Serverless Computing for Dynamic HPC Workflows

Vijay Thurimella® 2, Philipp Raith?, Rolando P. Hong Enriquez?, Anderson Andrei Da Silva?,
Gourav Rattihalli> Ada Gavrilovska', Dejan Milojicic?
1School of Computer Science, Georgia Institute of Technology, Atlanta, USA
2Hewlett Packard Labs, Hewlett Packard Enterprise, Milpitas, CA
vthurimella@ gatech.edu, philipp.raith@hpe.com, rhong@hpe.com, da-silva@hpe.com,
gourav.rattihalli@hpe.com, ada@cc.gatech.edu, dejan.milojicic@hpe.com

Abstract—Containers have become an important component
for scientific workflows, enhancing reproducibility, portability,
and isolation when coupled with workflow management systems.
However, integrating containers with these systems can be com-
plex, potentially hindering wider adoption. Serverless platforms
offer a solution by providing a layer of abstraction over container
orchestrators, simplifying management while introducing event-
driven capabilities. This paper presents a novel integration
of serverless with workflow management systems to optimize
scientific workflow execution. Our approach leverages server-
less functions to dynamically provision containers for workflow
tasks, resulting in up to 30% faster execution. We found that
performance can be further improved by reusing containers
between multiple different tasks that were provisioned by the
serverless platform. These findings demonstrate the utility of
combining specialized container orchestration with established
workflow management to streamline scientific computing, im-
prove resource utilization, and accelerate time-to-results. Server-
less’ event-driven architecture enables efficient resource scaling,
aligning with the dynamic nature of scientific workloads.

I. INTRODUCTION

Reproducibility, portability, and performance isolation are
essential for high-performance computing (HPC) workflows in
shared environments [1], [2]. It has been recognized that con-
tainerization goes a long way in meeting these requirements.
Containers offer significant advantages in cluster configura-
tion for workflow execution. They provide a portable, self-
contained environment that encapsulates all necessary depen-
dencies, libraries, and configurations. This portability allows
tasks within a workflow to run on any node in the cluster that
has a container runtime installed, regardless of the underlying
system configuration. In heterogeneous clusters, where nodes
may have different operating systems or software versions,
containers mitigate the dependency hell problem [3]. Without
containers, managing software dependencies across diverse
nodes can be complex and error-prone, often leading to com-
patibility issues and workflow failures. Containers effectively
standardize the execution environment, ensuring consistency
across the cluster and simplifying overall cluster management.
This approach not only enhances workflow reproducibility but
also improves scalability and resource utilization, as tasks can
be more flexibly distributed across available nodes.

There has been previous work [4] in integrating containers
with workflow management systems in order to achieve these
properties. However, these integration do not take full advan-
tage of serverless computing ability for managing, reusing
and scaling containers. Serverless computing offers significant
advantages when integrated with workflow managers, partic-

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00262

ularly in terms of scalability. Unlike traditional infrastructure,
serverless platforms can automatically scale containers up or
down based on the current workload. This dynamic scaling
capability is especially beneficial for scientific workflows that
often have varying computational demands across different
stages of the workflow. Workflow managers can leverage this
dynamic scale to efficiently handle bursts of activity or periods
of low demand without manual intervention. This scalability,
combined with the ease of deployment and management,
makes serverless an attractive option for enhancing the per-
formance and efficiency of workflow management systems in
scientific computing environments. In addition to its ability to
scale containers, serverless platforms can also reuse containers.
Previously, each workflow task would create a new container,
but with serverless, multiple tasks can share the same container
between invocations. This reduces the overhead associated
with managing containers.

This paper demonstrates the potential of integrating server-
less computing with traditional workflow management systems
to achieve a fine-grained trade-off between execution time and
performance isolation. By combining serverless and workflow
management, we achieve greater flexibility and performance.
Our approach leverages serverless functions to dynamically
provision containers for workflow tasks, resulting in con-
siderable faster execution. We found that performance can
be further improved by reusing containers through serverless
platforms. In summary, we make the following contributions:

« Integration of Serverless with Workflow Management
Systems: Proposed and demonstrated integrating Knative,
an open-source serverless platform, with the Pegasus
workflow management system to enhance container or-
chestration and introduce serverless capabilities.

« Efficient Container Management and Provisioning:
Developed methods to containerize workflow tasks and
register them with Knative, leveraging its capabilities
for efficient container distribution and management. This
includes pre-staging containers on worker nodes or de-
ferring downloads until task invocation, thus significantly
reducing execution time.

