
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024 2539

SPRIGHT: High-Performance eBPF-Based
Event-Driven, Shared-Memory Processing for

Serverless Computing
Shixiong Qi , Leslie Monis, Ziteng Zeng, Ian-Chin Wang,
and K. K. Ramakrishnan , Life Fellow, IEEE, Fellow, ACM

Abstract— Serverless computing promises an efficient, low-cost
compute capability in cloud environments. However, existing
solutions, epitomized by open-source platforms such as Knative,
include heavyweight components that undermine this goal of
serverless computing. Additionally, such serverless platforms lack
dataplane optimizations to achieve efficient, high-performance
function chains that facilitate the popular microservices develop-
ment paradigm. Their use of unnecessarily complex and duplicate
capabilities for building function chains severely degrades per-
formance. ‘Cold-start’ latency is another deterrent. We describe
SPRIGHT, a lightweight, high-performance, responsive serverless
framework. SPRIGHT exploits shared memory processing and
dramatically improves the scalability of the dataplane by avoiding
unnecessary protocol processing and serialization-deserialization
overheads. SPRIGHT extensively leverages event-driven pro-
cessing with the extended Berkeley Packet Filter (eBPF).
We creatively use eBPF’s socket message mechanism to support
shared memory processing, with overheads being strictly load-
proportional. Compared to constantly-running, polling-based
DPDK, SPRIGHT achieves the same dataplane performance
with 10× less CPU usage under realistic workloads. Addi-
tionally, eBPF benefits SPRIGHT, by replacing heavyweight
serverless components, allowing us to keep functions ‘warm’ with
negligible penalty. Our preliminary experimental results show
that SPRIGHT achieves an order of magnitude improvement in
throughput and latency compared to Knative, while substantially
reducing CPU usage, and obviates the need for ‘cold-start’.

Index Terms— Serverless, eBPF, event-driven, function chain,
shared memory.

I. INTRODUCTION

SERVERLESS computing has grown in popularity because
users have to only develop their applications while

depending on a cloud service provider to be responsible
for managing the underlying operating system and hardware
infrastructure. The typical costs borne by the user of serverless
computing are only for processing incoming requests. This
event-driven consumption of resources is attractive for cloud
users, especially when their demand is intermittent. It does,

Manuscript received 24 December 2022; revised 24 November 2023;
accepted 20 January 2024; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Y. Liu. Date of publication 22 February 2024; date
of current version 18 June 2024. This work was supported in part by
the U.S. NSF under Grant CRI-1823270, Grant CNS-1818971, and Grant
CSR-1763929. (Corresponding author: Shixiong Qi.)

Shixiong Qi and K. K. Ramakrishnan are with the Department of Computer
Science and Engineering, University of California at Riverside, Riverside,
CA 92521 USA (e-mail: sqi009@ucr.edu).

Leslie Monis, Ziteng Zeng, and Ian-Chin Wang were with the Department
of Computer Science and Engineering, University of California at Riverside,
Riverside, CA 92521 USA.

Digital Object Identifier 10.1109/TNET.2024.3366561

however, place the burden on the cloud service provider to
provide adequate resources on-demand and ensure the quality
of service (QoS) requirements are met.

In many cases, serverless frameworks are profligate in their
resource consumption. They provide the needed functionality
by loosely coupling serverless functions and middleware com-
ponents that run as a separate container and/or pod. This can
be extremely resource-intensive, especially when deployed in
a limited capacity environment, e.g., edge cloud [1]. There are
still a number of shortcomings to be overcome for building a
high-performance, resource-efficient, and responsive serverless
cloud. Some contributors to this overhead are the following.

Use of heavyweight serverless components. In a serverless
environment, each function pod has a dedicated sidecar proxy,
distinct from its application container. Sidecar proxies help
build an inter-function service mesh layer with extensive
functionality support, e.g., metrics collection and buffering,
facilitating serverless networking and orchestration. However,
the existing sidecar proxy is heavyweight since it is continu-
ously running and incurs excessive overheads, including 2 data
copies, 2 context switches, and 2 interrupts (see §II) for a
single request. Moreover, since most serverless frameworks
primarily focus on HTTP/REST API [2], [3], additional pro-
tocol adaptation is required for specialized use cases, e.g., IoT
(Internet-of-Things) with MQTT [4], CoAP [5]. The current
design runs protocol adaptation as an individual component,
resulting in substantial resource consumption [6]. Having such
a heavyweight design may overload serverless environments,
especially in resource-limited edge clouds or when handling
infrequent workloads (e.g., IoT). Instead, going a step further
and invoking code for execution on a completely event-driven
basis without using an individual component can result in
substantial resource savings.

Poor dataplane performance for function chaining.
Modern cloud-native architectures decompose the monolithic
application into multiple loosely-coupled, chained functions
with the help of platform-independent communication tech-
niques, e.g., HTTP/REST API, for the sake of flexibility. But,
this involves context switching, serialization and deserializa-
tion, and data copying overheads. The current design also
relies heavily on the kernel protocol stack to handle the routing
and forwarding of network packets to and between function
pods, all of which impact performance. Although function
chaining brings flexibility and resiliency for building complex
serverless applications, the decoupled nature of these chains
also requires additional components (e.g., a message broker

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1367-5544
https://orcid.org/0000-0003-1849-5155


2540 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

such as Apache Kafka [7], to coordinate communication
between functions, and a load balancer like Istio [8]). The
resulting complex data pipelines add more network communi-
cations for the function chain. All of this contributes to poor
dataplane performance (lower throughput, higher latency),
potentially compromising service level objectives (SLOs).

In this paper, we design SPRIGHT,1 a high-performance,
event-driven, and responsive serverless cloud framework
that utilizes shared-memory processing to achieve
high-performance communication within a serverless function
chain. We base the design of SPRIGHT on Knative [10],
a popular open-source serverless framework. Evaluation
results are presented for SPRIGHT and compared with
Knative under various realistic serverless workloads in
a cloud environment. Our event-driven shared memory
processing, includes event-driven proxies (we call them the
EPROXY and SPROXY) that significantly reduce the high
resource utilization in the Knative design. This results in
much lower latency. SPRIGHT overcomes the challenges of
existing serverless computing with the following innovations:

(1) We design the SPRIGHT gateway, a chain-wide com-
ponent, to facilitate shared memory processing within a
serverless function chain. The SPRIGHT gateway consolidates
protocol stack processing in the Linux kernel and distributes
the payload to the chain.

(2) We design event-driven proxies (i.e., EPROXY and
SPROXY) using the eBPF (extended Berkeley Packet Fil-
ter [11]), that effectively replace the heavyweight sidecar
proxy. We support the functions of metrics collection etc.,
with much lower CPU consumption. We further utilize the
XDP/TC hooks provided by eBPF to improve packet for-
warding performance outside the serverless function chain.
Compared to the kernel networking stack, the eBPF-based
dataplane dramatically lowers latency and CPU consumption.

(3) We implement zero-copy message delivery within a
serverless function chain by using event-driven shared mem-
ory communication. This avoids the unnecessarily duplicated
in-kernel packet processing between functions, achieving high-
speed, highly scalable packet forwarding within a serverless
function chain. Event-driven shared memory communication
helps reduce CPU usage and alleviate penalties when keeping
the function chain warm.

(4) SPRIGHT fully exploits the reconfigurability of the
eBPF maps to support Direct Function Routing (DFR) within
the serverless function chains, which eliminates the depen-
dency on an intermediate routing component (e.g., the message
broker in Knative [12]) for function chaining and avoids
duplicate processing in the dataplane.

(5) We implement the separation at the function-chain level
in SPRIGHT’s shared memory processing by restricting access
to a private shared memory to trusted functions of only that
chain. The SPROXY further restricts unauthorized access by
applying message filtering for inter-function communication.

(6) We optimize protocol adaptation by running it as an
event-driven component attached to the SPRIGHT gateway,

1This work was first published in the ACM SIGCOMM 2022 [9]. It has
been extended here with additional design details and experimental results.

Fig. 1. Networking processing involved in a typical serverless function chain.

to avoid unnecessary networking protocol stack processing
overhead. This optimization can significantly reduce resource
usage.

II. BACKGROUND AND CHALLENGES

There are a variety of implementations for function chaining
since there is no standard for a general solution architecture for
serverless applications. The data pipeline patterns for function
chaining of different open-source serverless platforms are
slightly different, depending on the messaging model applied,
e.g., a publish/subscribe model typically uses a message broker
as the intermediate component for coordinating invocations
within the function chain, while the request/response model
typically employs a front-end proxy to perform invocations
within the function chain. We examined the design of several
proprietary and open-source serverless platforms [12], [13],
[14], [15], [16] and developed a common abstract model of
the typical data pipeline pattern they use, as shown in Fig. 1.

The data pipeline for function chains uses a message
routing as follows: ① Clients send messages (requests) to a
message broker/front-end proxy through the ingress gateway
of the cluster. ② The messages are queued in the message
broker/front-end proxy and registered as an event. ③ The
message is transferred from the message broker/front-end
proxy to an active pod of the head (first) function in the
chain, as defined by the user. ④ The function pod is invoked
to process the incoming request. After the first function
processes the request, a response is returned and queued
in the message broker/front-end proxy, registered as a new
event for the next function in the chain. ⑤ The message
broker/front-end proxy sends this new event to an active pod
for the next function in the chain.

Unfortunately, this data pipeline poses several challenges
that are common across the different serverless platforms.
The core dataplane components, including the ingress gate-
way, message broker/front-end proxy, sidecar proxy, etc.,
are usually implemented as individual, constantly-running,
loosely coupled components. In addition, for internal calls
within the chain, each involves context switching, serializa-
tion/deserialization, and protocol processing.

