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ABSTRACT
Serverless computing has gained significant traction for its ability
to streamline development workflows and optimize resource uti-
lization. However, ensuring optimal performance and isolation for
workloads in multi-tenant environments remains a critical chal-
lenge.

In this work, we identify the need for sandboxing mechanisms
to extend the tenancy model of Knative and enhance the security
and efficiency of multi-tenant serverless deployments. Existing
solutions like gVisor and kata-containers provide a level of isolation
but do not meet the requirements for allowing the execution of
untrusted workloads in a Knative cluster.

We consider the option of unikernels in serverless environments.
We build an end-to-end serverless system based on unikernels and
compare its performance and isolation characteristics to existing
sandbox solutions. Our initial findings demonstrate that existing
sandboxmechanisms exhibit significant overheads. On the contrary,
a unikernel-based solution offers a compelling balance between
performance and security, achieving identical response times to
generic containers.

CCS CONCEPTS
• Security and privacy → Information flow control; • Software
and its engineering;
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1 INTRODUCTION
The advent of serverless computing [13] marks a significant de-
parture from traditional approaches to application deployment.
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Developers are no longer responsible for managing and provision-
ing the underlying infrastructure of their services and applications.
Moreover, serverless computing promotes the transition of software
design from traditional monolithic architectures to more modular
and distributed architectures. According to the serverless paradigm,
an application consists of a set of small independent services, where
each performs a specific task and interacts with other services to
performmore complex functionalities. These services follow a state-
less, event-driven model, waiting for particular events, such as a
new connection, to trigger their execution. As a result, serverless
architectures can easily scale up or down services, on-demand, opti-
mizing resource utilization [23], leading to cost-efficient and highly
scalable solutions.

Serverless services are packaged, distributed, and deployed as
containers. Containers streamline the creation and distribution
of software components, by packaging the software code, along
with all the necessary libraries, dependencies, and configuration.
Additionally, they provide a lightweight virtualization solution for
the execution of a service, enhancing resource utilization.

Nevertheless, containers share the same operating system (OS)
kernel; therefore, compromising one container could impact the
security of other containers running on the same host. Numerous
CVEs related to privilege escalation, where a malicious user can
break out of the isolation boundaries of a container, appear every
few weeks in Security Advisory Bulletins [20]. Consequently, the
need for stronger isolation guarantees becomes crucial [24] to pre-
vent security breaches and unauthorized access between containers.

Due to the loose isolation of containers, the industry is actively
exploring and adopting more robust isolation mechanisms in order
to enhance the security and reliability of multi-tenant containerized
environments. Technologies such as gVisor [12] or Kata Contain-
ers [15], provide enhanced isolation [22] without sacrificing the
benefits of containerization. They use additional software barriers
and/or more traditional virtualization technologies, such as light-
weight Virtual Machines (microVMs) to isolate each container. Such
approaches aim to strike a balance between the efficiency of con-
tainers and the robust isolation required for secure and compliant
multi-tenant environments.

On the other hand, the additional layers for enhancing isolation
lead to higher resource overheads [25] than containers. Encapsulat-
ing an entire operating system within each microVM contributes to
higher memory and storage consumption. Additionally, the startup
times of microVMs can no longer compare to the rapid instantiation
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of containers. In particular, the slow spawn time of microVMs im-
poses an essential trade-off for serverless platforms since it affects
flexibility and scalability.

In an effort to reduce microVMs’ overhead, researchers and en-
gineers are working on slimming down and optimizing the guest
OS. Ideally, the guest OS should contain only the necessary com-
ponents for the proper functionality of the service. Indeed, a fairly
new concept in OS, called unikernels [17, 18], could provide a viable
solution. Unikernels are lightweight and specialized Operating Sys-
tems designed to run a single application, providing a minimal and
efficient runtime environment. However, although there have been
considerable attempts to integrate unikernels into the cloud-native
ecosystem [5, 9, 16], widespread adoption is still underway.

