own disaggregated process-
ing, memory and storage resources. LegoOS achieves transparency
and backwards compatibility by supporting the Linux system call
interface and Linux ABIs (Application Binary Interface), so that
existing unmodified Linux applications can run on top of it. Even
distributed applications that run on Linux can seamlessly run on a
LegoOS cluster by running on a set of vNodes. For example, LegoOS
shows how two unmodified applications can be run in a distributed
way: Phoenix (a single-node multi-threaded implementation of
MapReduce) and TensorFlow.

Another relevant work is Arrakis: The Operating System is the
Control Plane [34]. Arrakis comes from previous efforts aimed
at optimizing the kernel code paths to improve data transfer and
latency in the OS. In Arrakis, applications have direct access to
virtualized I/O devices, which allows most I/O operations to bypass
the kernel entirely without compromising process isolation. Arrakis
virtualized control plane approach allows storage solutions to be
integrated with applications, even allowing the development of
higher level abstractions like persistent data structures. Even more,
Arrakis control plane is a first step towards integration with a
distributed data center network resource allocator.

If the OS can be extended with unbounded resources in a trans-
parent way, distribution may no longer be needed for many appli-
cations – single-node parallel programming is sufficient. This is
completely in line with the following assessment from the COST
paper [29]: “You can have a second computer once you’ve shown
you know how to use the first one“. This paper presents a critique of
the current research in distributed systems, and even suggests that
“there are numerous examples of scalable algorithms and computa-
tional models; one only needs to look back to the parallel computing
research of decades past“.

COST stands in that paper for the “Configuration that Outper-
forms a Single Thread“. They mainly compare optimized single-
threaded versions of graph algorithms, with their equivalents in dis-
tributed frameworks like Spark, Naiad, GraphX, Giraph or GraphLab.
For example, Naiad has a COST of 16 cores for executing PageRank
on the twitterrv graph, which means that Naiad needs 16 cores to
outperform a single-threaded version of the same algorithm in one
machine.

An important reflection from this paper is that the overheads
of distributed frameworks (coordination, serialization) can be ex-
tremely high just in order to justify scalability. But the COST paper
is not proposing a solution to the scalability problem, since it is
obvious that a single machine cannot scale enough for many algo-
rithms.

But, what happens if we combine the COST idea with the DDC
research? This is precisely what Gao et al.[15] validated in a simple

experiment comparing a COST version with a COST-DDC one that
relies on disaggregated memory (Infiniswap [17]). They demon-
strate in this paper that the same code can overcome the memory
limits thanks to disaggregation and still obtain good performance
results.

DDC is openly challenging the so-called server-centric approach
of development for the data center. DDC advocates that the mono-
lithic server model where the server is the unit of deployment, op-
eration, and failure is becoming obsolete. However, current mature
multi-tenant Cloud technologies are built on top of server-centric
models which are still difficult to challenge by DDC proposals.

3 SERVER-CENTRIC PATH TO
TRANSPARENCY

Recent proposals are intercepting language libraries in order to
access remote Cloud resources in a transparent way. For example,
Crucial [5] implements a Serverless Scheduler for the Java Concur-
rency library. Crucial can run Java threads in Serverless functions
transparently, and it also provides synchronization primitives and
consistent mutable state data structures over a disaggregated in-
memory computing layer. Crucial does not provide flexible memory
scaling or storage transparency, and it is limited to Java applications
using that library.

In [4], authors intercept Python multiprocessing library to trans-
parently execute Python applications at scale over Cloud serverless
resources. This paper demonstrates that transparency is feasible
for many unmodified existing applications. However, they show
that for read-write memory intensive applications, transparency
may involve huge penalties.

Another example of language level transparency is Fiber [45].
Fiber implements an alternative Python multiprocessing library
that works over a scalable Kubernertes cluster. Fiber supports many
Python multiprocessing abstractions like Process, Pool, Queue, Pipe
and also remote memory in Manager objects. It demonstrates trans-
parency executing unmodified Python applications from the Ope-
nAI Baselines machine learning project. But Fiber does not support
transparent disaggregated storage and memory, and it is limited to
Python applications using that library.

The Fabric for Deep Learning (FfDL) [20] system moves exist-
ing Deep Learning frameworks like PyTorch or TensorFlow to the
Cloud on top of cluster technologies like Kubernetes. [20] transpar-
ently provides dependability thanks to checkpointing, intercepting
storage flows (file system) using optimized storage drivers to cloud
object storage, and supporting locality with a gang scheduling algo-
rithm that schedules all components of a job as a group. However,
they observed that scaling was so framework dependent that they
could not achieve full scaling transparency.

