
PISeL: Pipelining DNN Inference for Serverless Computing
Masoud Rahimi Jafari

∗

University of Connecticut

Storrs, Connecticut, USA

Jianchang Su
∗

University of Connecticut

Storrs, Connecticut, USA

Yifan Zhang

University of Connecticut

Storrs, Connecticut, USA

Oliver Wang

University of Chicago

Chicago, Illinois, USA

Wei Zhang
†

University of Connecticut

Storrs, Connecticut, USA

wei.13.zhang@uconn.edu

Abstract
Serverless computing offers resource efficiency, cost efficiency, and

a "pay-as-you-go" pricing model, which makes it highly attractive

to both users and cloud providers. However, serverless computing

faces serious cold start problem, especially for deep neural network

(DNN) inference, which requires low latency. Existing cold start

optimization focuses only on quick container start and fast runtime

and library loading. However, DNN application bootstrap (DNN

framework load and start, model initialization, model download,

deserialization and copy) is the leading factor during the overall cold

start time. As the model size grows, the application-level bootstrap

becomes more severe.

We present PISeL, a generic and fast application-level cold-start

optimization mechanism for DNN inference. We propose a layer-

grouping mechanism and policy to pipeline model download, model

deserialization and copy and request execution. The grouping pol-

icy strikes a balance that minimizes both pipeline bubble risk and

synchronization overhead. The pipelining process is transparent to

a variety of DNN jobs and is implemented with the hook point in a

lightweight manner. PISeL not only greatly reduces the cold start

time, but also the peek memory usage which can easily incur OOM

(out of memory) problem. Our experiments show that PISeL accel-

erates cold start time with all experimented system configurations

and DNN models. PISeL can speed up cold start times by 37% and

63% using PyTorch framework executed on CPU and GPU and also

29% and 33% using TensorFlow framework executed on CPU and

GPU. Furthermore, PISeL reduces maximum memory usage by up

to 59% and 30% using PyTorch and TensorFlow frameworks.

CCS Concepts
•Computingmethodologies→Machine learning; •Computer
systems organization→ Cloud computing.

∗
Both authors contributed equally to this work.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679824

Keywords
DNN Inference; Cold-Start Optimization; Model Partitioning

ACM Reference Format:
Masoud Rahimi Jafari, Jianchang Su, Yifan Zhang, Oliver Wang, and Wei

Zhang. 2024. PISeL: Pipelining DNN Inference for Serverless Computing. In

Proceedings of the 33rd ACM International Conference on Information and
KnowledgeManagement (CIKM ’24), October 21–25, 2024, Boise, ID, USA.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3627673.3679824

1 Introduction
Deep neural networks (DNNs) have revolutionized the field of ar-

tificial intelligence and have become increasingly popular for a

wide range of applications, including image classification, speech

recognition, and natural language processing. However, as the DNN

models become complex and large, it raises the challenges to prop-

erly allocate the required resources for the users and manage the

resource at scale to accommodate the complex and varied work-

loads [12, 28, 37].

Serverless computing offers resource efficiency, cost efficiency,

and a "pay-as-you-go" pricing model [15]. A serverless platform

runs the service inside the containers and automatically handles re-

source management. The developers simply upload their code and

the platform executes it on their behalf as needed at any scale. De-

velopers do not need to worry about resource provision or server

operation, and they pay only for the computing resources used

when their code is invoked. This auto-scaling and cost-effective

price model makes serverless computing an attractive tool to ac-

commodate the surge in DNN workloads [38].

Serverless computing removes the complex burden of resource

management for the users [30]. However, it faces the problem of

lengthy execution environment setup. When a service is required or

there are new incoming requests, the required running environment

has to be setup and provided quickly. It involves container creation

and start, runtime and library setup and loading and application

bootstrap, which calls cold start time. Only if the execution environ-

ment is ready, a request can start to be served. The expensive cold

start time adds the substantial latency to the users’ request. There

aremanyworks focusing on the optimization of cold start time, such

as fast container creation and start, quick runtime and library setup

and loading. Unfortunately, the application environment setup and

bootstrap is overlooked. However, for DNN inference workloads

the application bootstrap becomes the leading factor during the

overall cold start time, shown in section 2. After a DNN model is

initialized, the large model parameters need to be pulled from the

1951

https://orcid.org/0009-0004-5693-2795
https://orcid.org/0000-0002-4089-8316
https://orcid.org/0009-0005-6403-2161
https://orcid.org/0009-0001-7991-2445
https://orcid.org/0009-0004-9512-4192
https://doi.org/10.1145/3627673.3679824
https://doi.org/10.1145/3627673.3679824
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679824&domain=pdf&date_stamp=2024-10-21

CIKM ’24, October 21–25, 2024, Boise, ID, USA Masoud Rahimi Jafari, Jianchang Su, Yifan Zhang, Oliver Wang, & Wei Zhang

remote storage to the compute node. Then the downloaded data is

required to be deserialized, and then an expensive memory copy is

followed to copy the datas into the device. To practically deploy the

DNN inference workloads in the serverless computing platform,

we have to optimize the expensive DNN application bootstrap time.

On the other hand, during the DNN application bootstrap, the

memory copy for the model parameters loading incurs the signif-

icant memory consumption increase. The instant memory peak

usage in DNN workloads can easily lead to out of memory (OOM)

problem. Although setting up a large memory needs can mitigate

this problem, it indeed brings more cost to the users. Furthermore,

the public providers usually adds a limitation for the maximum

memory a container can take. Eg, AWS Lambda sets up a maximum

memory limitation for each container with 10GB. Due to the maxi-

mum memory limitation and cost efficiency to the users, reducing

the peak memory usage for DNN model at any stage is required in

serverless computing environment.