In this work, we examine and evaluate existing virtualization
technologies in serverless environments. In addition, we design and
implement an end-to-end serverless architecture based on uniker-
nels. Moreover, we introduce a novel sandboxing mechanism for
serverless environments, separating the user-provided code from
the platform-specific stack. For that purpose, we integrate generic
containers and unikernels in our custom-built unikernel container
runtime, urunc [4]. Our contribution is two-fold:

• First, we provide hardware-enabled isolation (through virtu-
alization) between the user function (user-container) and the
Knative stack (queue-proxy container) while letting them
co-exist in the Knative Function Pod.

• Second, we reduce the Service Response Latency, by packag-
ing the user function in a unikernel.

To validate our approach, we evaluate the response times of Kna-
tive services on a number of scenarios. We customize kperf, a tool
provided by the Knative software stack to capture results, compar-
ing the deployment of Knative services as generic containers, sand-
boxed containers and unikernels. We use gVisor, kata-containers,
and our custom-built unikernel container runtime (urunc) as sand-
boxing mechanisms. We focus on initial instantiation (cold-boot)
and discuss the benefits of each approach.

The rest of the paper is organized as follows: Section 2 introduces
the architecture of a typical serverless system. Section 3 outlines the
motivation of our work, while Section 4 explains how we integrate
unikernels in serverless. In Section 5, we discuss the experiment
setup, while in Section 6 we presents the evaluation scenarios and
the results we capture. Section 7 concludes, presenting our plan
and next steps.

2 SERVERLESS ARCHITECTURE
This section briefly presents the basic blocks of a serverless archi-
tecture. In particular, we provide background for Kubernetes (K8s),
which acts as the orchestrator, and Knative, a popular serverless
framework based on K8s.

2.1 Kubernetes
Kubernetes (K8s) [6] stands as the preeminent open-source con-
tainer orchestration platform that plays a pivotal role in the seam-
less deployment and management of containerized applications,
including services in serverless architectures. At its core, K8s au-
tomates container deployment, scaling, and operation, providing
a robust infrastructure for building, running, and orchestrating

Figure 1: Building blocks of the Knative architecture

distributed systems. In serverless deployments, K8s serves as a
foundational layer for container orchestration, efficiently manag-
ing the life-cycle of micro-services and serverless functions. Its
ability to dynamically scale workloads, handle fail-overs, and op-
timize resource utilization aligns seamlessly with the ephemeral
nature of serverless computing,

The architecture of K8s consists of several vital components that
manage containerized applications across a cluster of nodes. At its
core is the API server, scheduler, and controller manager. The API
server acts as the front end for the K8s control plane, processing
API requests and serving the K8s API. The scheduler assigns work-
loads to nodes based on resource availability, while the controller
manager oversees cluster state maintenance. On the worker nodes,
the kubelet acts as an agent between the control plane and the con-
tainer runtime, which executes the containers inside pods. A Pod
is the smallest deployable unit in the K8s ecosystem, representing
one or more containers that share storage and networking.

2.2 Knative
Knative is an extension to K8s that specifically targets the needs
of serverless workloads. It provides an additional abstraction layer
and automation for deploying and managing serverless functions
or applications. Knative enhances a K8s platform with higher-level
abstractions and tooling tailored for serverless computing. Knative
abstracts away much of the manual configuration and management
tasks, offering a developer-friendly experience.

A key feature of Knative is scale to zero, meaning that resource
allocation for a service occurs after its invocation. Knative will au-
tomatically release the service’s resources when a service becomes
idle. This feature aligns closely with the serverless computing par-
adigm, where resources are allocated on demand, contributing to
cost efficiency and optimal resource utilization.