We quantify the overheads in the representative open-source
platform, Knative, through systematic auditing performed with
a ‘1 broker/front-end + 2 functions’ chain setup based on the
current design depicted in Fig. 1. We assume all evaluated
components are deployed on the same node, with the overhead
on the external client-side excluded. We use an NGINX [17]



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2541

Fig. 2. Performance and overhead breakdown of different sidecar proxies.

server function for this audit. However, our results are gener-
ally applicable, as these basic overheads are independent of the
function used. We examine the different overheads incurred in
the data pipeline processing of one request (from ① to ⑤),
including # of copies, # of context switches, etc. as listed
in Table I. Due to implementation-specific differences, e.g.,
running multiple threads on the same CPU core, there may
inevitably be additional context switches. Our audit aims to
quantify the minimum value of each type of overhead. Based
on these observations, we list the following key takeaways:

Takeaway#1: Individual, constantly-running heavy-
weight sidecar. Serverless platforms equip each function pod
with an individual, constantly-running sidecar proxy to handle
inbound and outbound traffic. The presence of this sidecar
proxy introduces a significant amount of overhead. Just going
through step ④, the sidecar proxy introduces 2 data copies
(50%), 2 context switches (50%), and 2 interrupts (33%).
To understand the impact of this overhead on dataplane
performance, we evaluate several sidecar proxies, including the
Envoy sidecar from Istio [18], Queue proxy from Knative [19],
and the OF-watchdog from OpenFaaS [20]. We use these
sidecar proxies to work with NGINX [17] as a representative
HTTP server function. We also use this NGINX HTTP server
function without sidecar proxies as the baseline to quantify
the additional overhead introduced by the sidecar proxy.
We disable autoscaling and limit ourselves to a single function
instance. We use wrk [21] as the workload generator and send
variable-size HTTP traffic (2% 10KB requests, 98% 100B
requests) directly to the function pod (including sidecar). Both
wrk and the function pod are running on the same node.

Our experimental results are shown in Fig. 2. Equipping
a sidecar proxy results in a 3×–7× reduction in throughput,
3×–7× higher latency, and a significant increase (3×–7×)
in CPU cycles per request. Even though the overhead varies,
it is common across all the evaluated sidecar proxies. Looking
deeper at the CPU overhead breakdown, the kernel stack
for the sidecar proxy consumes 50% of CPU cycles. This
substantial overhead of sidecar proxies undercuts the benefit
of serverless computing and calls for a more lightweight
serverless capability to provide the same functionality.

Takeaway#2: Excessive data copies, context switches,
and interrupts introduced by kernel-based networking. The
existing Knative framework uses kernel-based networking to
construct the dataplane for a serverless function chain, which
inevitably introduces a number of overheads (data copies, con-
text switches, and interrupts) caused by the kernel-userspace
boundary crossing. Looking at the network processing from

TABLE I
PER REQUEST KNATIVE OVERHEAD AUDITING OF DATA PIPELINES FOR A

‘1 BROKER/FRONT-END + 2 FUNCTIONS’ CHAIN

step ① to step ⑤ in Fig. 1, each request results in 15 data
copies, 15 context switches, and 25 interrupts throughout the
entire data pipeline. In particular, most of the overhead (80%)
comes from networking within the function chain (from ③ to
⑤). The excessive overhead adds up as more messages are
exchanged between functions, which have to be handled by
the kernel. This can greatly impact the dataplane performance
of a serverless function chain.

Takeaway#3: Unnecessary serialization & deserializa-
tion. HTTP/REST API requires additional serialization and
deserialization operations to convert application data to byte
streams before being transmitted over the network. These
operations incur significant overhead (lowering throughput and
adding latency) [22], [23]. Each step in the data pipeline for
the function chain (from ③ to ⑤) introduces 2 serialization
and 2 deserialization operations. As shown in Table I, current
designs further exacerbate this overhead with an excessive
number of protocol stack traversals, which we describe next.

Takeaway#4: Excessive, duplicate processing. Current
approaches for serverless function chains rely on the com-
position of existing networking components to support
asynchronous and reliable message exchange between func-
tions. Traffic within the chain has to go through the
message broker/front-end proxy, each time having to cross
the kernel-user space boundary. This also leads to duplicate
network protocol processing, adding to the overhead. As seen
in Table I, networking within the function chain in Knative
accounts for 75% of the total protocol processing overhead.
Protocol processing tasks, including checksum calculation
in software and complex iptables processing,2 contribute to
latency and results in poor scaling (especially as the number
of iptables rules increases) [25]. Furthermore, many of the
other dataplane overheads (e.g., data copies, context switches,
interrupts, and serialization & deserialization) are also ampli-
fied, as the chain becomes more complex, resulting in very
poor scaling.

Summary: The expected benefit of serverless computing
was to overcome the inefficiencies of ‘serverful’ computing
through event-driven execution, which helps use resources
strictly on-demand and be proportional to the load. However,
the excessive overhead in current serverless frameworks shows
that the ‘server’ is still entrenched in serverless computing.
Our auditing shows that the loosely coupled construction
of existing components for serverless computing results in
substantial unnecessary processing overhead, possibly discour-

2In [24] we showed that the overheads for iptables processing in a typical
Kubernetes environment (also applicable to Knative) using the Container
Network Interface accounts for 60% of the total networking overhead.



2542 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 3. The overall architecture of SPRIGHT.

aging the implementation of microservices as function chains.
This poor dataplane design and having individual, constantly-
running components in the function chain prompt us to
create a more streamlined, responsive serverless framework
by considering high-performance shared memory processing
and lightweight event-driven optimizations to help extract the
‘server’ out of serverless computing.

III. SYSTEM DESIGN OF SPRIGHT

We now provide an overall view of the SPRIGHT architec-
ture, justifying the design of each component and discussing
their benefits for serverless environments. We then discuss
each part in detail, starting with lightweight event-driven
processing (§III-B), the shared memory processing for com-
munication within serverless function chains (§III-C), and
direct function routing (§III-D). We also discuss function
startup (§III-E), protocol adaptation (§III-F), security domain
(§III-G), and vertical scaling of SPRIGHT gateway (§III-H).

A. Overview of SPRIGHT

For this work, we start with open-source Knative as the
base platform [10]. Using an innovative combination of
event-driven processing and shared memory, we achieve high
performance while being resource-efficient and providing the
flexibility to build microservices using serverless function
chaining. Fig. 3 shows the overall architecture of SPRIGHT.
Importantly, we extensively use eBPF in SPRIGHT for net-
working and monitoring. eBPF is an in-kernel lightweight
virtual machine that can be plugged in/out of the kernel with
considerable flexibility, efficiency, and configurability [11].
The execution of eBPF programs is triggered only whenever a
new event arrives, thus working naturally with the event-driven
serverless environment. Using eBPF, various event-driven
programs can be attached to kernel hook points (e.g., the
network or socket interface). This enables high-speed packet
processing [26] and low-overhead metric collection [27]. eBPF
achieves its configurability through eBPF maps – a config-
urable data structure shared between the kernel and userspace.

With eBPF maps, a more flexible dataplane can be imple-
mented with customized routing. The good features of eBPF
help us provide functionality with strictly load-proportional
resource usage, a highly desirable toolbox for serverless envi-
ronments.

SPRIGHT’s dataplane: SPRIGHT improves the dataplane
of serverless computing by leveraging eBPF-based event-
driven processing and shared memory communication, which
helps us avoid the use of individual, constantly-running
sidecars (Takeaway#1 in §II) and reduces a number of
data movement related overheads within the function chain
(Takeaway#2 and #3 in §II). SPRIGHT uses Direct Func-
tion Routing (DFR) to forward requests directly from one
function to the next. This eliminates the need for an inter-
mediate routing component and avoids unnecessary, duplicate
processing overheads (Takeaway#4 in §II). These dataplane
optimizations make the request handling in SPRIGHT strictly
load-proportional and achieve superior performance compared
to existing serverless platforms (see evaluation in §IV).

• Event-driven processing: We design lightweight, event-
driven proxies (EPROXY and SPROXY in Fig. 3) that
use eBPF to construct the service mesh instead of a
continuously-running sidecar proxy associated with each
function instance, as is used by Knative. Thus, we reduce a
significant amount of the processing overhead (§III-B1).
To accelerate the data path to/from the function chain
and the ingress gateway which is outside the function
chain, we utilize XDP/TC hooks [28] in eBPF (§III-B2).
An XDP/TC hook processes packets at the early stage of
the kernel receive (RX) path before packets enter the kernel
iptables [25], resulting in substantial dataplane performance
improvement without the resource consumption of a ded-
icated sidecar proxy that uses the kernel protocol stack.
In addition, protocol adaptation is often required to inter-
face between application layer protocols, such as MQTT
and CoAP for IoT, to the HTTP/REST API supported by
serverless frameworks (addressed in §III-F).

• Shared memory communication: For inter-function com-
munication within the chain, SPRIGHT takes advantage
of shared memory that avoids a number of overheads
associated with data movement, including protocol process-
ing, serialization/deserialization, memory-memory copies,
etc. For every incoming request from external clients, a
SPRIGHT gateway performs the one-time, consolidated pro-
tocol processing for the function chain (§III-C1). SPRIGHT
considers event-driven SKMSG, which is a socket-related
eBPF program type [28], to construct the zero-copy I/O (i.e.,
descriptor delivery) between functions (see §III-C3).

• Direct function routing (DFR): To eliminate the impact
of having an intermediate routing component (message
broker) within the function chain, we design Direct Function
Routing (DFR). DFR leverages the configurability provided
by eBPF maps and allows for the dynamic update of routing
rules while exploiting shared memory to pass data directly
between the functions within the chain (§III-D).

Although these dataplane optimizations are built around the
Knative, our concepts and methodology can also be broadly



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2543

applied to other serverless platforms. In addition to dataplane
optimizations, SPRIGHT incorporates security domains to
restrict unauthorized access between different chains, by creat-
ing a private shared memory pool for each chain and applying
message filtering for inter-function communication (§III-G).

SPRIGHT’s control plane: We introduce a SPRIGHT
controller (Fig. 3) to coordinate the control plane for
SPRIGHT function chains. The SPRIGHT controller runs as
a cluster-wide control plane component in the master node,
working with serverless orchestration engines, e.g., Knative
and Mu [1], and their associated control plane components
(e.g., autoscaler, placement engine) to determine the scale
and placement of the function chain at the appropriate worker
node.

SPRIGHT adopts Kubernetes to manage the lifecycle of
function pods (e.g., creation, termination). It cooperates with
the kubelet, which is a pod management process in the Kuber-
netes control plane that runs on each worker node to manage
the lifecycle of the pods. We also use kubelet for function
health checks instead of depending on the sidecar (details in
Appendix B). Given a function chain creation request from
the SPRIGHT controller, the kubelet starts up functions in the
chain based on the user configuration, working in conjunction
with the shared memory manager (‘SHM mgr.’ in Fig. 3) and
PROXY manager to set up the dataplane for the function
chain (details in §III-B1). Each worker node has a shared
memory manager and a PROXY manager in the control plane,
both running as separate Kubernetes pods. To route external
requests to the SPRIGHT gateway of each function chain,
we use a cluster-wide Ingress Gateway to distribute the traffic.