« Enhanced Data Accessibility and Transparent Invo-
cation: Implemented strategies to ensure seamless access
to data for containerized tasks. Modified workflows to
invoke containerized functions via HTTP requests, lever-
aging Knative’s pre-registered containers.

« Experimental Validation and Performance Insights:

2096

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSCW63240.2024.00262&domain=pdf&date_stamp=2025-02-11

Conducted experiments demonstrating the viability of
the approach, showing a trade-off between performance
isolation and execution efficiency.

The results highlight the benefits of combining Knative with
Pegasus for large-scale scientific computing, enhancing both
performance and resource utilization.

II. PRELIMINARIES
A. Containers

Containers have improved software deployment by provid-
ing lightweight, portable, and self-sufficient units that pack-
age applications and their dependencies [5]. They provide a
consistent environment for applications to run across different
computing infrastructures, from development to production.
The foundation of container technology lies in Control Groups
[6] (cgroups), a Linux kernel feature that enables fine-grained
control over resource allocation and isolation for processes.
Cgroups allow for management of system resources. This
maintains performance isolation in multi-tenant environments.
Beyond limiting resources, cgroups enable the assignment of
different priorities to process groups.

1) Isolation: Resource isolation, a key feature of contain-
ers, ensures that applications within a container have access
only to a predefined set of resources. This isolation prevents
resource contention between multiple applications. It also
improves security by limiting the potential impact of compro-
mised applications. Resource isolation can allow scientists to
more accurately estimate the resource requirements, cost and
execution time of their workflows by providing predictable
performance metrics and resource usage patterns.

2) Orchestration: Container orchestration refers to the au-
tomated management, deployment, scaling, and networking
of containers. Kubernetes [7] is the standard for container
orchestration in both industry and research environments.
Kubernetes manages containerized applications with features
for automatic deployment and scaling based on defined rules or
metrics. It optimizes resource utilization in dynamic workloads
and provides advanced service discovery and load balancing,
facilitating container communication and stable network traffic
distribution.

B. Serverless

Traditionally, virtual machines (VMs) were the primary
compute units. Serverless computing offers a finer-grained
approach, allowing users to allocate resources precisely for
each task, thus achieving better resource utilization. This
model, characterized by automatic scaling and dynamic re-
source management, eliminates the need for provisioning
and maintaining servers. By efficiently managing containers,
including reuse, serverless platforms reduce cold start times
and enhance performance, especially for short-lived tasks. This
abstraction enables developers to focus on application logic,
accelerating development and reducing operational overhead.

Knative [8], a serverless platform built on Kubernetes,
provides the necessary functionality for building event-driven
applications. With components like Serving and Eventing,

2097

Knative offers automatic scaling, efficient resource utiliza-
tion through scale-to-zero, and flexible event management.
Kubernetes [7], while powerful, lacks specialized container
management features tailored for scientific workflows. To
address this, we propose integrating Knative with Pegasus to
optimize scientific workflow execution, leveraging Knative’s
event-driven capabilities and elastic scaling for improved per-
formance and resource utilization.

C. Workflow Management Systems

Workflow Management Systems (WMS) are used for au-
tomating and orchestrating scientific computations [9]. By
managing task dependencies, data transfer, and resource al-
location, WMS’s simplify distributed computing, enabling
scientists to concentrate on research rather than infrastructure.

Pegasus [10] is a widely adopted WMS that highlights
the capabilities of this technology. Pegasus specializes in
mapping abstract workflow descriptions onto distributed com-
puting resources. It separates the workflow description from
the execution environment to create portability across differ-
ent computing platforms. Pegasus does this by having the
workflow developer describe all of the tasks in the workflow
language as transformations. After registering the task as a
Transformation developers can invoke the task in the workflow
by creating a Job of the Transformation.

It offers fault-tolerance mechanisms, including task retry
and checkpoint/restart capabilities, which can be very helpful
for long-running scientific experiments. Pegasus also performs
workflow restructuring and task clustering to improve execu-
tion efficiency and reduce redundancy, to optimize resource
usage.

III. MOTIVATION

High-Performance Computing (HPC) environments often
use shared clusters to maximize resource efficiency. However,
maintaining performance isolation in these clusters is crucial
to ensure that individual workloads receive predictable and
consistent performance, regardless of other users’ activities.
This prevents resource contention and guarantees fair resource
allocation. While shared clusters optimize overall resource uti-
lization, they introduce significant challenges related to perfor-
mance isolation. Workflows on shared clusters frequently face
resource contention, where individual tasks within a workflow
can monopolize resources, causing starvation for other users
or tasks. This issue becomes especially problematic when a
single task occupies an entire node, potentially disrupting the
execution of multiple workflows.