Knative introduces the concepts of serving and eventing; Knative
serving facilitates the management and deployment of serverless
containers, whereas eventing facilitates event-driven workflows.
Figure 1 showcases the high-level architecture of Knative. The basic
building blocks, along with their functionality, are: (a) the Activator,
which starts or stops pods in response to incoming requests to a
Knative Service; (b) the Autoscaler, which manages the dynamic
scaling of Knative Services based on demand; (c) the Queue Proxy,
which coordinates the flow of requests to and from the Knative
Service. It also communicates with the Autoscaler and Activator
to manage the lifecycle of pods; (d) the Controller, which manages
the lifecycle of Knative services, including creation, updating, and
deletion; (e) the Metrics Server, which collects and exposes metrics
related to the performance and behavior of Knative services.
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Knative’s threat model [14] is a work-in-progress document de-
velopers consult to determine the severity of a reported exploit.
Based on the tenancy model currently in use in the K8s ecosys-
tem [3], Knative assumes a single-tenant per cluster (Clusters as a
service) as its security model. The project does not consider itself
secure for the other tenancy options: Namespaces as a service, or
Control planes as a Service. This option severely limits the appli-
cability of Knative, as, for instance, a serverless provider willing
to use Knative should expose a dedicated control plane for each
tenant willing to submit arbitrary workloads to the underlying
infrastructure.

3 MOTIVATION
In this section, we outline the motivation behind our work. Specifi-
cally, we briefly describe the existing container sandboxing mecha-
nisms and highlight how our approach extends single-/multi-tenant
assumptions.

As mentioned in Knative’s threat model, the mitigation for al-
lowing users to submit untrusted workloads to a Knative cluster is
enhanced isolation mechanisms. Container runtimes, such as Kata-
containers and gVisor, provide such mechanisms by using VM-based
isolation for containers.

kata-containers. Kata Containers is an open-source container
runtime project designed to combine containers’ lightweight and
fast startup characteristics with the strong isolation of virtual ma-
chines (VMs). Kata Containers achieves this by using lightweight
VMs to encapsulate each containerized application. These light-
weight VMs offer a more secure boundary between containers
while preserving the agility and efficiency of traditional container
runtimes.

gVisor. gVisor is an open-source container runtime that provides
lightweight and secure container isolation. Developed by Google,
gVisor offers an additional layer of security by implementing a user-
space kernel between the containerized application and the host
operating system. This user-space kernel acts as a boundary for
containers, ensuring that all system calls made by the container are
intercepted and processed within the user space rather than directly
interacting with the host kernel. This approach enhances security
by isolating containers from the underlying host operating system,
making it suitable for running untrusted workloads in multi-tenant
environments.

Figure 2: Application execution flow on K8s, using kata

Figure 3: Isolation boundaries for a Knative Pod with kata

The sandboxing mechanisms mentioned above have native inte-
gration with CRI and, thus, can provide their functionality to K8s
Pods, the smallest unit of reference in the K8s object model. Creat-
ing containers inside a K8s pod does not differ between generic and
sandboxed container runtimes. In particular, the pause and applica-
tion containers co-exist inside the sandbox. Figure 2 visualizes the
setup of containers in a K8s Pod using Kata-containers. The setup
is the same in the case of gVisor, as well.

However, the VM-based sandboxing mechanisms induce signifi-
cant overhead in the instantiation times of containers. Slow spawn
times reduce the responsiveness and the scalability of a serverless
system. On the other hand, Therefore, there is a trade-off between
isolation and performance in serverless computing. Our proposal,
aims to eliminate this trade-off, providing VM-based isolation, while
maintaining fast spawn times.

In addition, while sandboxing mechanisms like gVisor or Kata-
containers reduce the exposed attack surface of the rest of the
system, they do not address a potential vulnerability in the Kna-
tive stack. In particular, kantive’s queue-proxy co-exists with the
untrusted workload: the user-submitted workload, packaged in the
user-container inside a sandbox Figure 3 illustrates the coexistence
of queue-proxy with user-container. In an effort to address the afore-
mentioned potential vulnerability, we change the design of Knative,
by separating the queue-proxy container from the user-container

4 UNIKERNELS FOR SERVERLESS
This section presents our approach on using unikernels for server-
less architectures and, in particular, the mechanism to separate
user-submitted code (the user-container) from the platform’s soft-
ware stack (the queue-proxy container).

4.1 Unikernels
Unikernels are specialized single-address space operating systems
designed to run a single application, providing a minimal and effi-
cient runtime environment. Unlike traditional operating systems
that support a wide range of applications and services, unikernels
include only the essential components necessary for a specific work-
load. As a result, unikernels achieve a small memory and storage
footprint. Moreover, by design, unikernels significantly reduce the
attack surface too. The small attack surface and strong VM isola-
tion minimizes the impact of security vulnerabilities and reduces
the risk of exploitation. Unikernels represent a paradigm shift to-
wards lightweight and specialized runtime environments, offering
security, efficiency, and performance benefits.