B. Event-Driven Processing

1) eBPF-Based Event-Driven Proxy (EPROXY/SPROXY):
The sidecar proxy in a serverless environment, e.g., the queue
proxy in Knative, runs as an additional container in a function
pod distinct from the user container. It buffers incoming
requests before forwarding them to the user container, to help
handle traffic bursts and maintain throughput. The sidecar
proxy is also responsible for collecting metrics for the pod
(e.g., request rate, concurrency level, response time) and
exposing them to a metrics server to facilitate control plane
decision-making, e.g., autoscaling. However, this design has
several drawbacks, as we described earlier. We overcome them
with our lightweight, event-driven eBPF-based EPROXY &
SPROXY, which replace the sidecar proxy.

The EPROXY is composed of a set of eBPF programs
executed at the veth of the SPRIGHT gateway (Fig. 4), using
XDP and TC hooks [28]. SPRIGHT uses EPROXY to perform
L3 metrics collection and dataplane acceleration (§III-B2).
The SPROXY runs as a set of socket-related eBPF programs
(SK_MSG [28]) at the socket interface of the SPRIGHT gate-
way/function pods (Fig. 4). The ‘SK_MSG’ program supports
modification of messages that pass through the attached socket
as well as message redirection between sockets (with the help
of eBPF’s sockmap [28] to provide routing rules), which is an
ideal capability to exchange small messages such as packet
descriptors in supporting shared memory communication
(§III-C). However, the ‘SK_MSG’ program only works on
the TX path of the socket [28]. We use SPROXY for L7

Fig. 4. Event-driven EPROXY & SPROXY, shared memory, and DFR within
a chain: (①) the SPRIGHT gateway invokes the head function of chain; (②)
the head function calls the next function bypassing the SPRIGHT gateway.

metrics collection, packet descriptor exchange (§III-C3),
routing (§III-D), and security (§III-G). More details of the
metrics collection can be found in Appendix B.

The goal of the event-driven proxy is to achieve function-
ality comparable to that of the sidecar proxy, but with lower
overhead. Since the event-driven proxy is only triggered when
there are incoming requests, there is no CPU overhead when
idle. Although EPROXY and SPROXY work in the kernel,
they are created by the cloud service provider rather than the
user, which does not affect the isolation of the user function.
This is similar to how serverless platforms attach a sidecar to
a user function. We do not need the queueing capability in the
event-driven proxy as the shared memory within the function
chain already provides that queueing. Thus, SPRIGHT still
provides the same functionality to improve concurrency and
handle traffic bursts as a sidecar proxy. But, eliminating the
additional queuing stage helps reduce request delays.

Initialization of EPROXY & SPROXY: We dedicate a
PROXY manager (Fig. 3) on each worker node for attaching
EPROXY/SPROXY to the SPRIGHT gateway and/or function
pods. The PROXY manager is created during the startup of
the worker node’s control plane, during which it loads the
EPROXY/SPROXY eBPF programs into the kernel (via the
bpf() syscall) and creates required eBPF maps, including the
metrics map and socket map (sockmap). The SKMSG program
is then attached to the sockmap. The sockmap automatically
attaches the SKMSG program to the function pod’s socket
interface, once a function’s socket interface is registered
into it by the sockmap writer in the PROXY manager. The
initialization procedure of the EPROXY starts as soon as the
SPRIGHT gateway is ready (i.e., when SPRIGHT gateway
passes the health check from kubelet). kubelet instructs the
PROXY manager to attach the EPROXY programs to the XDP
and TC hooks at the veth of SPRIGHT gateway.

Both the SPRIGHT gateway and functions follow the same
procedure to attach to the SPROXY. We use a function as an
example to explain the initialization procedure of SPROXY,
as depicted in Fig. 5. During startup, the function creates a
socket interface for attaching to the SPROXY. The function
initiates a connection on its socket to the dummy socket in the
PROXY manager. The dummy socket stays active to maintain



2544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 5. Initialization of SPROXY: SKMSG program, sockmap.

the connection with function’s socket (①). After the connection
is established, the function sends the socket’s file descriptor
and the function ID to the PROXY manager (②). To attach
the SKMSG program to function’s socket, the PROXY manager
uses its sockmap writer to update the function ID (key) and
the socket’s file descriptor (value) to the sockmap (③), using
‘bpf_map_update_elem()’ helper. The SKMSG program is then
automatically attached to the socket by the kernel.

2) eBPF-Based Dataplane Acceleration for External Com-
munication: We exploit EPROXY’s XDP/TC hooks to
accelerate communication by the function chain in SPRIGHT
to external components (e.g., cluster-wide Ingress Gateway).
We develop an eBPF forwarding program (in EPROXY) and
attach it to the XDP/TC hook that is positioned on the RX
path of the network interface, including the host-side veth
of the pod (i.e., veth-host3) and the physical NIC, as shown
in Fig. 6. eBPF offers packet redirect features (i.e., ‘XDP_
REDIRECT’ and ‘TC_ACT_REDIRECT’) that support pass-
ing raw frames between the virtual network interfaces, or to
and from the physical NIC without going through the kernel
protocol stack [29]. This helps save CPU cycles consumed
by iptables. The eBPF forwarding program has two functions:
1) Look up the kernel FIB (Forwarding Information Base)
table to find the destination network interface based on the
FIB parameters of the received packet (using bpf_fib_lookup()
helper), including the IP 5-tuple, index of source interface,
etc. 2) Forward the raw packet frame to the target (veth-
host or NIC) interface via ‘XDP_REDIRECT’ or ‘TC_ACT_
REDIRECT’. The communication could be either in the same
node or across different nodes, supported by an eBPF-based
dataplane via the eBPF forwarding program. An XDP program
at the physical NIC processes all inbound packets received
by the NIC. It redirects the packet to the veth-host of the
destination function pod after a routing table lookup (① in
Fig. 6). The TC program at the veth-host handles the outbound
packet from the function pod. Depending on the packet’s
destination, the TC program may take different routes. If the
destination of the packet is to another function pod (e.g., traffic
between ingress gateway pod and SPRIGHT gateway pod) on
the same node, the TC program directly passes the packet to
the veth-host of the destination function pod via ‘TC_ACT_
REDIRECT’ (② in Fig. 6). If the destination function pod is
on another node, the TC program redirects the packet to the
NIC (③ in Fig. 6).

Improvement with dataplane acceleration based on
EPROXY: To estimate the benefit of eBPF’s XDP/TC fea-
tures, we evaluate the networking performance of SPRIGHT

3A function pod is connected to the host through a pair of veths, i.e., the
host-side veth and pod-side veth.

Fig. 6. Dataplane acceleration using eBPF XDP/TC hooks.

Fig. 7. (Left) Performance impact of TC/XDP redirect: RPS and latency;
(Right) CPU overhead breakdown of receiver side kernel stacks: with TC/XDP
acceleration (w/ acc.) & without TC/XDP acceleration (w/o acc.).

when the XDP/TC acceleration is enabled in EPROXY. We use
Apache Benchmark [30] to simulate the traffic to/from the
cluster-wide ingress gateway running on a different node than
the SPRIGHT gateway. We further break down the CPU
cycles expended for the kernel stack processing, to accurately
quantify the CPU cycles saved by the XDP/TC acceleration.

Fig. 7 (Left) compares the RPS and response latency
performance of SPRIGHT when the XDP/TC acceleration is
enabled or disabled. With a concurrency of 32, SPRIGHT
with XDP/TC acceleration has a 1.3× improvement in RPS
compared to SPRIGHT without XDP/TC acceleration. Since
XDP/TC acceleration transfers raw packets between network
devices (i.e., veth and NIC), the overhead spent in kernel
iptables can be avoided, which in turn improves throughput.
The response latency of SPRIGHT with XDP/TC accelera-
tion is 19µs with a concurrency of 32, compared to 24µs
for SPRIGHT without XDP/TC acceleration. The RPS and
response latency improvements remain even as the concur-
rency increases, allowing SPRIGHT to maintain a peak RPS
of 53K when XDP/TC acceleration is enabled. We then
break down the CPU cycles spent on processing a request
(at concurrency 32), including in the host’s kernel stack
and the pod’s network stack, as shown in Fig. 7 (Right).
The client-side overhead is excluded. Bypassing the host’s
kernel networking stack and associated iptables processing,
XDP/TC’s acceleration saves 1.45× total CPU cycles spent
on each request. This option, however, means the loss of
full-featured iptables network policy support, which may not
be required for certain cases (e.g., when users require higher
dataplane performance, with the infrastructure provider having
only a subset of the kernel iptables functionality [31]).

C. Shared Memory Communication Within Function Chains

To support shared memory communication within a server-
less function chain, three key building blocks are required: (1)
Protocol processing. The incoming message to a SPRIGHT
function chain requires protocol processing before being
moved to shared memory for communication within the func-
tion chain. Similar protocol processing to construct outgoing



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2545

messages is needed. (2) Shared memory pool. A private
shared memory pool that is initialized for the function chain
and is attached to functions during their startup is needed.
The message payload is kept in shared memory without
being moved between functions. (3) Zero-copy I/O within
the function chain. To enable zero-copy data movement
between functions, shared memory processing relies on packet
descriptors to pass the location of data in the shared memory
pool, which is then accessed by the function.

1) Consolidated Protocol Processing: To flexibly manage
traffic in and out of the function chain and avoid duplicate
protocol processing within the chain, we create a SPRIGHT
gateway. It acts as a reverse proxy for the function chain to
consolidate the protocol processing. The SPRIGHT gateway
relies on the kernel protocol stack for protocol processing
and extracts the application data (i.e., Layer 7 payload).
It intercepts incoming requests to the function chain and
copies the payload into a shared memory region. This enables
zero-copy processing within the chain, avoids unnecessary
serialization/deserialization and protocol stack processing. The
SPRIGHT gateway invokes the function chain for requests,
processes the results, and constructs the HTTP response to
external clients. SPRIGHT assumes that functions in the same
chain run within the same node, to derive the benefits of
sharing memory between functions.

2) Shared Memory Pool: SPRIGHT allocates a private
shared memory pool with Linux HugePages for each serverless
function chain. Using HugePages can reduce the access over-
head of in-memory pages, thus improving the performance of
serverless functions when accessing data in the shared memory
pool. In addition, the shared memory pool within the function
chain supports queueing to help sustain traffic bursts.