Containers have emerged as a promising solution to this
challenge by providing isolated execution environments for
each task. This isolation prevents resource monopolization
and ensures fair resource allocation across multiple users
and workflows. However, traditional workflow management
systems which were designed primarily for static resource
allocation, struggle to effectively manage containerized work-
loads. This mismatch between containerization technology
and legacy workflow management systems hinders the full
potential of containerization in HPC environments.

In response to these challenges, Kubernetes and Knative
have emerged as compelling platforms for containerized work-
flow execution. Kubernetes provides robust orchestration and
management capabilities for containerized applications, while
Knative offers serverless functions and automatic scaling.
These tools are well-suited for dynamic resource allocation,
performance isolation, and effective reuse of containers, which
are essential for efficient workflow execution in shared HPC
clusters.

A. Portability

Containers offer significant advantages in cluster configu-
ration for workflow execution. They provide a portable, self-
contained environment that encapsulates all necessary depen-
dencies, libraries, and configurations. This portability allows
tasks within a workflow to run on any node in the cluster that
has a container runtime installed, regardless of the underlying
system configuration. In heterogeneous clusters, where nodes
may have different operating systems or software versions,
containers mitigate the dependency hell problem [3]. Without
containers, managing software dependencies across diverse
nodes can be complex and error-prone, often leading to com-
patibility issues and workflow failures. Containers effectively
standardize the execution environment, ensuring consistency
across the cluster and simplifying overall cluster management.
This approach not only enhances workflow reproducibility but
also improves scalability and resource utilization, as tasks can
be more flexibly distributed across available nodes.

B. Container Reuse

Container reuse is a key advantage of serverless computing
in scientific workflows. By maintaining warm containers,
serverless platforms can significantly reduce the overhead
associated with container startup and teardown, which is
particularly beneficial for workflows comprising numerous
short-duration tasks. This approach allows subsequent tasks
to leverage pre-initialized runtime environments, dramatically
decreasing overall execution time.

To quantify this benefit, we conducted an experiment com-
paring Docker and Knative performance for executing multiple
small tasks. Each task involved matrix multiplication: reading
two input matrices from disk, computing their product, and
writing the result back to disk. We varied the total number of
sequentially executed tasks and measured the overall execution
time. In the Docker setup, each task ran in a new container,
executed from the command line using docker run. For Kna-
tive, tasks were run on a 4-node cluster where the input data
was stored on the node and the HTTP request was sent via
a python script. Knative tasks experienced a cold start, which
Figure 1 shows to be 1.48 seconds, but operated within the
same container structure, enabling reuse.

The results from this experiment, illustrated in Figure 1,
show a performance improvement as task count increases.
Docker’s total time grew rapidly, far outpacing the actual
computation time due to container creation and destruction
overhead. Knative’s total time increased more slowly, re-
maining closer to the execution time even at higher task

2098

counts. At 160 tasks, Docker’s total time reached about 100
seconds, while Knative’s was around 78 seconds - a clear
efficiency gain. Notably, the execution times of individual
tasks increased as more tasks were executed, but these times
remained similar between Knative and Docker, highlighting
that the performance difference stems from container man-
agement overhead rather than computation. This difference
is due to Knative’s ability to reuse container structures, re-
ducing cumulative container lifecycle management overhead.
The efficiency is particularly valuable in scientific workflows
with numerous short-duration tasks. These findings suggest
serverless platforms offer a promising solution for optimiz-
ing containerized workflow execution in HPC environments,
especially for workflows comprising many small tasks.

| docker
1009 @ _0.62x+0.06, R2=1.00
804 knative
y=0.48x+1.48, R2=1.00
3 60,
()
£
= 40
20
0,
20 40 60 80 100 120 140 160
of Tasks

Fig. 1: Docker’s execution time increases rapidly due to per-
task container overhead, while Knative scales more efficiently
by reusing containers. Analysis of the regression slopes indi-
cates Knative can reduce overall execution time by up to 30%
compared to Docker.

