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It is challenging for developers to determine the right
hardware configurations for training a model with RL: dur-
ing training, the CPUs interact extensively with the GPUs,
and GPU efficiency may depend on the CPU. If an insuffi-
cient number of CPUs are provisioned, the GPU will have to
wait for the CPU during the sampling process. On the other
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CPUs/GPUs are provisioned, then they must pay for this.
Existing tuners for RL like Ray tune don’t model the capital
cost, and it requires developers to define the search space,
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1.6X more training time compared to the optimal. Moreover,
it can generate a configuration with 1.3X cost compared to
minimal resource configuration each round.

The challenge of resource configuration intensifies when
considering serverless, a new cloud paradigm suitable for
training RL models [19, 20]. Specifically, in serverless com-
puting, the CPU can be provisioned on-demand to save costs
when the job is idle, such as when waiting for the GPU to fin-
ish. However, serverless introduces factors such as cold starts,
making performance modeling and configuration harder.

In this paper, we present SERAPH, a tuner for tuning hard-
ware configurations for training models with RL. Instead of
requiring the user to provide the search space, we directly
model the performance of RL training, inspired by recent
works on hardware configurations for the cloud applica-
tions [8, 21]. The modeling is based on two observations.
First, RL training algorithms have a phase-to-phase pattern,
which we can clearly decompose the interaction. Second, we
can model the variability via stochastic variables through
Monte Carlo sampling. Based on the model, we can add the
cost constraint to solve the model’s Pareto front [3]: the
hardware configuration within the cost bound that has the
best performance. The problem can be quickly solved by
leveraging its convexity.

We have implemented SERAPH on Ray. Compared to the
Ray Tune, the default hardware configuration tuner in Ray,
we can find the optimal performance hardware configuration
71% faster, without requiring developers to provide a search
space. Meanwhile, we can find a configuration within the
cost boundary, while the Ray Tune may generate a setup
that exceeds the budget.

In summary, our paper made the following contributions:

e We present the first systematic tuner for training RL.

o We first model the performance of training RL that
captures the relationship between hardware configu-
rations and the training performance.

e We implement SERAPH on Ray with extensive eval-
uations showing the accuracy of our model and the
effectiveness of the tuner.

2 Background and Motivation

RL training with serverless. Training an RL model dif-
fers from training traditional ML models. Data is generated
by sampling, e.g., playing a game with the trained model,
and then using the game result as the training data [15]. On-
policy reinforcement algorithms like PPO [14] have low CPU
utilization and waste user’s money, actors who sample the
training data have to wait for the learners to update policy.
The key pushing hands of running RL training with server-
less is two-fold. First, the number of actors needed changes
dynamically during the training process [4, 7, 12, 16, 20], so
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Figure 1: An illustration of distributed reinforcement
learning (RL) with serverless.
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serverless can quickly adjust the resources according to the
variance. Second, during training, the sampler’s CPU is free
when the GPU is running (Figure 1), so running the sampler
with serverless can save cost thanks to its pay-as-you-go
feature [19, 20].

Figure 1 presents the architecture of the training RL mod-
els with serverless, where we term the GPU that trains the
model the learner (The learners (GPUs) are provisioned in a
serverful way). The train is carried in iterations (rounds). Be-
fore starting a round, the system will spawn actors to sample
the data given the current trained model. Afterward, these
actors will be released to save costs.

Resource configuration for cost-efficient RL training,.
Configuring the number of resources (e.g., GPUs, CPUs) is
critical in training RL models [5, 9]. For example, allocat-
ing more GPUs or CPUs can improve the training efficiency.
However, more resources also increase the operational cost
when deploying applications on the cloud. For instance, train-
ing a model with 100 rounds with one actor to sample re-
quires 4500 seconds and 0.42$, while using 41 actors requires
about 1,000 seconds and 0.46$ .

Resource configuration and Pareto optimal. To enable
cost-efficient training, it is desirable to find the configuration
(e.g., the number of GPUs required, or the number of vCPUs,
see Table 1) that achieves the Pareto optimal [3] of training.
Specifically, the Pareto optimal is the minimal training time
given the cost boundary, as shown in Figure 2. Finding the

!Measured on Figure 2.
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configuration for Pareto optimal in training RL, however, is
challenging even without serverless. Specifically, it is hard to
model the configuration-to-performance relationship. First,
as Figure 3 shows, the sample time has variance due to the
randomness of the actor’s action. Second, the communication
time between actors and the server is relevant to hardware
configuration. Integrating RL with serverless further makes
the problem more complex because (1) The serverless infras-
tructure will add additional costs like cold start that needs
to be modeled and (2) the billing policy is more complex.