Another example of transparency in a serverless context is Faasm
[40]. Faasm exposes a specialised system interface which includes
some POSIX syscalls, serverless-specific tasks, and frameworks
such as OpenMP and MPI. Faasm transparently intercepts calls to
this interface to automatically distribute unmodified applications,
and execute existing HPC applications over serverless compute
resources.

Faasm allows colocated functions to share pages of memory and
synchronises these pages across hosts to provide distributed state.
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However, this is done through a custom API where the user must
have knowledge of the underlying system, hence breaking full trans-
parency. Furthermore, when functions are widely distributed, this
approach exhibits performance similar to traditional distributed
shared memory (DSM), which has proven to be poor without hard-
ware support [11, 32].

4 LIMITS OF DISAGGREGATION AND
TRANSPARENCY

Current data center networks already enable disk storage disaggre-
gation [3], where reads from local disk are comparable (10ms) to
reads from the network. In contrast, creating a thread in Linux takes
about 10 µs, still far from the 15ms/100ms (warm/cold) achieved
today in FaaS settings. With that, compute disaggregation is already
feasible when job time renders these delays negligible.

Advances in datacenter networking and NVMs have reduced
access to networked storage to 1 µs, however this is still an order
of magnitude slower than local memory accesses which are in the
nanosecond range [6] (100ns), and local cache accesses in the 4ns-
30ns range. This means that local memory cannot be neglected, and
should be smartly leveraged by memory disaggregation efforts [27].
Existing efforts in memory disaggregation [13, 17, 23, 33] strive to
play in the µs range, which can be a limiting factor.

This is directly related to locality and affinity requirements for
many stateful applications. The systems community is starting to
acknowledge that stateful services need a different programming
model and resource management than the stateless ones [18, 25].
Stateful services have very different requirements of coordination,
consistency, scalability and fault tolerance, and they need to be
addressed differently. Stateful services show the limits of disaggre-
gation versus locality, since in some scenarios locality still matters.

For now, locality still plays a key role in stateful distributed
applications. For example: (i) where huge data movements still are
a penalty and memory-locality can be still useful to avoid data
serialization costs; (ii) where specialized hardware like GPUs must
be used [20]; in (iii) some iterative machine-learning algorithms
[19]; in (iv) simulators, interactive agents or actors[35].

Finally, another important limitation is scaling transparency,
which means that applications can expand in scale without changes
to the system structure or the application algorithms. If the local pro-
gramming model was designed to use a fixed amount of resources,
there is no magic way of transparently achieving scalability, not to
mention elasticity. Workloads that do not need elasticity, such as en-
terprise batch jobs or scientific simulations, can use disaggregated
resources the same way as local as they do not need scalability.
However, for more user driven and interactive services, such as
internal enterprise web applications, simple porting of the executa-
bles (sometimes referred as “lift-and-shift“) is rarely enough. The
unchanged code is not able to take advantage of the elasticity of
disaggregated resources and it is expensive to run code that is not
used.

5 EXPERIMENTS
5.1 Compute disaggregation
To evaluate the feasibility of compute disaggregation with state of
the art cloud technologies, we will compare a compute-intensive

Figure 1: Monte Carlo simulation in VMs versus Amazon
Lambda Functions

algorithm running in local threads in a VM compared to the same
algorithm running over serverless functions. We also provide code
transparency, since we execute the same code in both cases. To
achieve this transparency, we rely on a Java Serverless Executor [5]
that can execute Java threads over remote Lambda functions. In this
case, all state is passed as parameters to the functions/threads, and
functions are in warm state, like VMswhich are already provisioned.

This experiment runs a Monte Carlo simulation to estimate the
value of 𝜋 . At each iteration, the algorithm checks if a random point
in a 2D square space lies inside the inscribed quadrant. We run 48
billion iterations of the algorithm. For AWS Lambda, the iterations
are evenly distributed to 16, 36, 48 or 96 functions with 1792 MB of
memory.1 For virtual machines, we run a parallel version of the sim-
ulation in different instance sizes: c5.4xlarge (16 vCPUs), c5.9xlarge
(36 vCPUs), c5.12xlarge (48 vCPUs), c5.24xlarge (96 vCPUs). The
algorithm is implemented in Java.

As we can see in Figure 1, the major difference now is cost: for
an equivalent execution, disaggregated functions cost 2x more com-
pared to on-demand VMs, and 6x more compared to Spot instances.
Surprisingly, computation time is equivalent in the local and remote
version using Lambdas. Even considering all the network commu-
nication overheads, container management and remote execution,
the results for disaggregated computations are already competitive
in performance in existing clouds. This is of course happening be-
cause this experiment is embarrassingly parallel, and the duration
of compute tasks is long enough to make milliseconds (15/100ms)
overheads negligible.