C. Scaling

Serverless computing offers significant advantages when
integrated with workflow managers, particularly in terms of
scalability. Unlike traditional infrastructure, serverless plat-
forms can automatically scale resources up or down based on
the current workload, ensuring optimal resource utilization.
This dynamic scaling capability is especially beneficial for
scientific workflows that often have varying computational
demands across different stages. Workflow managers can
leverage this dynamic scale to efficiently handle bursts of
activity or periods of low demand without manual intervention.
This scalability, combined with the ease of deployment and
management, makes serverless an attractive option for enhanc-
ing the performance and efficiency of workflow management
systems in scientific computing environments.

Our experiment demonstrates how Knative, a serverless
platform, can process parallel tasks more efficiently than
traditional container execution on HTCondor.

We designed a workflow consisting of multiple parallel ma-
trix multiplication tasks, leveraging our integration of Pegasus
and Knative. This integration was crucial for the experiment,
as attempting to run concurrent Knative tasks without HT-
Condor’s queuing ability caused the virtual machine to crash.

Additionally, HTCondor provided the necessary queuing and
scheduling capabilities for managing many concurrent tasks.

Figure 2 illustrates the results of our experiment, comparing
the execution time of native, Knative, and container-based
approaches as the number of parallel tasks increases. The plot
reveals that Knative scales more efficiently than traditional
containerized execution on HTCondor, especially as the task
count grows.

This performance advantage stems from two key factors.
First, Knative allows multiple tasks to be co-located within
the same container, reducing overhead associated with con-
tainer creation and destruction. Second, Knative’s automatic
scaling functionality dynamically creates new containers and
distributes them across worker nodes when a single container
cannot service all concurrent tasks efficiently.

The linear regression lines in the plot quantify these dif-
ferences. Native execution shows the lowest slope (0.28),
followed closely by Knative (0.30), while container execution
on HTCondor has a significantly steeper slope (0.96). This
indicates that as the number of parallel tasks increases, the
execution time for Knative grows at a rate similar to native ex-
ecution, while traditional containerized execution experiences
a much faster increase in execution time.

These findings highlight the potential of serverless platforms
like Knative to optimize the execution of highly parallel work-
flows in HPC environments. By efficiently managing container
resources and automatically scaling to meet demand, Knative
offers a promising solution for improving the performance of
scientific workflows with large numbers of concurrent tasks.

12000 { T
e native
y = 0.28x + 65.35, Rz = 1.000
10000 knative
y = 0.30x + 72.37, Rz = 1.000
8000 1 e container
y = 0.96x + 61.99, Rz = 1.000 ®
a
» 6000+
£
=
4000 o
©
20001 P +
Y &
o -
0 |- M.

6000 8000 10000 12000

of Tasks

2000 4000
Fig. 2: Native execution scales best for parallel tasks, with
Knative close behind and traditional containerization slowest,
as evidenced by their regression slopes. This highlights server-
less computing’s efficiency in managing containers in parallel
workflows, performing much closer to native execution than
traditional containerization.

It is important to note that this speedup comes at the cost
of added workflow file management complexity. Since the
serverless function’s execution location is determined when
the function is invoked, the workflow can’t know where to
move the file to. To enable the function to access the input

2099

files for the task, the files need to be stored in a location that
is accessible to the function, such as a shared file system.

IV. PROTOTYPE IMPLEMENTATION

Unlike previous approaches that developed custom solutions
for workflow management systems to address container chal-
lenges [4], this paper advocates using serverless platforms for
container management. We specifically looked at integrating
Pegasus and Knative. Knative is attractive because it simplifies
container orchestration and provides serverless functionality
for dynamic resource provisioning. We demonstrate this ap-
proach by transforming Pegasus workflow tasks into container-
ized functions managed by Knative. To accomplish this, we
addressed several key challenges:

1) Task Containerization and Registration: We devel-
oped a method to containerize tasks and register them
with Knative prior to workflow execution. This process
involves encapsulating tasks in HTTP event listeners and
registering them with Knative before the workflow runs.
The task registration with the serverless system was done
manually before the execution of the workflow.
Container Provisioning: Our system utilizes Knative’s
capabilities for efficient container management and dis-
tribution. During function registration, Knative provi-
sions pods that download the necessary containers to
the assigned nodes. Users can customize this process by
setting the fields in the function registration metadata,
“autoscaling.knative.dev/min-scale” to specify the num-
ber of worker nodes that should download the container
ahead of time. Setting “autoscaling.knative.dev/initial-
scale” to zero defers container downloads until a task is
actually invoked on a worker, this would be similar to
how Pegasus passes the container to the worker node at
the time of execution of the job

File Management in Serverless: To ensure container-
ized tasks can access their input files, we implemented
a strategy where input data is sent in the function in-
vocation as part of the invocation network request. This
evaluation strategy is similar to a pass by value when
making a function call. Output data is similarly returned
from the serverless invocation call. The resulting output
is then written to a file by the wrapper script that is the
replaced job in the executable workflow.