Due to their near-instant spawn times, unikernels support rapid
scaling and elasticity, aligning well with dynamic and on-demand
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computing paradigms. Moreover, efficient provisioning and de-
provisioning resources make unikernels suitable for scenarios
where workloads fluctuate. All these characteristics make uniker-
nels an attractive solution in scenarios where fast application de-
ployment and responsiveness are critical, such as serverless com-
puting.

4.2 urunc

Figure 4: Application executionmodes for generic containers
(top left), gVisor sandbox (bottom left), kata-containers (top
right) and urunc (bottom right)

urunc is a custom-built, low-level container runtime that can
spawn unikernels. urunc complies with OCI1 and expects OCI-
compatible images that contain a unikernel binary. urunc leverages
a unique feature of unikernels: Unikernels are self-contained; an ap-
plication runs along with its library and OS dependencies as a single
address-space VM image, combining the systems and application
software stack. Therefore, urunc maps each application/unikernel
to a single container, thus, enabling direct management of appli-
cations from the container runtime itself. Figure 4 visualizes the
sandboxing properties of urunc, along with existing container run-
times (generic and sandboxed).

4.3 Unikernels and Knative

Figure 5: Unikernel execution flow on K8s, using urunc

A key aspect of urunc is the separation of containers from uniker-
nels. In particular, urunc determines the type of the container using
OCI annotations. Depending on the type of the container, urunc
either handles the spawning by itself or forwards the request to
a generic container runtime (e.g., runc). In that way, urunc can
seamlessly integrate with K8s, allowing generic container runtimes
1OCI stands for Open Container Initiative, an open governance structure to create
open industry standards around container formats and runtimes.

to handle platform-specific containers. We visualize the execution
flow of spawning containers with urunc over K8s in Figure 5.

Figure 6: Isolation boundaries for a Knative Pod with urunc

We exploit the inherent separation of containers within the same
pod that urunc offers by spawning the queue-proxy container as
a generic container. In contrast, the user-container is a unikernel.
Figures 3 and 6 visualize the isolation boundaries for a Knative
Function Pod, deployed on a bare-metal K8s, over kata-containers
and urunc.

Such a design facilitates the complete separation between the
platform stack and the user’s function.Moreover, the user’s function
executes inside a unikernel, minimizing the attack surface and
inheriting strong VM-based isolation from the rest of the stack. As
a result, we can significantly reduce the exploiting capabilities of
malicious parties.

Although the merits of unikernels have already been quantified
in serverless frameworks [7, 8, 19, 21], to the best of our knowledge,
there has been no cloud-native integration with popular, state-of-
practice tools such as k8s and Knative.

5 EXPERIMENT SETUP
In this section, we describe the experiment scenario, elaborate on
the aspects of the software stack we benchmark, and present the
experimental tests, as well as the tools we used for capturing the
results.

5.1 Knative setup
We focus our setup around Knative Serving, the Knative compo-
nent designed for deploying and managing serverless applications.
Knative Serving introduces concepts like Services, which represent
serverless applications, and Revisions, which represent different
versions of those applications. Knative Serving’s autoscaling ca-
pabilities ensure dynamic resource allocation based on incoming
traffic, optimizing efficiency and cost. We chose to focus on Knative
Serving for simplicity. The benefits of function isolation through
sandboxing and fast spawn times through unikernels would also
apply equally to Knative Eventing.