Existing works. The closest to our work is Ray Tune [11], a
tuning toolkit that uses a measurement-based search method
to find the best configuration given a (developer-provided)
search space. Specifically, Ray Tune requires developers to
provide a set of configurations (e.g., number of GPUs) to
search, and it will measure the performance of each configu-
ration to find the best one. Such a design has two limitations.
First, it cannot find the Pareto optimal of cost and perfor-
mance if the user passes an incomplete set of configurations,
which is the common case. Second, the search time is long
because it has to run each configuration to find the best one.

3 The design of SERAPH

Design goals. To facilitate developers finding the right
resource configuration for training RL models in a serverless
environment, we design SERAPH with the following goals:

e Automatic configuration generation: Unlike Ray
tune, we don’t require users to specify the search space.
SERAPH can automatically find the optimal configura-
tions for training RL models on serverless.

¢ Finding the resource configuration for Pareto op-
timal: We aim to find the configuration that considers
both the training efficiency and cost, i.e., Pareto opti-
mal.

Approach overview. SERAPH finds the optimal resource
configuration by solving the optimal parameters of the the
performance model of the RL training. Specifically, we derive
a performance model that models the training time concern-
ing the resources used. To use SERAPH to find the resource
configuration (the number of GPUs and CPUs to use), the de-
velopers only need to pass the cost constraint to the system,
and we solve the model to find the resource configuration
within the cost boundary, and with the best performance.
Compared with Ray Tune, developers don’t need to specify
the search space, and we can consider the cost by explicitly
modeling the cost in the model.

Challenge and solution. Our model needs to precisely
capture the relationship between the resources and the RL
training time. The challenge here is the training time is a
complex function of the resources since the CPU and GPU
interact in a complex way. Meanwhile, the execution has
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Table 1: Constant and variables to configure in training

Symbol Explanation Attribute
v vCPU number Solved

u GPU number Solved

m Training batch size Constant
a Cost for renting one vCPU/s  Constant
B Cost for renting one vGPU/s ~ Constant
Y Cost for renting one GB/s Constant
€ Cost for one serverless invoke Constant
Tinits Actor initialization time Variable
T; Transmission time Variable
T; Weight synchronization time  Variable
A;, B; Fitting parameter Parameter

variances due to factors like cold start and communication
time. We address this using stochastic variables to represent
the relationship between time and hardware configuration.

Second, we need to quickly find the optimal resource con-
figuration within the cost boundary. Finding the optimal
resource configuration in a naive performance model is time-
consuming. To this end, we simplify the model as a convex
optimization problem and use gradient descent to solve it
quickly.

3.1 The performance model

Observing that the RL training executes in phases sequen-
tially (Figure 1), our performance model characterizes the
performance of three sub-phases in one round of RL training
with respective to the resource: the sampling, training and
update phase. Besides, we also need to model the phase for
serverless initialization. We use T;,;ss to denote the serverless
function startup cost. Table 1 shows a full list of constants
and parameters solved with SERAPH, The parameter is a lin-
ear model’s parameters to profile sample time and training
time.
Model the sampling phase. The sampling phase includes
two parts: (1): Actor initialization. (2): Actor sampling. For
the initialization phase, we use a stochastic variable Tj,;;s to
represent the initialization time of the serverless function
and reinforcement environment. For the sampling phase,
assuming each actor is corresponding to one vCPU, batch size
is m, each actor will have 7' length data to sample. We use
a linear model to profile the relationship between sampling
time and data length x.

T, (x,i) = Ay *x + By (1)
In Equation 1, Ay, B; are random variables, we can fit them
using historical data.
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The total sample time 7T, will be the maximum time of
these actors:
m
1, :maX{Tinits(i)'*'Tr(;:i)}:i: 1...0 (2)
Model the training phase. The training phase includes
two parts: (1) data transmission (2) learner training. We use
a stochastic variable T; to represent the data transmission
time. Training data will be divided into u learners equally,
each learner is corresponding to one GPU. Let T,(y, i) be
the training time of learner i. The data length processed by
learner i is y, we still use linear model:

Tu(y,i) = Ay xy + By (3)

Similarly, A,, B; are stochastic variables, fitting with histori-
cal data. The training time T, will be the maximum time of
these learners:

T, =max{Tu(%,i)},i= 1...u (4)
Model the sychnoziation phase. After all the learners
have trained their data, the weights will be gathered and
sent to every actor, ready for the next iterations’ sampling,.
The synchronization time Ty is still a stochastic variable. The
end-to-end time T;,; will be the sum of these times.