Transparent Task Invocation: We modified the work-
flow to invoke the containerized functions via network
requests, synchronously waiting for completion. This
involved replacing the original task in the executable
workflow with a new task that invokes the pre-registered
container in Knative, passing the same parameter by
value to invoke the serverless function. The critical path
of execution now has been extended as a wrapper task
is now scheduled by HTCondor onto a worker node and
that worker node will synchronously send a request to
the serverless function. In the case of large data, inputs
if the serverless invocation is scheduled on a different
worker node redundant data movements occurs from the

2)

3)

4)

submit node, to the first worker node and then to the
execution node of the serverless invocation.

V. EXPERIMENTAL METHODOLOGY
A. Software & Hardware Configuration

Our experimental setup consists of a cluster of four virtual
machines. Each VM is equipped with 8 cores and 32 GB
of RAM. The CPUs used are Intel(R) Xeon(R) Gold 6342
processors running at 2.80GHz. One VM serves as the submit
node for Condor and hosts the Kubernetes control plane.

The software configuration for our study includes several
key components. We utilize Pegasus version 5.0.7 for work-
flow management. The distributed computing environment
is managed by HTCondor version 23.8.1 (BuildID: 742100,
PackageID: 23.8.1-1.1). For container orchestration, we em-
ploy Kubernetes, with both the client and server running
version v1.30.3. Knative, used for serverless deployments, is
at version controller@sha256:2948cacc3. Our computational
analysis is primarily conducted using Python version 3.10.12,
with NumPy version 2.0.1 providing essential numerical com-
puting capabilities.

B. Workflow Configuration

The computational task for each step involves matrix multi-
plication of two 350 x 350 matrices. These matrices are stored
on disk and contain integers ranging from -100 to 100. The
output of each task is another 350 x 350 matrix, which then
serves as input for the subsequent task in the workflow.

O—>0—> -+ - —0
(. J

Y
10 jobs

Fig. 3: This illustration depicts a single instance of a workflow
used in our experimental evaluation. The workflow comprises
a series of sequential jobs, each performing a matrix multipli-
cation. These jobs are executed in one of three environments:
natively on a worker node, within a container on a worker
node, or in a container using the serverless platform.

O—>0—> -+ - —>0 Y

Concurrent
workflows

>

O—>0—> -+ - —>0 J

Fig. 4: A set of concurrent workflows each a sequential
workflow shown in Figure 3.

2100

C. Execution Environments

Our study compares serial workflows with matrix multipli-
cation tasks across different execution platforms. We imple-
ment the task in three distinct execution contexts:

« Setup 1: native execution in Pegasus;

o Setup 2: traditional containerized execution in Pegasus;

o Setup 3: Knative-based serverless execution.

The task structure remains consistent across platforms: reading
two input matrices from disk, performing matrix multipli-
cation, and writing the result back to disk. Each workflow
consists of 10 matrix multiply tasks, as shown in Figure 3.
The distribution of tasks among these platforms is determined
randomly before initiating the 10 workflows, ensuring a di-
verse mix of execution environments for the total 100 tasks.
One instance of this experiment is graphically illustrated in
Figure 4.

In Setup 1, natively executed tasks read two input matrices
from disk, compute the result, and write the output matrix back
to disk. In Setup 2, tasks are encoded as transformations in
the Pegasus workflow with the container parameter set. These
transformations are integrated into the workflow as a Job with
two input files and one output file.

For Setup 3, we use Flask [11] to wrap the matrix multi-
plication task in an HTTP event listener. Tasks executed via
Knative consist of two components: the original task wrapped
in a Flask HTTP event listener, and a Python script that sends
an HTTP event to invoke the task. The invocation script is
encoded in Pegasus as a Transformation, replacing the pre-
viously containerized Job in the workflow. The containerized
application is deployed on Knative before workflow execution.

We conduct experiments in two scenarios: containers dis-
tributed to workers, created and run before workflow ex-
ecution, and containers distributed but not created before
workflow execution. In the first scenario, we configure Knative
to allow multiple requests per container, enabling container
reuse across workflow requests.

For comparison, we implement traditionally containerized
tasks in Pegasus. These requests are encoded in Pegasus
as Transformations with the container dependency set. The
associated container images contain the same Python code as
the native tasks and are accessible via DockerHub.