Our setup includes a generic Knative installation on a bare-metal
K8s cluster. We pin services to a single node to avoid network noise.
Essentially, we create Knative Services and we evaluate: (a) service
response times, (b) the degree of scaling, and (c) the maximum num-
ber of containers (generic or sandboxed) the host can sustain. To
generate the requests needed for function spawning and to capture
the measurements that refer to the above evaluation parameters,
we customize the default benchmark tool of Knative, kperf.
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Figure 7: Request servicing on Knative (cold instantiation)

5.2 kperf
kperf is a tool designed for Knative benchmarking. It helps gener-
ate workloads for Knative services and gives measurement results
about the duration of resource creation based on server-side times-
tamps. As kperf was initially designed for scale and load tests, we
had to customize the tool to account for our specific experiment
parameters: 1:1 mapping Knative does not distinguish multiple in-
stances of the same function. As a result, when scaling to more than
one instance of a specific function, we could not verify that separate
functions are handling requests. custom HTTP headers kperf points
to a specific function hostname (e.g., service.svc.local) that,
via DNS (local or remote), is resolved to the ingress controller of
the k8s cluster, which, in turn, forwards the request to the specific
endpoint of the service function. To reduce the networking/DNS
resolving noise from the measurements, we bypass this by adding
the particular service function hostname as an HTTP header in
the request. timeouts addition kperf sends HTTP requests to end-
points/services to spawn the desired serverless workloads. Despite
that, it does not provide a timeout option. So, when pushing the
limits of the nodes, responses can be quite expensive in terms of
latency, slowing down the testing workflow.

5.3 Knative Service Function
To reduce compute and network noise, we consider a simple HTTP
reply function [1, 2] as the application.

Figure 7 visualizes the steps that comprise the service latency
measured in a sequence diagram, presenting the interaction of
individual components, as well as the time spent at each part of the
flow: (1) kperf issues the request that reaches the ingress controller,
(2) the request traverses the networking stack of Kubernetes and
reaches the activator, (3) the activator triggers the deployment of a
function pod, (4) upon the creation of the function pod, the request
reaches queue-proxy, (5) queue-proxy forwards the request to the
user-container, (6) the user-container replies to kperf.

6 EVALUATION
For our measurements, we use a bare metal server with an AMD
EPYC 7502P (Rome, 32 cores) and 128GB RAM. The software stack

Table 1: Kperf Parameters

Param Value Metric Description

timeout 3 sec wait for service to be ready
time-interval 90 sec Duration for each scale-up interval
iterations 30 - nr of consecutive runs
scale-client-timeout 100 sec non-responsive service timeout
stable-window 25 sec metrics average time window

Figure 8: Service Response Latency (single instance)

consists of: a K8s cluster (v1.28.2) with Knative (v1.12), along with
the sandbox container runtimes (kata-containers v3.2.0, gVisor
release-20231113.0) and urunc v0.2. We use Ubuntu 20.04 as the
host OS. To ensure we capture reproducible metrics and eliminate
fluctuations in our measurements, we disable the CPU frequency
scaling and the turbo feature.

6.1 Service Response Latency (single instance)
For the first scenario, we capture the total time needed for a single
request to reach a non-provisioned Knative service. This metric
represents how long the user will wait for a service to respond to an
HTTP request when they first access it. The dominating part of this
metric is the duration it takes for a serverless function to become
operational from the moment it is triggered (cold-boot[10]).

kperf defines Knative Services and triggers them through HTTP
requests iteratively. The trigger produces an HTTP response from
the user-container each time it is spawned. The time required to
receive the response is reported as Service Response Latency. To
prevent inconsistency in measurements, requests are sent when
the Knative service endpoints become ready, while re-triggering
occurs after the service has scaled to zero (time-interval parameter).
We summarize kperf’s parameters for this test in Table 1.

Figure 8 represents the average response latency. An interesting
observation is that the sandboxed container runtimes serve the
request in 2-2.5s. Moreover, the generic container runtime (runc)
serves the request in approximately 1.20 seconds. Additionally, the
behavior of urunc is on par with the generic container runtime
(runc). Finally, the maximum service request latency for runc and
urunc does not exceed 5% of the total latency.

However, when capturing latency results, an important consid-
eration is tail latency: this metric is crucial because it represents
the user experience in real-world scenarios. Figure 9 quantifies tail

29



SESAME ’24, April 22, 2024, Athens, Greece Charalampos Mainas, Ioannis Plakas, Georgios Ntoutsos, and Anastassios Nanos

latency, by plotting the 99th percentile of the Service Response
Latency.