Tior =T+ T, + T, + T (5)

Model the memory constraint. A serverless function typi-
cally has a memory limit. Assuming the memory limit corre-
sponding to each core is M,, and the GPU memory bound is
M,,. The memory usage of each actor and learner is M,, M;.
We need to ensure the memory usage does not exceed the
limit, i.e,M, < M,, M; < M,,. Luckily, most workloads use
few memory. For example, the memory usage of the sam-
pling Spacelnvader environment is about 1 GB, which is far
less than the 2 GB minimal function memory in the Alibaba
Cloud Environment.

The cost model. Finally, we need to consider the cost in our
model as a constraint, which is determined by the number of
CPUs and GPUs rented. Assume the average cost of renting
one vCPU is denoted by a per second, renting one GPU
server costs f per second, renting one GB of memory in
serverless costs y per second, and invoking a function incurs
a cost of € per invocation. a, f3, y, € are platform-specific and
hardware-specific, which remain fixed within a particular
cloud platform context. The total cost of the training task
O;os Will then be:

m m
Oror = (Z?:lTr(;:i) *a"'z?:lTr(;s i) Yk Mg *0 ©)

+vx€e)+Tor *
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3.2 Performance model simplification and
formulation

All stochastic variables T, T; can be determined after sam-
pling. Through multiple samplings in specific hardware con-
figurations, we use the average value of these variables to
replace these stochastic variables. For linear-regression pa-
rameters A;, By, Ay, and B,, we can fit them based on histor-
ical data. With these simplifications, the problem transforms
into a deterministic one:

Minimize Tio:

Oror <= Q, My £ My, Mj < M,
Q is a cost budget provided by the user/developer.

™)

s.t.

3.3 Convex optimizer

We observe that the optimization problem Equation 7 is
convex. Convex optimization problem has an important ad-
vantage, local extrema coincides with global extrema. We can
use a gradient descent algorithm to find the optimal solution.
Convex analysis. The convex optimization problem can be
quickly resolved using a gradient descent algorithm. Luckily,
Tior and Oy, are both convex functions in our setup. Due to
space limitations, we skip the detailed proof. At a high level,
because the maximum or sum of some convex functions is
still convex, we only need to prove T,(%, i) and T, (%}, i) are
convex. Ignore the i notation because it is irrelevant to the
whole convexity. Then we need to prove T, (v) and T, (u) are
convex.

T,(v) and T,(u) are convex because the Hessian matrix

are positive-definite. T; and T are fixed after sampling. So
Tior is convex. The polynomial item f(v) = v * € is convex
trivially, the multiplier @ and f are both positive, so Oy; is
also convex.
Solving the problem. Since the optimization problem is
convex, we employ a gradient descent algorithm for its solu-
tion. More specifically, we first apply the gradient descent
algorithm within the solution space until convergence is
achieved. The problem here is that the solved variables v
and u may be real, but they must be integer as they deter-
mine the resources needed for the RL training. Therefore,
we further enumerate the rounded solutions around the op-
timal solution given by gradient descent. We select some
integer hardware configurations around the optimal, calcu-
late the corresponding cost and performance and find the
configuration with the lowest training time under the cost
boundary.

4 FEvaluation

Implementaiton. We integrate our tuner into Ray 2.8.0 with
5547 LoC. It can serve as a drop-in replacement of the Ray
Tune. The integration mainly includes samplers to measure
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Figure 4: Effectiveness of SERAPH’s performance model for Spacelnvader

Table 2: Billing policy

Item Price ($) per second
1 vCPU core in SAE 7.095e-6
1 GB in SAE 1.773e-6
1 T4 GPU Server with 4 vCPUs 4.49¢-4
1 T4 GPU Server with 40 vCPUs 5.65e-4

Table 3: Mean average percentage error of prediction

Spacelnvader Breakout Beamrider Qbert

Sample 4.55% 3.93% 5.25% 3.59%
Training 0.66% 1.13% 0.72% 1.07%
End-to-End 2.51% 1.81% 2.06% 2.21%

the time taken to sample and train given the number of CPUs
and GPUs. Besides, it also includes a solver for finding the
configurations.

Evaluation setup. To show the effectiveness of our ap-
proach, we evaluate SERAPH on two testbeds on Elastic Com-
pute Service (ECS) and Serverless Application Engine (SAE)
of Alibaba Cloud—a major cloud vendor that supports server-
less. For evaluating the effectiveness of our performance
model, our testbed have a server with 4 X Nvidia Tesla V100-
SXM2-16GB GPUs. For evaluating the cost effectiveness, we
use a T4 GPU?.

Evaluated applications. We evaluate SERAPH by training
four typical RL applications (Spacelnvaders-v4, Qbert-v4,
BeamRider-v4, and Breakout-v4) from ALE [1]. We employ
the Proximal Policy Optimization (PPO) [14] algorithm—the
state-of-the-art method for training RL models. We use the
default hyperparameters of PPO in Ray [10].