D. Performance Metric

Our primary performance metric is the average execution
time of the slowest workflow among the 10 concurrent runs.
This approach allows us to assess the impact of different
execution environments on overall workflow completion time.

E. Key Observations

Our study builds on prior research that underscores the sig-
nificance of container technologies in workflow management.
We analyze Pegasus’ container implementation and propose
using Knative to achieve similar container distribution with
greater flexibility. By adjusting Knative’s autoscaling parame-
ters, users can precisely control when containers are deployed.
Setting the “autoscaling.knative.dev/initial-scale” parameter to
0 defers container downloads until task invocation, while a

Strong Isolation
Weak Performance
380

360

340

320

300

Average Execution Time (seconds)

20

280

0 10 30 40 50 60 70 80

260

No Isolation
Best Performance

Weak Isolation

Weak isolation for best performance
Good Per

Fig. 5: Performance-isolation trade-off in concurrent work-
flow execution. The triangle illustrates how native execution
achieves the best performance without isolation, individual
containers offer strong isolation at a performance cost, and
serverless containers balance good performance with weak
isolation through container reuse.

Categories
All Native

Half Native, Half Knative
All Knative

Half Native, Half Container
All Container

Average Wall Time (s)

100

Fig. 6: Average makespan of five highlighted combinations
from Figure 5, illustrating the trade-off between gaining per-
formance isolation through containers and achieving better
performance.

non-zero setting allows for pre-deployment before workflow
execution. A challenge in adopting serverless computing for
workflow container orchestration is managing files and speci-
fying task execution locations. We address this by embedding
file data in the network requests that invoke Knative tasks.
Alternative strategies include using a storage service like
Minio [12] or making files network-accessible from the submit
node. In our approach, input and output files are transferred
via network requests, streamlining data handling within the
serverless framework.

VI. EXPERIMENTAL EVALUATION

Our results demonstrate that by reusing containers in Kna-
tive, we achieve performance close to native execution while
benefiting from container isolation. When running multiple

2101

tasks concurrently within the same container, we observe better
performance compared to running one task per container in
Knative.

Knative enables us to achieve various points along the spec-
trum between execution time and performance isolation using
containers for each task. This performance benefit is achieved
by reusing containers for multiple tasks (both concurrently and
between different stages) and taking advantage of Knative’s
automatic scaling of containers.

Figure 5 illustrates this trade-off in a ternary plot. The
topmost point represents the average makespan of the slowest
workflow when all tasks run in separate containers, providing
strong isolation. The bottom-left point shows the execution
time when all tasks run in Knative containers, allowing only
one request per container at a time but reusing the container
structure for subsequent tasks. The bottom-right point repre-
sents workflows where all tasks run natively, achieving the best
performance but lacking isolation. The makespan for each of
the points that are highlighted in the figure are shown explicitly
in figure 6.

The bar chart depicts five execution scenarios and their
corresponding times. The fastest average makespan occurs
when all tasks run natively in Pegasus, shown by the blue
bar at 250 seconds. The second fastest scenario, represented
by the orange bar, involves half of the tasks running on
Knative and half running natively. The green bar represents all
tasks running on Knative, achieving a performance of 1.08x
times native execution. The red bar shows half the tasks in
containers in Pegasus and half natively. The slowest execution,
represented by the purple bar, occurs when all tasks run in
traditional containers.

These figures highlight the performance benefits of using
serverless computing for container reuse and scaling. The
primary reason for the improvement is that containers do
not need to be transferred to the execution node before each
task, as Knative can cache and quickly create containers prior
to execution and since Knative is able to keep a container
between the execution of multiple tasks no container creation
or destruction happens.

Through this experiment, we demonstrate that Knative
offers a flexible middle ground, allowing users to balance
performance isolation and execution efficiency according to
their specific needs. These findings suggest that careful con-
tainer management and task allocation can lead to significant
performance improvements in scientific workflows, potentially
achieving both the benefits of containerization and perfor-
mance comparable to native execution.