SPRIGHT takes advantage of DPDK’s multi-process sup-
port [32] to create shared memory pools for function chains.
At the startup of a SPRIGHT function chain, a DPDK primary
process is spun up in the shared memory manager pod. The
DPDK primary process has privileged permission to initialize
the shared memory pool, using rte_mempool_create() API.
Each DPDK primary process owns a unique shared data
file prefix [32] – a multiprocessing-related option in DPDK.
We further extend its use to isolate different memory pools [9].
By specifying the correct prefix, the gateway and functions
in SPRIGHT, which run as DPDK secondary processes, can
attach to the memory pool (use rte_memzone_lookup() API)
created by the chain’s specific DPDK primary process in the
shared memory manager pod.

Note that DPDK’s multi-process shared memory is indepen-
dent of other DPDK libs/devices such as DPDK RTE RING
and Poll Mode Driver. This gives SPRIGHT the freedom to
choose different implementations of zero-copy I/O to support
shared memory communication within the function chain.

3) Event-Driven Zero-Copy I/O Within the Function Chain:
SPRIGHT extends the use of SPROXY (Fig. 4) to implement
the event-driven zero-copy I/O for shared memory commu-
nication within the function chain. The SKMSG program in
SPROXY works with eBPF’s sockmap to enable message
redirection between the socket interfaces of function pods by
communicating a packet descriptor from one function to the

next in the chain. The packet descriptor used in SPRIGHT
is a small 16-byte message that incurs negligible overhead.
A packet descriptor contains two fields: the instance ID of
the next function and a pointer to the data in shared memory.
Once the SPROXY receives a packet descriptor, it extracts the
instance ID of the next function, which is then used to query
the eBPF’s sockmap to retrieve the target socket interface
information (i.e., the file descriptor). For the description of
the zero-copy based message flow in SPRIGHT, refer to [9].

The packet descriptor redirection performed by the
SPROXY bypasses any kernel protocol stack processing
(which is unnecessary here), incurring minimal overhead.
SPROXY operates in a purely event-driven manner, avoiding
the need to busy-poll descriptors and saving CPU resources.
Thus, the communication overhead is entirely load-dependent.

Another implementation option is using polling-based zero-
copy I/O, as used by DPDK, which uses polling-based RTE
RING [33] to pass packet descriptors. DPDK’s RTE RING
is implemented as a userspace shared memory queue that
offers a low-latency IPC channel between independent pro-
cesses (i.e., function pods) because it entirely eliminates any
kernel-userspace interaction (e.g., context switches, interrupts)
and operates at memory speeds, ensuring higher performance.
DPDK’s RTE RING has been extensively used to build
high-performance dataplanes for cloud services [34]. However,
using DPDK’s RTE RING as the inter-function IPC channel
requires expensive busy polling that continuously consumes
CPU cycles, independent of traffic intensity.

4) Event-Driven Vs. Polling-Based Shared Memory Pro-
cessing: To identify the most appropriate zero-copy I/O
for shared memory processing in the context of server-
less computing, we compare SPRIGHT’s event-driven shared
memory processing based on SPROXY (hereafter referred to
as S-SPRIGHT) with polling-based shared memory processing
based on DPDK (hereafter referred to as D-SPRIGHT), with
a function chain containing 2 function pods. We use Apache
Benchmark [30] on a second node as the workload gener-
ator. We additionally set up a function chain with the base
Knative environment and use NGINX as the front-end proxy
to coordinate the communication within the chain. Both the
SPRIGHT gateway and NGINX proxy are configured with
two dedicated cores for a fair comparison. Note: We collect
the results from 10 repetitions. All results also show the 99%
confidence interval.

As shown in Fig. 8, with low concurrency, e.g., at
32, S-SPRIGHT (0.024ms) shows a slightly higher average
response delay compared to D-SPRIGHT (0.02ms), but still
has a much lower (almost 6×) response latency compared
to Knative (0.138ms). In terms of RPS, both D-SPRIGHT
(50.3K) and S-SPRIGHT (41.7K) are substantially higher than
Knative (7.2K), with a significant 5.7× improvement.

As S-SPRIGHT relies on the in-kernel eBPF program (i.e.,
SPROXY) to deliver packet descriptors, it incurs overheads for
context switching, contributing to the extra latency. However,
the SPROXY processing latency is masked when the concur-
rency increases (≥ 32), because the context switching latency
overlaps with the other processing. Throughput increases
rapidly, up to 5× that of Knative. Although S-SPRIGHT has a



2546 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 8. Comparison between polling-based (D-SPRI.) and event-driven
(S-SPRI.) shared memory processing with 1 gateway pod and 2 function pods.
Kn: Knative; QPs: Sidecars; SFs: serverless functions; GW: gateway.

1.2× lower peak throughput than D-SPRIGHT, S-SPRIGHT
has a substantially lower CPU usage, because it is purely
event-driven. Both of those approaches have a much lower
overhead compared to Knative. With a concurrency of 1, S-
SPRIGHT consumes 32% CPU, which is 9.6× and 4.5× less
than D-SPRIGHT (308%, or more than 3 CPU cores fully
used) and Knative (143%), respectively. When the concurrency
increases to 32, S-SPRIGHT consumes 259% CPU, which is
still less than D-SPRIGHT (359%). Comparatively, the CPU
usage of base Knative increases to a shocking 1585% (more
than 15 CPU cores used) at a concurrency of 32 (see Fig. 8
(c)). The sidecar proxy consumes 70% of Knative’s CPU.
Even with increasing concurrency (≥ 32), S-SPRIGHT has a
consistent and steady saving in CPU compared to the others.
Individual, constantly-running components (sidecar proxy with
Knative or DPDK’s poll mode using up CPUs) have excessive
overhead. More importantly, S-SPRIGHT consumes negligible
CPU resources when there is no traffic. We observed that S-
SPRIGHT’s gateway and function pods that are event-driven
consume zero CPU when there is no traffic, making it possible
to keep a function pod ‘warm’ to overcome the ‘cold start’
delay (§IV-B2). Thus, event-driven shared memory processing
is ideal for serverless computing, especially for function
chains.

D. Direct Function Routing Within a Function Chain

To optimize the invocations within a function chain, we use
Direct Function Routing (DFR), which enables the upstream
function in the chain to directly invoke/communicate with
the downstream function. As shown in Fig. 4, the SPRIGHT
gateway only invokes the head function in the chain once
(① in Fig. 4). When the first function completes the request
processing (② in Fig. 4), it directly calls the next function
without going through the SPRIGHT gateway. The rest of the
function invocations in the chain also bypass the SPRIGHT
gateway, thus significantly reducing the invocation latency

and overhead. To support DFR, SPRIGHT adopts a two-step
routing mechanism. It uses a chain-specific, userspace routing
table and an in-kernel sockmap. The userspace routing table
helps determine the ID of the next function, while the in-kernel
sockmap uses that function ID to find its corresponding socket
file descriptor, which is then used by the SPROXY to perform
the actual packet descriptor delivery between the sockets of
the source and destination function. For details of routing
configuration and load balancing with a function chain, refer
to Appendix A.

E. Function Startup in SPRIGHT

In Knative, the startup of a function pod consists of several
key steps: control plane activity (e.g., pod placement), con-
tainer runtime initialization (e.g., container image extraction,
namespace creation, Cgroups configuration, file system mount-
ing, etc), and dataplane setup (e.g., route setup, veth devices
creation, etc). The startup process of a SPRIGHT function
pod shares several common steps with a Knative function
pod creation in terms of control plane activity and con-
tainer runtime initialization. However, SPRIGHT differs from
Knative in setting up the dataplane because SPRIGHT uses
shared memory communication. More importantly, SPRIGHT
uses eBPF-based event-driven proxies. Knative, on the other
hand, uses the sidecar proxy as an individual container, thus
incurring additional startup latency to initialize the sidecar
container. The dataplane setup of a Knative function pod is
nested within the container runtime initialization and is com-
pleted by the Container Network Interface (CNI) plugin [24].
During the dataplane setup of a Knative function pod, the CNI
plugin creates a veth-pair (a pod-side veth and a host-side veth)
to connect the function pod to the host’s network namespace,
facilitating inter-pod connectivity. An IP address is assigned
to the function pod and the route is configured in the host’s
iptables to finalize the dataplane setup [24].

SPRIGHT avoids relying on the CNI plugin to set up the
dataplane of the function pod for the use of event-driven
shared memory processing. The dataplane setup of a
SPRIGHT function pod involves the initialization of the
SPROXY (§III-B) and attachment to the shared memory
pool4 (§III-C). We compare the startup overhead of SPRIGHT
function pods and Knative function pods in §IV-C.

When starting up a function chain in SPRIGHT, a
SPRIGHT gateway pod is created, which involves the ini-
tialization of SPROXY and attachment to the shared memory
pool. Additional dataplane setup (e.g., veth-pair creation, route
setup, etc) is performed by the CNI plugin to connect the
SPRIGHT gateway pod with the kernel protocol stack, as the
SPRIGHT gateway interacts with the kernel protocol stack to
perform protocol processing and to attach the EPROXY to the
veth device. The initialization of the SPRIGHT gateway pod
as well as the startup of functions in the same chain can be
performed in parallel to amortize the startup penalty, as we
discuss in §IV-C.

4Note: The shared memory manager in SPRIGHT pre-allocates a number
of shared memory objects in the shared memory pool. This avoids the shared
memory creation latency during dataplane setup for SPRIGHT functions.



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2547

F. Event-Driven Protocol Adaptation

Event-driven processing can help tremendously in inter-
facing serverless frameworks, which have an HTTP/REST
API, with a variety of application-specific protocols (e.g.,
for IoT with MQTT [4], CoAP [5]). Current designs use a
separate protocol adapter (e.g., Kamelet in Apache Camel-
K [35]) for translation between these protocols. However,
since SPRIGHT’s shared memory processing directly works
on payloads independent of the application layer protocols,
the protocol adapter can ideally run as an internal event-driven
component that is part of the SPRIGHT gateway. This achieves
a much more streamlined protocol adapter design, using
resources strictly on demand. Please refer to [9] for the details
of the event-driven protocol adaptation design.

G. Security Domains in SPRIGHT

SPRIGHT recognizes the need for isolation between server-
less functions in a shared cloud environment, especially with
the use of shared memory processing. It is necessary to restrict
access to a shared memory pool to only trusted functions. The
trust model in SPRIGHT assumes that the functions within
a chain trust each other, but the functions in different chains
may not. To limit unauthorized access across function chains,
SPRIGHT provides abstractions to construct a security domain
for each function chain: 1) a private shared memory pool for
each chain; 2) inter-function (intra-domain) packet descriptor
filtering with the SPROXY; 3) inter-domain access control
enabled by the SPRIGHT gateway and attached EPROXY.
Appendix C provides more details of SPRIGHT’s security
domain design, including security domain separation, intra-
domain and inter-domain access control, and alternatives to
in-kernel iptables by directly using SPRIGHT components.