5.2 Memory disaggregation
The second experiment evaluates the feasibility and costs of both
memory and compute disaggregation with existing cloud technolo-
gies. In this case, we evaluate a linear algebra algorithm, Matrix
Multiplication (GEMM) which is a good use-case for testing parallel
processing on large in-memory data structures.
1According to AWS documentation, at 1,792MB a function has the equivalent of one
full vCPU
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Figure 2: Comparing Vertical vs. Horizontal Scaling: GEMM
Matrix Multiplication in Dask Local vs. Distributed

Figure 3: Comparing Horizontal Scaling Options: GEMM Ma-
trix Multiplication in Dask Distributed (Spot Instances and
on demand VMs) and numpywren (Lambda) for different
matrix sizes

We rely on Python frameworks used by data scientists like
NumPy and Dask. Dask transparently enables to run the same
code in a single multi-core machine or VM, and in a distributed
cluster of nodes. We also compare Dask to a serverless implementa-
tion of NumPy called numpywren [39] using serverless functions
that access data in disaggregated Cloud Object Storage (Amazon
S3).

Our first experiment compares the performance of Matrix Multi-
plication (GEMM) using Dask in a local VM (1x r5.24xlarge) and
in a distributed cluster (6x r5.4xlarge) using the same resources
(96 vCPUs, 768 GiB memory, 10Gb network). Figure 2 shows that
the local version perform slightly better than the distributed one
while costing the same. In this case, locality is avoiding unnecessary

data movements and serialization costs, and cluster provisioning.
Experiments with 90Kx90K matrices can be executed in the local
VM, but not in the equivalent distributed cluster due to resource
exhaustion.

Our second experiment compares the cost and performance of
Matrix Multiplication (GEMM) using Dask in a distributed cluster
(on demand VMs or Spot instances) and using numpywren over
Amazon Lambda and Amazon S3. We calculate compute resources
in numpywren (vCPUs) as the ratio between the sum of the duration
of every Lambda and the wall-clock time of the experiment. In
GeMM (70Kx70K) numpywren uses 553.8 vCPUs and inDaskwe use
equivalent resources: 552 vCPUs (5x c5.24xlarge, 1x c5.18xlarge).

Figure 3 shows that Dask obtains the same performance in VMs
and Spot instances, but Spot instances are 4x cheaper than on de-
mand VMs. numpywren obtains good performance numbers for
large matrices, obtaining equivalent performance results for an
equivalent Dask cluster in running time. numpywren also shows au-
tomatic scaling for any size, whereas the Dask cluster must always
be provisioned in advance with the desired amount of resources.
Finally, numpywren is much more expensive than the Dask cluster
using Spot instances (14x for 10K, 9x for 30K, 6.9x for 50K, 8.7x for
70K).

We see in these experiments what can be achieved today with
existing state-of-the-art Cloud infrastructure. Monetary cost is now
the strongest reason for locality in Cloud providers as we see in the
pricing models for Lambda, on demand VMs and Spot instances.
But even if elastic disaggregated resources are now more expensive,
some large scale compute intensive problems like linear algebra are
now already competitive in compute time and scalability. Further
improvements in cloud management control planes and locality-
aware placement could reduce costs for elastic resources.

6 CHALLENGES AHEAD
Let us review the major challenges to enable transparency for many
applications:

• Granular middleware and locality: In line with granular
computing [6, 25], we require microsecond latencies in exist-
ingmiddleware (compute, storage, memory, communication).
In particular, there is a need to handle extremely short instan-
tiation and execution times and more lightweight container
technologies. We also require microsecond latencies in dis-
aggregated storage and memory, messaging and collective
communication.
Granular applications are amenable to fine-grained elastic
scaling, but this will not provide adequate performance with-
out data locality. Locality and fine-grained resource man-
agement may also reduce the current cost of disaggregated
resources. Locality is also needed to scale stateful services
with different requirements of coordination, concurrency,
consistency, distribution, scalability and fault tolerance. A
recent paper [26] shows how granular computing and com-
puting could be combined to achieve millisecond latencies
in large flash bursts benefiting from locality. This clearly
connects with bursting group behaviours advocated before
for Serverless Clusters [31]. We foresee that next-generation
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container technologies may enable inter-container commu-
nication and provide affinity services for grouping related
entities.