VII. RELATED WORK

Previous research has explored the integration of con-
tainers with scientific workflows to enhance reproducibility,
portability, and performance. Moreau et al. [2] emphasize
the importance of creating consistent software environments,
particularly within complex, collaborative projects. They offer
practical recommendations for implementing containerization
across diverse scientific fields and high-performance comput-
ing clusters. Sweeney and Thain [13] identified key chal-

lenges in incorporating containers into scientific workflows
and proposed dynamic composition and image translation
strategies to optimize network usage and runtime efficiency.
Vahi et al. [14] highlight the challenges of using containers in
distributed workflows and discuss Pegasus’s container support.
Zheng and Thain [4] investigate integrating containers into
workflow systems using Makeflow, Work Queue, and Docker,
exploring performance implications and container manage-
ment strategies. Burkat et al. [15] evaluate the use of serverless
containers for scientific workflows using AWS Fargate and
Google Cloud Run, demonstrating their potential for running
scientific applications. Basu Roy et al. [16] introduce Mashup,
a hybrid approach combining serverless and traditional cloud
computing for executing HPC workflows, achieving significant
performance and cost improvements. Bruel et al. [17] argue
that with the advent of HPC & AI and its use of accelera-
tors, serverless provides a layer of abstraction that simplifies
resource sharing for accelerators by allowing for fine-grained
allocation.

While these studies provide valuable insights into container-
ization and serverless computing in scientific workflows, our
work distinguishes itself by focusing on the integration of Kna-
tive with Pegasus to optimize workflow execution, leveraging
Knative’s unique strengths in event-driven orchestration and
elastic scaling capabilities.

VIII. CONCLUSION

Our research demonstrates the potential of integrating
serverless computing with traditional workflow management
systems to achieve a fine-grained trade-off between execution
time and performance isolation. By leveraging Knative’s con-
tainer management capabilities in conjunction with Pegasus,
we have created a system that allows workflow developers to
seamlessly incorporate containerized tasks into their scientific
workflows without modifying their existing workflow descrip-
tions.

This integration offers a range of options for balancing
execution time and performance isolation. On one hand, de-
velopers can prioritize execution speed by reusing containers
across multiple requests, approaching the efficiency of native
execution while still benefiting from container isolation. On
the other hand, they can opt for stronger isolation by using
fresh containers for each task, accepting a slight perfor-
mance cost. Between these two approaches lies a continuum
of options available to workflow developers. This flexibility
enables workflow developers to tune their workflows to the
specific requirements of their projects, whether they prioritize
execution time, performance isolation, or a balance between
the two. By providing this versatility, the integration empowers
developers to optimize their workflows according to their
unique needs and constraints.

Our integration approach offers a transparent solution for
workflow developers. By wrapping tasks in event listeners
and deploying them as serverless functions, we enable the
use of advanced container orchestration features without re-
quiring modifications to existing workflow descriptions. This
seamless adoption simplifies the integration of containerization

2102

and serverless computing in HPC workflows. However, it’s
important to note that this method introduces some redundant
data movement, as the scheduler must send input data to the
wrapper task before it reaches the invoked serverless functions.
While this study did not focus on measuring communication
requirements relative to previous methods, we recognize that
data movement is a critical component of scientific workflow
management systems. Our future work will include a compar-
ative study of the communication overheads associated with
our approach and existing methods. We are actively exploring
solutions to automate data movement and reduce manual
handling, aiming to further optimize workflow execution in
distributed environments.

As scientific workflows continue to grow in complexity
and scale, solutions that offer performance, ease of use and
flexibility will become increasingly important.

IX. FUTURE WORK

In addition to our primary research directions, we are
exploring different opportunities for integrating workflows and
serverless to achieve better resource utilization and perfor-
mance.

A. Comprehensive Workflow Evaluation

Our initial study uses a simple matrix multiplication work-
flow to isolate the effects of container orchestration and
integration with traditional workflow management systems.
While this approach provides valuable insights, we recognize
the need for a more comprehensive evaluation. In future
work, we plan to assess our serverless integration approach
using more complex and dynamic scientific workflows. This
expanded study will help validate the scalability and efficiency
of our solution across a broader range of real-world scenarios.

B. Automated Integration

We are exploring the automation of integration between
serverless architectures and scientific workflows, with a par-
ticular focus on streamlining the deployment, task rewriting of
container functions, and minimizing data movement between
traditional cluster and the integrated serverless system. This
approach aims to automate both serverless function registration
and workflow creation, potentially eliminating the need for
developers to make manual code changes to their workflow.

C. Task Resizing

Task sizing in workflows can significantly influence execu-
tion efficiency. When multiple tasks are combined into larger
units, resource allocators may face challenges in placing these
tasks effectively. Conversely, breaking tasks into finer-grained
components aligns well with serverless computing paradigms,
which excel at allocating resources for very small tasks.