H. Vertical Scaling of SPRIGHT Gateway

The SPRIGHT security domain design requires a dedicated
SPRIGHT gateway for each domain. Dedicating CPU cores
to the SPRIGHT gateway may lead to CPU wastage at light
loads. Therefore, we utilize the concept of “rate proportional
scheduling” [36]. It actively determines the CPU quota of the
SPRIGHT gateway based on request arrival characteristics.

The SPRIGHT gateway is a networking component, serving
as the entry/exit point for function chain. The processing tasks
for each request in the SPRIGHT gateway involve a fixed
amount of protocol processing, routing, etc., which usually
has very little variability for the CPU cycle consumption. This
suggests there would be a strong correlation between the CPU
core usage of the SPRIGHT gateway and the incoming request
rate. Fig. 15 (left) shows this correlation under various load
levels (number of external clients at 5K, 12K, 20K, 25K, and
30K). Therefore, we can estimate the CPU core usage of the
SPRIGHT gateway based on the request rate,5 using simple
linear regression: Ci,t = α × ri,t, where Ci,t represents the
estimated CPU core usage of the SPRIGHT gateway i at time

5Note that to estimate the CPU usage of general serverless functions, which
may involve much more complex application-level computations, a more
comprehensive estimator is recommended, such as using a Deep Q Network
(DQN) [37] or a Graph Neural Network (GNN) [38].

TABLE II
PER REQUEST DATA PIPELINE OVERHEAD FOR SPRIGHT

t, ri,t represents the Exponentially Weighted Moving Average
(EWMA) of the request rate of the SPRIGHT gateway i at
time t, and α is the regression coefficient. We use the EWMA
of the request rate to ensure that the estimated Ci,t is not
too sensitive to short-term fluctuations. We set the EWMA
coefficient to 0.8 as it yields better results in our testing.
We compute α offline, as 1.13× 10−4. This is consistent for
various concurrency levels we tested (see the LR line plot
in Fig. 15 (left)). Given the estimated CPU core usage of
SPRIGHT gateway i, we use the Cgroups utility to configure
its CPU core quota (“cfs_quota_us” and “cfs_period_
us”), thus avoiding wastage caused by dedicating CPU cores.
We execute the scheduling loop over a 2-minute window.

I. Overhead Auditing of SPRIGHT and Constraints

The overhead auditing of SPRIGHT (Table II) shows that
SPRIGHT achieves 0 data copies, 0 additional protocol pro-
cessing, and no serialization/deserialization overheads within
the chain. Although the use of SPROXY generates context
switches and interrupts, the total number of context switches
and interrupts for SPRIGHT is still far less than that of the
base Knative design. In addition, the results in Fig. 8 show that
the context switches and interrupts introduced by SPROXY
have a limited impact on the performance with concurrent
processing of just a few sessions. The event-based shared
memory processing substantially reduces resource usage, more
than compensating for any of the added context switches and
interrupts However, SPRIGHT’s shared memory processing
is constrained by the need to have intra-node deployment of
function chains, requiring locality-aware placement strategies,
as exploited in [39] (more details in Appendix B). Existing
applications, which use synchronous HTTP/REST APIs and/or
POSIX-like sockets, also require minimal changes to the code
to work with SPRIGHT’s shared memory processing (details
in Appendix D).

IV. EVALUATION & ANALYSIS

A. Experiment Setup

To examine the improvement of SPRIGHT and its com-
ponents, we consider several typical serverless scenarios,
including (1) a popular online shopping boutique, (2) An IoT
environment of motion detectors, and (3) a more complex
processing of image detection & charging for an automated
parking garage. For each scenario, we set up a function chain
to execute the serverless application (Fig. 9). The details of
the setup for each scenario are as follows:



2548 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 9. Serverless function chains setup. The parking workload has two func-
tion chain invocation sequences: (Chain-1) ①→②→③→⑤→④; (Chain-2)
①→②→④.

1. Online Boutique is an open-source representative
implementation of a microservice-based online store appli-
cation [40]. It has 10 different functions, communicating
with each other using gRPC. We ported these functions to
SPRIGHT (in C) and Knative (using Go language) based
on the implementation provided in [40]. Functions ported
to SPRIGHT use shared memory, while functions in Kna-
tive continue to use gRPC, for inter-function communication.
We use Locust [41] as the load generator and use the default
workload provided in [40] to generate a realistic web-based
shopping application’s request pattern. The default workload
utilizes a total of 6 different sequences of function chains
(see [9]). We compare four alternatives to run the online bou-
tique application, including gRPC, Knative, S-SPRIGHT, and
D-SPRIGHT. In the “gRPC” mode (‘server-full’ approach),
the function runs as a Kubernetes pod without a sidecar
and uses the built-in gRPC server for functions to talk to
each other directly without involving a broker/front-end.6 In
Knative mode, we use the Istio ingress gateway to mediate
the communication between functions. We disable the acti-
vator [42] (a cluster-wide queuing component in Knative) to
avoid additional queuing delays.

2. IoT - Indoor motion detection for automated lighting
requires tracking a sequence of events utilizing multiple sen-
sors. The simple function chain contains 2 functions (Fig. 9
(b)). Motion sensors going ‘on’ triggers an actuator function
to turn on the light. The light may be automatically turned off
after a period of no activity. We consider the MERL motion
detector dataset [43]. We use a traffic generator developed
in Python to send motion events based on the timestamps in
the dataset. The CPU service time of the sensor function and
actuator function are both set at 1ms. For the base Knative

6The “frontend service” (Fig. 9 (a)) in the online boutique runs as a user
function, which is distinct from the general broker/front-end. The latter is a
system component that used to mediate the communication between functions
(e.g., the Istio ingress gateway in Knative mode).

Fig. 10. RPS for online boutique: {Knative, gRPC} at 5K & {D-SPRIGHT,
S-SPRIGHT (overlap)} at 25K concurrency.

setup, we use NGINX to coordinate the communication within
the function chain.

3. Parking - image detection & charging takes snapshots of
each parking spot as input for visual occupancy (of parking
spots) detection in parking lots. It detects the vehicle’s license
plate and determines whether the plate metadata is stored
in the database through a plate search function. If it is not
stored, a ‘persist-metadata’ function is invoked to store the
plate metadata in the database. Finally, it charges parking fees
based on the license plate’s metadata. We consider the CNR-
Park+EXT image dataset collected from a parking lot with
164 parking spaces [44]. We use the same load generator used
for IoT workload to send snapshot images (150× 150 pixels,
∼3KB each) through HTTP/REST API call. Every 240-second
interval, 164 snapshots are sent to the function chain. We use
NGINX to coordinate the message exchanges within the chain.
We use VGG-16 as the image detection algorithm, and the
CPU service time of the image detection function is set to
435ms [45]. The CPU service times of other functions and
the sequence of functions being called are shown in Fig. 9.

Testbed setup: The testbed is built on top of a base Knative
platform, including 1) Knative serving/eventing components
(v0.22.0) [12], [46]; 2) Kubernetes components (v1.19.0),
including API server, placement engine, etcd, etc [47]. We use
the docker engine (v20.10.21) as the container runtime.
We consider Calico CNI (Native routing mode) [48] as the
underlying networking solution except for the communication
within the function chain of Knative. We run the experiments
on the NSF Cloudlab with two c220g5 nodes [49]. Each node
has a 40-core Intel CPU@2.2 GHz, 192GB memory, and a
10Gb NIC. We use Ubuntu 20.04 with kernel version 5.16.
We configure the concurrency of both Knative and SPRIGHT
function as 32. The concurrency level of a function pod
determines the # of requests it can process in parallel.

B. Performance With Realistic Workloads

1) Comparing SPRIGHT, Knative, and gRPC Mode: We
now compare D-SPRIGHT (using DPDK’s RTE rings) and
S-SPRIGHT (using SPROXY) against Knative and the gRPC
mode for several different function chains of the online bou-
tique application. We configure different concurrency levels
(i.e., # of concurrent users) of requests from the Locust load
generator. We select two concurrency levels, 5K and 25K,
to show here. To achieve the 5K concurrency, we set the
spawn rate of 200/sec. concurrent requests. The spawn rate
controls the # of concurrency steps increased every second.
Above 5K, Knative’s performance becomes highly variable



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2549

Fig. 11. Online boutique. Top row: Knative, 5K concurrency. Mid. row: gRPC, 5K concurrency. Bottom row: {D-SPRIGHT (D), S-SPRIGHT (S)}, 25K
concurrency. (Left col.) Response time CDF for 6 different function chains; (Mid. col.) Time series of response time, function chains; (Right col.) CPU usage
time series, gateway (GW), function chains (fn), sidecar proxy (Knative).

with time, indicating overload (also results in very high tail
response times). Both S-SPRIGHT and D-SPRIGHT have
stable performance at a 25K concurrency level, after which
they begin to show behavior indicating a slight overload.
To achieve the 25K concurrency, we set the spawn rate of
concurrency at 500/sec.

Even at 5K concurrency, Knative already begins to be
overloaded. From 0s to 35s (Fig. 10), the concurrency level of
the load generator is ramping up to 5K, and the requests/sec
(RPS) increases to ∼900 req/sec. Knative begins to overload
(see at 35s in Fig. 10) due to the use of sidecars and the use
of the Istio ingress gateway (hereafter referred to simply as
‘gateway’) to mediate the communication between functions.
At this 5K concurrency, the gateway and sidecars consume
∼13 CPU cores (from 35s onwards), which is 50% of the
entire Knative setup. It finally leads to CPU contention with
the functions, whose CPU utilization soon reaches saturation
at 62s (using up ∼13 CPU cores, Fig. 11 (g)). In addition,
the use of the gateway and sidecars contributes to additional
processing and queuing delays on the request’s data path,
leading to the reduction in RPS observed (see beyond 30s
in Fig. 10). The closed-loop of workload generation and
request processing results in the RPS, resource utilization,
and response times experiencing overload cycles (occurs again
between 100s - 140s).