Figure 9: Service Response Latency for the 99th percentile

Figure 9 shows that runc and urunc are identical (1.25s), whereas
all other sandbox mechanisms exhibit almost twice the latency
(2.23s to 3.91s). The fact that urunc sustains equivalent performance
to generic containers (such as runc) is significant, as it proves that
using unikernels can enable multi-tenancy, without sacrificing per-
formance.

6.2 Concurrent servicing (multiple instances)
In this scenario, we assess the footprint and responsiveness of a
Knative Service by scaling to many instances for each container
runtime.

We use kperf to initiate multiple HTTP requests concurrently.
We aim to gather average latency data for spawning multiple Kna-
tive Services. To ensure sufficient time for response collection, we
extend the stable-window parameter to 300.

To mitigate measurement inconsistencies, we set the time inter-
val to 95 seconds, ensuring all services are scaled to zero before the
next iteration begins.

Figure 10: Service Response Latency (multiple instances)

Figure 10 presents the average service response latency (sec) for
each container runtime as a function of the number of concurrent

instances. As we can see in the Figure, (a) generic (runc), gvisor,
and urunc exhibit similar behavior when increasing the number
of instances; (b) urunc and generic (runc) show indistinguishable
response latency, even when scaled up to 300 services; (c) gvisor
introduces an average latency increase of approximately +1.5s com-
pared to urunc, accounting for twice the latency for instances up to
125; (d) kata-containers display an overhead ranging from 2x to 3x
latency compared to urunc for up to 125 instances, and more than
10x for more than 200 instances.

Despite the defined target number of services, we observe that
some instances fail to respond when we reach 125 instances. Fig-
ure 11 summarizes the number of actual instances that responded
in our test for various runtimes. Almost all container runtimes fail
to produce equivalent service instances to the respective target.
Several factors contribute to the above result: system load, K8s
settings, activator congestion, and interaction between the system
components are not always efficient [11]. We further investigate
this issue, focusing on runc and urunc in the next section.

Figure 11: Percentage of Actual Instances spawned vs Target
Instances

6.3 Pushing the scaling limits
To determine the maximum amount of services supported on our
testbed hardware, we increase the number of services to 500 for
urunc and capture: the number of actual services spawned and the
service response latency in this context. We compare these results
with the generic container runtime.

(a) Instances spawned (b) Service Response Latency

Figure 12: Instances (500) and Service Response Latency

Figure 12a plots the number of spawned instances for the generic
container runtime(runc) and urunc with a target of 500. We can
see that urunc can spawn as many instances as runc, enabling the
sandboxing of user code without imposing any additional overhead
regarding memory / CPU footprint.
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To validate that the services are responsive and assess the latency
imposed by so many services running simultaneously, we plot the
average response latency for these services. Figure 12b shows that
urunc can sustain low response latency compared to the generic
container runtime (runc), even with 450 instances running.

7 CONCLUSIONS
Our work addresses the challenges of optimizing performance and
isolation for workloads in multi-tenant serverless environments,
focusing on Knative. We introduce a novel approach to sandboxing
functions that separates the user-provided code from the platform-
specific stack, achieving hardware-enabled isolation between the
user function and the Knative stack while reducing service response
latency by packaging the user function in a unikernel.

Our approach extends the state of practice by introducing a
custom-built unikernel container runtime (urunc). We provide
benchmarks comparing the performance and isolation character-
istics of different sandbox solutions in a serverless system. We
highlight the trade-offs and limitations of different sandboxing
approaches for multi-tenant serverless deployments. Our evalua-
tion shows that Unikernels are a great fit in serverless computing,
combining the isolation principles of VMs without the overhead
and management burden of generic, full virtualization stacks. Our
work contributes to the ongoing efforts to optimize performance
and enhance isolation and efficiency for workloads in multi-tenant
serverless environments.

Building on this work, we plan to further analyse the service
response latency of Knative and alternative serverless frameworks
and provide insights into where time is spent, and how to opti-
mize cold function invocation. Furthermore, an important aspect
of the evolving paradigm of cloud-native workloads involves ex-
ploring compute-intensive tasks. Specifically, we aim to examine
how hardware acceleration can be seamlessly incorporated into a
FaaS programming model.
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