If developers can successfully divide large tasks into
smaller, more manageable units without substantially increas-
ing inter-task communication and while leveraging parallelism,
it could lead to improved resource utilization and enhanced
performance across various workflows. This approach to task
sizing has the potential to optimize both the allocation process
and overall workflow execution efficiency.

D. Task redirection

Tasks can be scheduled onto compute nodes without full
knowledge of current utilization levels. This can lead to
situations where some nodes become overloaded while others
remain underutilized, resulting in inefficient resource usage
and slower overall workflow execution. Serverless computing
offers a promising solution to this challenge by enabling
dynamic and flexible task placement.

We plan to explore the idea of serverless redirection of tasks
away from over-utilized nodes at runtime. This approach has
the potential for improving resource utilization across the com-
pute environment and also increasing execution performance.

[1]

[14]

(17

REFERENCES

R. Ferreira da Silva, K. Chard, H. Casanova, D. Laney, D. Ahn,
S. Jha, W. E. Allcock, G. Bauer, D. Duplyakin, B. Enders, T. M.
Heer, E. Lancon, S. Sanielevici, and K. Sayers, “Workflows community
summit: Tightening the integration between computing facilities and
scientific workflows,” 2022.

D. Moreau, K. Wiebels, and C. Boettiger, “Containers for computational
reproducibility,” Nature Reviews Methods Primers, vol. 3, no. 1, p. 50,
2023.

K. Liu, K. Aida, S. Yokoyama, and Y. Masatani, “Flexible container-
based computing platform on cloud for scientific workflows,” in 2016
International Conference on Cloud Computing Research and Innova-
tions (ICCCRI), pp. 56-63, 2016.

C. Zheng and D. Thain, “Integrating containers into workflows: A case
study using makeflow, work queue, and docker,” in Proceedings of the
8th International Workshop on Virtualization Technologies in Distributed
Computing, pp. 31-38, 2015.

O. Bentaleb, A. S. Z. Belloum, A. Sebaa, and A. El-Maouhab, “Con-
tainerization technologies: taxonomies, applications and challenges,” The
Journal of Supercomputing, vol. 78, pp. 1144-1181, Jan 2022.

R. Rosen, “Resource management: Linux kernel namespaces and
cgroups,” Haifux, May, vol. 186, p. 70, 2013.

“Kubernetes,” 2014. https://kubernetes.io/ [Accessed: 05.08.2024].
“Knative: Kubernetes-based platform to build, deploy, and manage mod-
ern serverless workloads.,” 2014. https://github.com/knative [Accessed:
05.08.2024].

C. Schmitt, B. Yu, and T. Kuhr, “A workflow management system guide,”
2023.

E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F. da Silva, G. Pa-
padimitriou, and M. Livny, “The evolution of the pegasus workflow
management software,” Computing in Science & Engineering, vol. 21,
no. 4, pp. 22-36, 2019.

M. Grinberg, Flask web development: developing web applications with
python. ” O’Reilly Media, Inc.”, 2018.

MinlO, Inc., “MinlO: High Performance Object Storage.” https://min.io/,
2024. Accessed: [Insert access date here].

K. M. D. Sweeney and D. Thain, “Efficient integration of containers into
scientific workflows,” in Proceedings of the 9th Workshop on Scientific
Cloud Computing, ScienceCloud’ 18, (New York, NY, USA), Association
for Computing Machinery, 2018.

K. Vahi, M. Rynge, G. Papadimitriou, D. A. Brown, R. Mayani,
R. Ferreira da Silva, E. Deelman, A. Mandal, E. Lyons, and M. Zink,
“Custom execution environments with containers in pegasus-enabled
scientific workflows,” in 2019 15th International Conference on eScience
(eScience), pp. 281-290, 2019.

K. Burkat, M. Pawlik, B. Balis, M. Malawski, K. Vahi, M. Rynge,
R. F. da Silva, and E. Deelman, “Serverless containers — rising viable
approach to scientific workflows,” in 2021 IEEE 17th International
Conference on eScience (eScience), pp. 4049, 2021.

R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Mashup: making
serverless computing useful for hpc workflows via hybrid execution,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 46—60, 2022.

P. Bruel, S. R. Chalamalasetti, A. Dhakal, E. Frachtenberg, N. Hogade,
R. P. H. Enriquez, A. Mishra, D. Milojicic, P. Prakash, and G. Rattihalli,
“Predicting heterogeneity and serverless principles of converged high-
performance computing, artificial intelligence, and workflows,” Com-
puter, vol. 57, no. 1, pp. 136-144, 2024.

2103