Compared to Knative, gRPC has a more stable RPS and
better overload behavior at 5K as gRPC has no sidecars
and bypasses the gateway. By removing these heavyweight
components, functions in the gRPC mode make full use
of CPU resources. The shortened request data path further
reduces latency and alleviates overload and queuing problems.
As shown in Fig. 11 (a) and (b), the resulting tail latency
of gPRC, i.e., 95%ile, of 141ms, measured across all the
functions of the online boutique service, which is 4.9× lower
than Knative (whose 95%ile is 693ms). Fig. 11 (d) and (e)

TABLE III
LATENCY COMPARISON AT 5K AND 25K CONCURRENCY

further demonstrate the benefits of removing sidecars and the
gateway. For requests sent between 35s and 75s, the response
time of Knative increases significantly while the gRPC shows
a delayed overload (only 45s onwards) and its response time
during the overload (45s to 75s) is much lower than Knative.
However, as gRPC depends on the kernel protocol stack for
networking and requires serialization/deserialization. These
overheads are not negligible. The entire gRPC setup consumes
91% of the total CPU cores available on the physical node in
order to drain the queued requests (e.g., 45s to 75s in Fig. 11
(h)). This pattern repeats again, e.g., in the time period 108s
- 140s. Overall, this is quite inefficient.

Compared to Knative and gRPC, D-SPRIGHT and
S-SPRIGHT both have stable RPS throughout the experiment,
for concurrency levels ranging from 5K all the way to 25K.
At 5K concurrency, The 95%ile latency of D-SPRIGHT and
S-SPRIGHT are 11ms and 13ms (see Table III), significantly
less than Knative (690ms) and gRPC (140ms), while utilizing
far less CPU. Although D-SPRIGHT constantly consumes
CPU cycles when idle, even at maximum load, it consumes
only 11 total CPU cores at a concurrency level of 5K,
which is ∼2.5× less than Knative (similar to Fig. 8). This
again validates the benefits of SPRIGHT’s shared memory
processing, saving CPU resources by avoiding the needless
processing overheads with Knative discussed previously in §II.
S-SPRIGHT further reduces CPU usage dramatically by using



2550 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 12. Time series of response time, and CPU utilization for motion
detection workload - 1-hour long experiments.

purely event-driven processing compared to D-SPRIGHT.
With 5K concurrency, S-SPRIGHT consumes only ∼1 CPU
core, including the gateway and all the functions, getting
comparable performance (throughput, response time) to D-
SPRIGHT. We further increase the concurrency level of the
load generator to 25K for D-SPRIGHT and S-SPRIGHT. This
increases the utilization, but still maintains low tail response
times. Both D-SPRIGHT and S-SPRIGHT maintain a stable
RPS of ∼5500 req/sec (Fig. 10), which is 5× higher than
the highest stable RPS achieved with Knative and gRPC.
Moreover, S-SPRIGHT uses far less CPU resources than D-
SPRIGHT, even as the load increases. At 25K concurrency,
S-SPRIGHT consumes only ∼3.5 CPU cores, which is 3×
less than D-SPRIGHT (Fig. 11(i)), showing the benefit of the
eBPF-based event-driven processing.

With SPROXY generating context switches and interrupts
for descriptor delivery (Table II), there is some additional
latency in S-SPRIGHT’s shared memory processing, and is
slightly worse than D-SPRIGHT in terms of tail latency
(Fig. 11(c)). The 95%iles of S-SPRIGHT, measured across all
the functions, is 1.2× higher than D-SPRIGHT (more details
in Table III). The additional delay for SPROXY’s descriptor
delivery, adds to the transient queueing and hence slightly
longer tail latency. However, as we said in §III-C4, the impact
of this additional latency introduced by SPROXY is quite
limited. Further, the processing time within the functions,
which usually are non-trivial, will likely dwarf the extra
latency introduced by SPROXY, in relative terms. Importantly,
the throughput (RPS) of S-SPRIGHT is very close to D-
SPRIGHT at high concurrency levels.

2) Bypassing the Impact of Cold Start and Zero Scaling:
We set up an experiment with zero scaling enabled in Knative
to study the impact of cold start. Without incoming requests,
Knative scales functions down to zero to save resources and
reduce costs. We set the ‘grace period’ for scaling down to zero
as 30 seconds. In contrast, we keep functions in SPRIGHT
‘warm’ by having a minimum number of active function
pods, knowing that our purely event-driven processing will
not consume CPU resources when idle. We use the motion
detection workload to study the impact of cold start because
of the intermittent nature of such IoT traffic.

Fig. 13. Parking image detection & charging: (a) Time series of response
time of function chains; (b) Time series of aggregate CPU for function chains,
sidecar proxy (Knative).

Fig. 12 (a) clearly shows the impact of cold start in Knative,
with large response times that possibly render the motion
detection application ineffective and severely violate SLOs.
E.g., starting from 1950s, a number of motion events occur
one after another (inter-arrival time of a few seconds) that
are sent to the currently zero-scaled function chain. The first
motion event that arrives at the gateway is queued and triggers
the instantiation of the functions. Since a serverless function
pod takes some time to start, subsequent requests have to
be queued. The cascading effect during the cold start of the
entire function chain further degrades the response time [38],
resulting in a long tail latency going up to 9s. Once the
function is active, Knative has a reasonably small response
time when there are consecutive incoming events (e.g., before
the grace period terminates between 2000s and 2500s), which
keeps the functions ‘warm’.

In contrast, SPRIGHT shows consistently low response
times over the entire workload duration since there is always
an active pod to serve the request without leaving requests
waiting in the queue (we can sidestep going down to zero-
scale). More importantly, although SPRIGHT keeps one (or
more) function warm, the event-driven nature of SPRIGHT
leads to negligible CPU consumption when there is no traffic.
In fact, with Knative, the higher resource usage of the sidecar
proxy under load more than offsets any benefit of Knative’s
zero-scaling. E.g., in Fig. 12 (b), the spikes in the CPU
usage for the sidecar proxy (e.g., at the 1500s mark), even
when handling small traffic, is quite wasteful and is eminently
avoidable with SPRIGHT’s event-driven design.

Since the ‘Parking: image detection & charging’ workload
has a distinct periodic arrival pattern (e.g., monitoring and
billing every 4 minutes), we configure a ‘pre-warm’ phase
for Knative functions 20 seconds before the next burst is
scheduled to arrive. ‘Pre-warming’ helps avoid the penalty of
the cold start delay of serverless functions while trading off
a small amount of the resource savings of shutting down the
pods in serverless computing with zero-scaling [50]. However,
as observed in Fig. 13 (b), the CPU usage for each function
instantiation at the pre-warming stage in fact exceeds the
CPU usage consumed by request processing (i.e., observe
the CPU usage spike for the pre-warming and the function
execution 20 seconds later). Thus, while zero-scaling reduces



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2551

Fig. 14. (Left) Latency comparison of a single function pod startup between
SPRIGHT and Knative; and (Right) latency of multiple function pods startup
in SPRIGHT (startup in parallel VS. startup in sequence). For function’s index,
refer to Fig. 9.

CPU usage if the idle period is long, a CPU cost for frequent
creation/destruction of functions must be considered. Knative
also is quite inefficient for scaling functions down to zero.
When there is no traffic for a grace period of 30s (e.g., 270s
to 300s in Fig. 13 (b)), Knative begins scaling down the
functions to zero. But, functions remain in a ‘terminating’ state
until 380s without being really terminated or releasing CPU
resources. Thus, the scaling-down process lasts as long as 80s,
during which all the Knative sidecar proxies and functions are
consuming CPU resources, which is unnecessary and wasteful.

For comparison, S-SPRIGHT consumes only a small
amount of CPU throughout the entire period, in fact with
slightly lower (about 16%) response time (both average and
95%, Fig. 13 (a)). Overall, S-SPRIGHT saves up to 41%
CPU cycles in this 700s experiment without resorting to zero-
scaling, almost doubling system capacity compared to Knative.

C. Startup Latency Comparison (SPRIGHT Vs. Knative)

We now compare the startup latency for a function chain
in SPRIGHT against Knative. For a fair comparison, we use
the same control plane and Docker container runtime. The
common control plane components include Kubernetes’s pod
scheduler, controller manager, and API server. We use the
online boutique functions [40] for evaluation and reuse the
testbed setup in §IV-A.

To measure the latency of control plane activity (tcp),
we timestamp when the Kubernetes controller manager (on the
master node) receives the pod creation request, and again when
the kubelet (on the worker node) is signaled by the control
plane for the pod initialization tasks, including the dataplane
setup and container runtime creation. The difference is the
latency for performing control plane activities.

To measure the dataplane setup latency (tdp) of a Knative
function pod, we timestamp when the kubelet sends the
networking setup request to the CNI and another timestamp
when the kubelet receives an ack. from the CNI indicating suc-
cessful setup of the function pod’s dataplane. We measure tdp,
the latency for completing the initialization of the SPROXY
(Fig. 5) and its attachment to the shared memory pool.

For both Knative and SPRIGHT, we quantify the difference
between the total pod initialization latency (tpod) and the
dataplane setup latency (tdp) as the container runtime creation
latency (tcr = tpod − tdp). tpod is measured as the duration
starting from when the kubelet is informed of pod initialization
by the control plane, until the kubelet detects the readi-
ness of the function pod. When profiling the startup latency
of SPRIGHT function pods, we disable the CNI to avoid

spending unnecessary latency on setting up kernel iptables
and configuring veth devices, since SPRIGHT functions do
not require these. We keep the CNI plugin enabled for the
startup of SPRIGHT gateway pod as discussed in §III-E.

Fig. 14 (Left) shows the startup latency of a single function.
SPRIGHT and Knative have same tcp and tcr as both use the
same control plane components and container runtime. The
primary difference is in the tdp. Knative spends ∼0.4s for
setting up the dataplane for a single function pod with an
extra ∼0.7s for creating an individual sidecar container for this
pod. SPRIGHT takes only ∼0.016s for SPROXY initialization
and attaching the shared memory pool. This, again, shows the
benefit of SPRIGHT’s use of shared memory and event-driven
proxies, which eliminates the heavyweight sidecar container
creation and slow kernel-based dataplane setup.

The SPRIGHT gateway dedicated to the function chain
incurs a significant initialization overhead (∼0.4s) when the
SPRIGHT function chain is first created, with an extra
∼0.3 milliseconds to attach the EPROXY. This is mainly
caused by the in-kernel configuration (veth-pair and kernel
iptables) via CNI, similar to a Knative function pod. But, the
startup overhead of the SPRIGHT gateway can be overlapped
by starting it in parallel with the SPRIGHT functions in the
chain. More importantly, the startup of the SPRIGHT gateway
is a one-time task that occurs only during the very first startup
of the function chain.