• Memory disaggregation and Computational memory:
Disaggregated memory is still an open challenge and there
is no available Cloud offering in this line. Many cluster tech-
nologies like Apache Spark, Dask, or Apache Ray rely on
coupled and difficult-to-scale in-memory storage. Fast disag-
gregated memory and storage services [13, 23] can facilitate
the elasticity of many cluster technologies [42].
An important problem here is that disaggregated memory
services cannot ignore the memory available in existing
server-centric nodes in most Cloud providers. One option
is to combine both local and remote memory resources effi-
ciently [27]. Another potential solution here is the recent line
on computational memory [37] and in-memory computing
devices.
Fortunately, recent advances are making memory disaggre-
gation a feasible problem in the short term [2] [16]. Further
advances in optical communications, as new protocols like
CXL will clearly accelerate memory access. Even today, fast
networks and non volatile memories (NVM) can be used in
supercomputers and data centers with very low latencies.

• VirtualizationAccessing disaggregated resources in a trans-
parent manner requires a form of lightweight, flexible vir-
tualization that does not currently exist. This virtualization
must intercept computation and memory management to
provide access to disaggregated resources, and must do so
with native-like performance and no input from the pro-
grammer. Current serverless platforms use Linux containers
and VMs for virtualization [1], which have proven to be too
heavyweight for fine-grained scaling, and inappropriate for
stateful applications [18, 25, 40]. Software-based virtualiza-
tion is a more lightweight alternative that is seeing adoption
in the serverless context [8, 40], and as a replacement for
Docker [30], but is not yet mature enough to transparently
support non-trivial existing applications.
A clear alternative here is to leverage scale-up computing
alternatives [14] to pack same tenant code in large containers
and VMs. This is a trend we see in serverless settings [7]
[41] that also connects with the idea of serverless clusters
[31].

• Elastic programmingmodels and developer experience:
In some cases, virtualization technologies cannot solve prob-
lems like scaling transparency if the code is programmed
to use a fixed amount of resources. We then need elastic
programming models for local machines that can be used
without change when running over Cloud resources. Such
elastic models should take care of providing the different
transparency types (scaling, failure, replication, location, ac-
cess) and other aspects of application behavior when it is
moved between local and distributed environments. The lo-
cal executable APIs may need to be expanded to include
elastic programming abstractions for processes, memory,
and storage.
To fulfill the vision of disaggregation and transparency it
will also be critical to provide tools for developers, enabling

them to code both locally and remotely in the same manner
with full transparency. Developers will need to be able to
use tools to debug, monitor, profile, and if necessary access
control planes to optimize their applications for cost and
performance.

• Optimized deployment: Existing applications are a black-
box for the cloud, but the transition will imply a “compile to
the Cloud“ process. In this case, the Cloud will have access
over applications’ life cycle and it will be able to optimize
their execution performance and cost. This means that they
can perform static analysis to predict resource requirements,
dependencies and potential for hardware acceleration. Fu-
ture Cloud orchestration services will explicitly leverage
data dependencies and execution requirements for improv-
ing workloads and resource management thanks to machine
learning techniques [10, 28]. This compile process will also
allow advanced debugging mechanisms for Cloud applica-
tions.
Transparency efforts for different types of applications will
require customizable control planes for applications. Such
customization will be based on advanced observability and
fast orchestration mechanisms relying on standard services
and protocols. Monitoring and interception of the different
resources (compute, storage, memory, network) should be
available and even integrated into the data center, enabling
coordinated actuators at different levels. This can enable the
creation of millions of tiny control planes [9] adapted to the
different applications and programming models.

7 CONCLUSIONS
We argue that full transparency will be possible soon in the Cloud
thanks to low latency resource disaggregation. We foresee that next
generation serverless technologies may overcome the limitations
exposed by Waldo et al. [44] more than twenty five years ago.

An important paradox of compute disaggregation is the continu-
ous increase in transistor count involving more cpus per chip. The
next frontier for transparency is to efficiently combine scale-up
computing, scale-out computing and disaggregated memory in an
efficient way. Another important challenge is to devise novel elastic
parallel programming models for a single machine that effectively
guarantee scaling transparency while dealing with partial failures.

Finally, a big challenge is to identify which applications and
workloads are prone to achieve first transparency thanks to disag-
gregation. In principle, parallel data analytics and machine learning
are the clear candidates, but other popular settings like Web, mobile
and even multi-user games may also be studied.

If transparency is possible soon: Is this the end of distributed
programming for the majority of developers? Can we just rely
on parallel programming techniques and be completely oblivious
to the underlying distributed infrastructure even for large scale
problems? Who needs explicit use of middleware if you can treat
remote entities as local ones? And finally, can we close the curtains
of distributed systems complexity for the majority of users?
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