4.1 Effectiveness of our performance model

To show the effectiveness of SERAPH’s performance model,
we gather data on the time taken for the sampling stage,
training stage, and end-to-end stage, then compare these
metrics with the predictions provided by SEraPH. Figure 4

2We were unable to rent the V100 GPUs on the Alibaba Cloud during these
evaluations.
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illustrates the actual time and SERAPH’s prediction about
Spacelnvader. The results of the other three applications are
not because of the space limit, whose results are similar. The
number of vCPUs are set to the number of actors. We can
see that our performance model has remarkable accuracy
in predicting the actual time. Specifically, Table 3 presents
the mean absolute percentage error (MAPE) across these
four environments. The end-to-end stage MAPE are 2.51%,
1.81%, 2.06%, 2.21% for these applications. BeamRider ex-
hibits slightly higher variance compared to the other three
environments in sample stage, since it has the highest action
space dimension, which introduces more randomness.

4.2 Comparison with Ray Tune

Performance. We compare the cost and training speed un-
der different tuned configurations of SERAPH and Ray Tune.
Figure 6a illustrates the cost and performance Pareto front
and prediction of SERAPH and Ray Tune. We set the cost
boundary as [0.399%, 0.40%, 0.44$] respectively, covering a
range of low and high cost. We also set the search space of
Ray Tune as vCPUs [5, 15, 30, 45, 60, 70] and GPUs [1, 2, 3,4].
We can see that Ray tune can search the best performance
configuration in this space but it neglects the cost boundary,
while SERAPH finds the configurations for the Pareto optimal
under each cost boundary.

Tuning time. Figure 6b further shows the execution time for
tuning. SERAPH find the same performance optimal with 71%
time reduction than Ray Tune, thanks to the more efficient
model-based sampling technique. The majority of execution
time of SERAPH is sampling phase, while the optimization
program solving time is about 10ms which can be neglected.

4.3 Cost-Performance pareto front

We calculate the cost and time of two strategies. First, we
train the model using one server with 40 CPUs. Second,
we train the model using one server with 4 CPUs and an
additional 40 vCPUs of serverless application engine (SAE).
Table 2 shows the billing policy. In the second strategy, the
startup, release time of SAE are free according to the policy.
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Table 4: Cost and performance of serverful and serverless in one round

Environment Serverful time (s) Serverful cost($) Serverless time(s) Serverless cost($)

Spacelnvader 10.97 0.0062 12.61 0.0048
Qbert 12.87 0.0073 14.77 0.0056
Breakout 12.90 0.0073 14.81 0.0058
BeamRider 12.88 0.0073 14.81 0.0059
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Figure 5: Cost and performance pareto front predicted by SERAPH in two strategies
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Figure 6: Comparison between SERAPH and Ray Tune

Figure 5 illustrates that training a reinforcement learning
model with a single high number of CPUs server is faster but
more expensive than training with a single low number of
CPUs server while utilizing serverless functions for sampling.
Mixed use can reduce the cost by at most 21.9% with the
training time increased by only 1.6s. This is because actors
in serverless functions will be released immediately and
not count for cost while incurring additional initial time
and network communication time. Thus, opting for a low
number of CPUs server and leveraging serverless functions
for sampling is advisable when developers have strict cost
constraints but more flexibility in time. The detail cost and
time are shown in Table 4.

5 Discussion

Generality of the work. All on-policy algorithms (like
PPO, A2C, A3C [13]) follow same phase-to-phase pattern.
Actors interact with learners synchronously in each round.
Our performance model and solving method can be directly
applied to any of them after setting hyperparameters and
re-profiling. For some off-policy algorithms like IMPALA [6],
the performance model should be modified since the training

100

phase is not dependent on the sampling phase but overlaps.
While the number of actors and learners still needed to be
configured wisely to get the most cost-efficient training, we
can develop a simulator to simulate the training time and
cost in this scenario. We leave these as our future work.
Handling memory-intensive workloads. ALE [1], Box2D
[2] and MuJoCo [18] environments consume a small amount
of memory which does not exceed the memory constraint
of a core in our measurement. For other memory-intensive
workloads, we can rent the minimal memory instance to run
an environment as an actor and scale the number of actors
by replica. The performance model can be constructed as
normal.

6 Conclusion

We present SERAPH, the first tuner that finds the hardware
configuration for training RL models with both high per-
formance and low cost. We demonstrate that configuration
tuning can be made feasible in RL training by modeling
the relationship between hardware and performance using
stochastic performance models. Moreover, solving for the
optimal parameters of such a model is tractable due to its
convexity. Compared to existing search-based tuners, our
model-based tuner is more accurate and can find the config-
uration more quickly.
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