Fig. 14 (Right) compares the startup latency of a complete
function chain with the parallel and sequential startup of
multiple function pods. Starting up pods in parallel takes
3.3× less time than starting up pods sequentially. Thus,
it is desirable to have function pods in SPRIGHT start in
parallel to amortize the startup penalty. Both dataplane setup
in SPRIGHT and control plane activity get the benefit of
parallelism. The dominant latency is from container runtime
creation, but there is limited benefit from having pods started
up in parallel. This is because of the contention for access to
the network namespace in the Linux kernel. This forces us to
sequentially create and modify the network namespaces [51],
[52], [53]. Using a shared network namespace (shared by
functions in the same security domain) can eliminate the
network namespace contention and further reduce the total
container runtime creation time for parallel startup of multiple
function pods in a chain [52].

D. Evaluating the Scaling of the SPRIGHT Gateway

To understand the benefits of rate proportional scheduling
(denoted RP) on the SPRIGHT gateway, we compare it with
the “dedicated cores” policy (denoted DC). The “dedicated
cores” strategy assigns CPU cores exclusively to the SPRIGHT
gateway, which can prevent CPU interference. However, this
strategy potentially wastes CPU cores under light load as the
assigned CPU cores are not shared with any other SPRIGHT
gateway or functions running on the same node. We use
three online boutique [40] function chains (CH-1, CH-2, and
CH-3), co-located on the same node. Each function chain has
a dedicated SPRIGHT gateway. We set the peak concurrency
levels of the three function chains as 5K, 12K, and 30K. We set



2552 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 15. Comparison of rate proportional scheduling and dedicating cores: (left) correlation between CPU core usage of SPRIGHT gateway and RPS; (middle)
CPU allocation time series; (right) RPS time series.

the spawn (increase) rate of the concurrency level at 500/sec.
Other configurations are the same as §IV-B1.

Fig. 15 (middle) shows the CPU allocation over time for the
different SPRIGHT gateways. It is clear that the SPRIGHT
gateway using DC results in serious CPU wastage by con-
sistently occupying the CPU core throughout the entire time.
In contrast, RP allocates CPU cores to SPRIGHT gateways
of different function chains in proportion to their load. The
unused portion of the CPU core can be potentially shared
with serverless functions, resulting in better efficiency. In the
meantime, RP also does not cause any significant performance
(RPS) loss when we look at Fig. 15 (right), which demon-
strates the feasibility of using the concept of “rate proportional
scheduling” to help address the resource allocation for the
SPRIGHT gateway while retains the high performance of
SPRIGHT’s data plane.

V. RELATED WORK

In recent years, a number of serverless platforms have been
launched, e.g., AWS Lambda [54], IBM Cloud Functions [55],
Apache OpenWhisk [56], OpenFaaS [57], Knative [10], etc,
to support cloud-resident applications. Work on understand-
ing the performance impact of commercial or open-source
serverless platforms [19], [58] has guided us on the design
of SPRIGHT. Li et al. [19] showed that the overhead of the
ingress gateway reduced the throughput by 13%, compared to
the performance of function invocation using the ‘direct call’
mode (i.e., the client directly invokes the function instance,
bypassing the ingress gateway). Zhu et al. [59] reported that
container-based sidecars cause excessive latency and CPU
usage increase, which is also consistent with our observa-
tions. Benedetti et al. [58] studied the suitability of different
serverless function startup modes (i.e., cold and warm) for
supporting IoT applications, indicating that cold start can have
significant resource-saving benefits but can impact response
time. This prompts us to examine the resource consumption
and overheads of each component carefully.

Several past works have examined the inefficiency and
overheads that exist in Linux networking, including data copies
and context switching [60], [61], [62], [63]. The overhead of
protocol processing [24] and serialization-deserialization [22],
[64] directly impact networking performance, which applies
to container-based serverless functions, including function
chains. A variety of optimizations have been proposed to
improve the network performance for different application
scenarios, which can be complementary to current Linux
networking (e.g., XDP [26], AF_XDP in OVS [65]) or bypass
kernel-based networking (e.g., NetVM for NFV [66]). Our

work combines the advantages of kernel-bypass zero-copy
networking where essential for serverless function chains, and
leveraging eBPF-based event-driven processing.

Multiple proposals optimize different aspects of serverless
frameworks, e.g., runtime overhead reduction [51], [67], [68],
[69], intelligent resource provisioning, and traffic manage-
ment [1], [70]. Ditto [39] is a serverless analytics system
developed on top of SPRIGHT, maximizing intra-node shared
memory processing to alleviate the data plane overheads of a
large amount of shuffle-related traffic within function chains
used for data analytics. Further, [38], [71], [72] aim to optimize
resource allocation and deployment of serverless functions
on the basis of a chain, which improves the efficiency and
flexibility of building microservices using serverless function
chaining. But, they do not focus on optimizing the dataplane,
which as we show has a significant impact.

‘Cold start’ in serverless: The cold start latency of server-
less functions detracts from their being an ideal framework
for building microservices. Reference [73] proposes a startup
latency optimization specifically for Kubernetes-based envi-
ronments by placing pods on nodes that have container image
dependencies locally to avoid the latency of pulling images.
However, their 95%ile startup latency after optimization is still
around 23s, severely impacting the QoS. In addition, startup
(either cold start or pre-warm [50]) adds additional costs, as we
have observed, making optimizations built around cold start
less desirable. A policy of ‘keep-warm’ of pods has been an
alternative to mitigate the cold start latency in serverless [74].
They can achieve an 85% improvement of the 99%ile latency.
Although [74] considerably improves the SLOs, it is built on
Knative with heavyweight components (e.g., queue proxy),
resulting in excessive resource usage. Fuerst and Sharma [75]
consider greedy-dual caching to determine which functions
should be kept as warm. By factoring in several key indicators
of a function, e.g., memory footprint, invocation frequency,
etc., they can prioritize functions to be kept warm, thus
limiting memory consumption to keep a minimum number of
warm functions and achieve SLOs. Since SPRIGHT primarily
contributes to controlling CPU usage, [75] can be a good
complement to SPRIGHT to reduce memory utilization.

VI. CONCLUSION

SPRIGHT demonstrated the effectiveness of event-driven
capability for reducing resource usage in serverless cloud
environments. With extensive use of eBPF-based event-driven
capability in conjunction with high-performance shared mem-
ory processing, SPRIGHT achieves up to 5× throughput
improvement, 53× latency reduction, and 27× CPU usage



QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2553

savings compared to Knative when serving a complex web
workload. Compared to an environment using DPDK for
providing shared memory and zero-copy delivery, SPRIGHT
achieves competitive throughput and latency while consum-
ing 11× fewer CPU resources. Additionally, for intermittent
request arrivals typical of IoT applications, SPRIGHT still
improves the average latency by 16% while reducing CPU
cycles by 41%, when compared to Knative using ‘pre-warmed’
functions. This makes it feasible for SPRIGHT to support
several ‘warm’ functions with minimum overhead (since
CPU usage is load-proportional), sidestepping the ‘cold-start’
latency problem. Across several typical serverless work-
loads, SPRIGHT shows higher dataplane performance while
avoiding the inefficiencies of current open-source serverless
environments, thus getting us closer to meeting the promise
of serverless computing. In addition, SPRIGHT saves 32%
startup latency for a single function pod compared to Kna-
tive, which is an ideal capability for serverless computing.
SPRIGHT is publicly available at https://github.com/ucr-
serverless/spright.git

REFERENCES

[1] V. Mittal et al., “Mu: An efficient, fair and responsive serverless
framework for resource-constrained edge clouds,” in Proc. ACM Symp.
Cloud Comput., Nov. 2021, pp. 168–181.

[2] (2022). AWS Serverless API. [Online]. Available: https://docs.aws.
amazon.com/serverless-application-model/latest/developerguide/sam-
resource-api.html

[3] (2022). OpenFaaS API Gateway/Portal. [Online]. Available: https://docs.
openfaas.com/architecture/gateway/

[4] (2022). MQTT Version 5.0. [Online]. Available: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[5] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application
protocol for billions of tiny internet nodes,” IEEE Internet Comput.,
vol. 16, no. 2, pp. 62–67, Mar./Apr. 2012.

[6] I.-C. Wang, S. Qi, E. Liri, and K. K. Ramakrishnan, “Towards a proactive
lightweight serverless edge cloud for Internet-of-Things applications,” in
Proc. IEEE Int. Conf. Netw., Archit. Storage (NAS), Oct. 2021, pp. 1–4.

[7] (2022). APACHE KAFKA. [Online]. Available: https://kafka.apache.org/
[8] (2022). Istio Traffic Management. [Online]. Available: https://istio.

io/latest/docs/concepts/traffic-management/
[9] S. Qi, L. Monis, Z. Zeng, I.-C. Wang, and K. K. Ramakrishnan,

“SPRIGHT: Extracting the server from serverless computing! High-
performance eBPF-based event-driven, shared-memory processing,” in
Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 780–794.

[10] (2022). Knative. [Online]. Available: https://knative.dev
[11] The Linux Foundation. (2022). EBPF. [Online]. Available: https://

ebpf.io/
[12] (2022). Knative Eventing. [Online]. Available: https://knative.dev/docs/

eventing/
[13] (2022). OpenWhisk—Creating Action Sequences. [Online]. Available:

https://github.com/apache/openwhisk/blob/master/docs/actions.md#
creating-action-sequences

[14] (2022). OpenWhisk Composer. [Online]. Available: https://github.com/
apache/openwhisk-composer

[15] (2022). Chaining OpenFaaS Functions. [Online]. Available: https://
ericstoekl.github.io/faas/developer/chaining_functions/

[16] Microsoft. (2022). Azure—Function Chaining in Durable Func-
tions. [Online]. Available: https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-sequence?tabs=csharp

[17] (2022). NGINX. [Online]. Available: https://www.nginx.com/
[18] (2022). Istio Architecture. [Online]. Available: https://istio.io/latest/docs/

ops/deployment/architecture/
[19] J. Li, S. G. Kulkarni, K. Ramakrishnan, and D. Li, “Understanding open

source serverless platforms: Design considerations and performance,” in
Proc. 5th Int. Workshop Serverless Comput., 2019, pp. 37–42.

[20] (2022). Of-Watchdog. [Online]. Available: https://github.com/openfaas/
of-watchdog

[21] (2021). Wrk. [Online]. Available: https://github.com/wg/wrk
[22] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soule,

“Zerializer: Towards zero-copy serialization,” in Proc. Workshop Hot
Topics Operating Syst., 2021, pp. 206–212.

[23] D. Raghavan, P. Levis, M. Zaharia, and I. Zhang, “Breakfast of champi-
ons: Towards zero-copy serialization with NIC scatter-gather,” in Proc.
Workshop Hot Topics Operating Syst., Jun. 2021, pp. 199–205.

[24] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalabil-
ity,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1, pp. 656–671,
Mar. 2021.

[25] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,
“Securing Linux with a faster and scalable iptables,” ACM SIGCOMM
Comput. Commun. Rev., vol. 49, no. 3, pp. 2–17, Nov. 2019.

[26] T. Høiland-Jørgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in Proc. 14th Int.
Conf. Emerg. Netw. Experiments Technol., 2018, pp. 54–66.

[27] J. Levin and T. A. Benson, “ViperProbe: Rethinking microservice
observability with eBPF,” in Proc. IEEE 9th Int. Conf. Cloud Netw.
(CloudNet), Nov. 2020, pp. 1–8.

[28] Red Hat. (2022). Understanding the EBPF Networking Features
in RHEL. [Online]. Available: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_
networking/assembly_understanding-the-ebpf-features-in-rhel-8_
configuring-and-managing-networking

[29] (2022). EBPF XDP: The Basics and a Quick Tutorial. [Online]. Avail-
able: https://www.tigera.io/learn/guides/ebpf/ebpf-xdp/

[30] (2021). Apache Benchmark. [Online]. Available: https://httpd.apache.
org/docs/2.4/programs/ab.html

[31] M. Abranches, O. Michel, and E. Keller, “Getting back what was lost
in the era of high-speed software packet processing,” in Proc. 21st ACM
Workshop Hot Topics Netw., 2022, pp. 228–234.

[32] (2023). Multi-process Support of DPDK. [Online]. Available: https://doc.
dpdk.org/guides/prog_guide/multi_proc_support.html

[33] (2023). Ring Library. [Online]. Available: https://doc.dpdk.org/guides/
prog_guide/ring_lib.html

[34] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. Workshop Hot Topics Middleboxes
Netw. Function Virtualization, Aug. 2016, pp. 26–31.

[35] (2023). Apache Camel. [Online]. Available: https://camel.apache.
org/camel-k/2.1.x/kamelets/kamelets.html

[36] S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 639–652, Apr. 2020.

[37] Z. Wang et al., “DeepScaling: Microservices autoscaling for stable CPU
utilization in large scale cloud systems,” in Proc. 13th Symp. Cloud
Comput., 2022, pp. 16–30.

[38] J. Park, B. Choi, C. Lee, and D. Han, “GRAF: A graph neural
network based proactive resource allocation framework for SLO-oriented
microservices,” in Proc. 17th Int. Conf. Emerg. Netw. Experiments
Technol., 2021, pp. 154–167.

[39] C. Jin et al., “Ditto: Efficient serverless analytics with elastic paral-
lelism,” in Proc. ACM SIGCOMM Conf., Sep. 2023, pp. 406–419.

[40] (2023). Online Boutique by Google. [Online]. Available: https://github.
com/GoogleCloudPlatform/microservices-demo

[41] (2022). Locust. [Online]. Available: https://locust.io/
[42] (2022). Knative Serving—Activator. [Online]. Available: https://github.

com/knative/serving/blob/main/docs/scaling/SYSTEM.md#activator
[43] C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westhues, “The MERL

motion detector dataset,” in Proc. Workshop Massive Datasets, 2007,
pp. 10–14.

[44] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo, “Car parking
occupancy detection using smart camera networks and deep learning,” in
Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2016, pp. 1212–1217.

[45] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “ECML: Improving
efficiency of machine learning in edge clouds,” in Proc. IEEE 9th Int.
Conf. Cloud Netw. (CloudNet), Nov. 2020, pp. 1–6.

[46] (2022). Knative Serving. [Online]. Available: https://knative.dev/docs/
serving/

[47] (2021). Kubernetes Components. [Online]. Available: https://kubernetes.
io/docs/concepts/overview/components/

[48] (2022). Project Calico. [Online]. Available: https://www.tigera.io/
project-calico/

[49] D. Duplyakin et al., “The design and operation of CloudLab,” in Proc.
USENIX Annu. Tech. Conf., 2019, pp. 1–14.



2554 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

[50] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in Proc. USENIX
Annu. Tech. Conf., 2020, pp. 205–218.

[51] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-
optimized containers,” in Proc. USENIX Annu. Tech. Conf., 2018,
pp. 57–70.

[52] S. Thomas, L. Ao, G. M. Voelker, and G. Porter, “Particle: Ephemeral
endpoints for serverless networking,” in Proc. 11th ACM Symp. Cloud
Comput., 2020, pp. 16–29.

[53] V. Jain, S. Qi, and K. K. Ramakrishnan, “Fast function instantiation
with alternate virtualization approaches,” in Proc. IEEE Int. Symp. Local
Metrop. Area Netw. (LANMAN), Jul. 2021, pp. 1–6.

[54] (2022). AWS Lambda. [Online]. Available: https://aws.amazon.com/
lambda/

[55] (2022). IBM Cloud Functions. [Online]. Available: https://cloud.ibm.
com/functions/

[56] (2022). Apache OpenWhisk. [Online]. Available: https://openwhisk.
apache.org/

[57] (2022). OpenFaaS. [Online]. Available: https://www.openfaas.com/
[58] P. Benedetti, M. Femminella, G. Reali, and K. Steenhaut, “Experimental

analysis of the application of serverless computing to IoT platforms,”
Sensors, vol. 21, no. 3, p. 928, Jan. 2021.

[59] X. Zhu et al., “Dissecting overheads of service mesh sidecars,” in Proc.
ACM Symp. Cloud Comput., Oct. 2023, pp. 142–157.

[60] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proc. ACM SIG-
COMM Conf., 2021, pp. 65–77.

[61] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Trans. Comput. Syst., vol. 15, no. 3,
pp. 217–252, 1997.

[62] J. Lei, M. Munikar, K. Suo, H. Lu, and J. Rao, “Parallelizing packet
processing in container overlay networks,” in Proc. 16th Eur. Conf.
Comput. Syst., 2021, pp. 1–16.

[63] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proc. Workshop Experim. Comput. Sci., Jun. 2007, pp. 1–4.

[64] S. Kanev et al., “Profiling a warehouse-scale computer,” in Proc. 42nd
Annu. Int. Symp. Comput. Architecture, 2015, pp. 158–169.

[65] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “Revisiting the open vSwitch
dataplane ten years later,” in Proc. ACM SIGCOMM Conf., Aug. 2021,
pp. 245–257.

[66] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proc. 11th USENIX Symp. Networked Syst. Design Imple-
ment., Seattle, WA, USA, Apr. 2014, pp. 445–458.

[67] I. E. Akkus et al., “SAND: Towards high-performance serverless
computing,” in Proc. USENIX Annu. Tech. Conf., Boston, MA, USA,
Jul. 2018, pp. 923–935.

[68] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer,
“Sledge: A serverless-first, light-weight wasm runtime for the edge,” in
Proc. 21st Int. Middleware Conf., 2020, pp. 265–279.

[69] A. Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in Proc. 17th USENIX Symp. Networked Syst. Design
Implement., 2020, pp. 419–434.

[70] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Atoll: A scalable low-latency server-
less platform,” in Proc. ACM Symp. Cloud Comput., Nov. 2021,
pp. 138–152.

[71] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra,
M. T. Kandemir, and C. Das, “Kraken: Adaptive container provisioning
for deploying dynamic dags in serverless platforms,” in Proc. ACM
Symp. Cloud Comput., 2021, pp. 153–167.

[72] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling quality-of-service in serverless computing,” in Proc. 11th ACM
Symp. Cloud Comput., Oct. 2020, pp. 311–327.

[73] S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and efficient
container startup at the edge via dependency scheduling,” in Proc. 3rd
USENIX Workshop Hot Topics Edge Comput., 2020, pp. 1–7.

[74] P.-M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms:
A pool-based approach,” 2019, arXiv:1903.12221.

[75] A. Fuerst and P. Sharma, “FaasCache: Keeping serverless computing
alive with greedy-dual caching,” in Proc. 26th ACM Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., Apr. 2021, pp. 386–400.

Shixiong Qi received the B.Sc. degree in elec-
tronic and information engineering from Nanjing
University of Posts and Telecommunications, China,
in 2015, and the M.Sc. degree in communication and
information systems from Xidian University, China,
in 2018. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and Engi-
neering, University of California at Riverside. His
current research interests include cloud computing,
5G, and network function virtualization.

Leslie Monis received the B.Tech. degree in com-
puter science and engineering from NITK, India,
in 2019, and the M.S. degree in computer science
from the University of California at Riverside in
2022. He is currently a Software Engineer with
NVIDIA. His research interests include cloud com-
puting and network function virtualization.

Ziteng Zeng received the B.Sc. degree in computer
science from Zhejiang University, China, in 2020,
and the M.S. degree in computer science from
the University of California at Riverside in 2022.
He is currently a Software Engineer with Google.
His research interests include cloud computing and
network function virtualization.

Ian-Chin Wang received the bachelor’s degree in
computer science from National Chiao Tung Uni-
versity, Taiwan, in 2018, and the M.S. degree in
computer science from the University of California
at Riverside in 2021. He is currently a Software
Engineer with Oracle. His research interests include
serverless computing and the IoT.

K. K. Ramakrishnan (Life Fellow, IEEE) received
the M.Tech. degree from the Indian Institute of
Science in 1978 and the M.S. and Ph.D. degrees in
computer science from the University of Maryland,
College Park, USA, in 1981 and 1983, respec-
tively. He is currently a Professor of computer
science and engineering with the University of
California at Riverside. Previously, he was a Distin-
guished Member of the Technical Staff with AT&T
Labs-Research. Before 1994, he was the Technical
Director and a Consulting Engineer of networking

with Digital Equipment Corporation. From 2000 to 2002, he was the Founder
and the Vice President with TeraOptic Networks Inc. He has published
nearly 300 articles and has 183 patents issued in his name. He is an ACM
Fellow and an AT&T Fellow, recognized for his fundamental contributions
to communication networks, including his work on congestion control, traffic
management, and VPN services.