Furthermore, there are a variety of DNN frameworks with the

different versions (such as PyTorch, Tensorflow, MXNet et.al) and

DNN jobs from the different areas (such as NLP, CV...). It requires a

general solution to optimization the cold start primarily incurred

by the DNN application bootstrap and peak memory consumption

caused by the memory copy during the loading stage. The proposed

solution should not require any change or update from the DNN

jobs and models and fully be be transparent to them. It should also

provide well compatibility with the different DNN frameworks.

To this end, we propose PISeL, a generic and efficient DNN

application bootstrap in serverless computing environment. PISeL

leverages a key observation that DNNmodel is usually composed by

a number of layers and a request follows a layer-by-layer execution

pattern. As such, there is no need to wait for the entire model to

be downloaded from the remote storage, then start to do the data

deserialization and loading into the device, and finally kick off the

request serving. Based on this observation, we design a pipelined

model mechanism, which can pipeline themodel download from the

remote storage, model deserialization and loading and the request

execution. However, the stages across the download, deserialization

and loading and execution require the synchronization. Only when

the previous stage is completed can the next stage start performing

its work.

The first challenge is to how to divide the model into groups and

overlap the latency across the stages. The naive pieplining strategy

is to perform on a layer-by-layer granularity. However, it can incur

high data transmission requests and synchronization overhead. To

reduce those overhead, PISeL pipeline divides a model layers into

groups and partitions, each of which contains several model lay-

ers. A bad partition decision could incur serious pipeline bubble,

which incurs the unnecessary waiting time across the stages and

then dramatically impact the pipeline efficiency [23]. To strike the

pipeline bubble and synchronization overhead, we design an op-

timal model-aware grouping algorithm to find the best grouping

strategy for a given model. With the pipelined model, it not only

shorten the DNN bootstrap time by overlapping the latency across

the stages, it can accordingly reduce the peak memory usage during

the loading time. The traditional way needs to download every-

thing and then start the memory copy for loading, which requires

double the size of model parameters for memory consumption. In

contrast, the memory copy in the partitioned model only involves

the parameters of a few layers within a group.

The second challenge is to make the mechanism generic and

accommodate a variety of DNNmodels and DNN platforms with dif-

ferent versions. We provide plugins for the popular DNN platforms

including Pytorch, Tensorflow and MXNet to easily implement the

pipelining DNN bootstrap with function hook points instead of any

model change or deep framework update. To do so, the mechanism

can be easily deployed and migrated from one version to another

version for the different DNN frameworks.

As the model size grows, PISeL performs more effective. With

small model size, the system benefit is limited as expected while

not adding extra latency and overhead. In the evaluation section,

we run the small, medium and big DNN model sizes to show the

system behavior. Because of the limited number of released mod-

els from MXNet and the difficulty of model conversion from the

other platfroms to MXNet platform, we only run the models on the

Pytorch and Tensorflow frameworks. Our evaluation shows that

PISeL can reduce response time in cold start scenarios up to 35% on

CPU and 30% on GPU. Accordingly PISeL can significantly decrease

the peak memory usage. Eg, the peak memory usage of the GPT-2

XL model falls down from 16GB to 9GB with PISeL enabled.

In summary, we make the following contributions:

• We observe the serious impact of DNN application bootstrap

to cold start time in serverless computing platform and the

serve peak memory consumption caused by DNN model

copy during the loading.

• We design a generic and fast application-level cold-start op-

timization mechanism, PISeL, that can pipeline model down-

load, model deserialization and loading, and computation in

a light-weight and transparent manner.

• We propose a group-partition algorithm to intelligently di-

vide layers into a group to pipeline the stages. It can strike

the balance between the pipeline bubble risk and synchro-

nization overhead.

• We prototype PISeL on the popular PyTorch and Tensorflow

platforms, and then evaluate its effectiveness of improvement

in cold start time and peak memory usage.

2 Background and Motivation
This section provides an overview of serverless computing and

its application to DNN inference, highlighting the key challenges

and limitations that motivate our work. We draw upon relevant

prior literature to contextualize our contributions and situate our

research within the broader field.

Serverless Computing. Serverless computing, also known as

Function as a Service (FaaS), has emerged as a popular paradigm for

deploying applications in the cloud [15]. In contrast to traditional

cloud computing models, serverless platforms abstract away the

underlying infrastructure, allowing developers to focus on writ-

ing and deploying stateless functions without the need for server

management. Serverless platforms automatically handle resource

allocation, scaling, and billing, providing a highly elastic and cost-

effective environment for executing event-driven workloads.

The fine-grained, pay-per-use pricing model of serverless com-

puting has made it an attractive option for a wide range of ap-

plications, including data processing, web services, and machine

1952

PISeL: Pipelining DNN Inference for Serverless Computing CIKM ’24, October 21–25, 2024, Boise, ID, USA

learning inference. However, the serverless execution model also

introduces new challenges and limitations, particularly in terms

of performance predictability and resource efficiency. One of the

most significant issues is the cold start problem, which refers to

the latency incurred when a function is invoked after a period of

inactivity, requiring the platform to provision and initialize a new

execution environment [1, 2].

Cold-start in DNN Serving. The application of serverless com-

puting to DNN inference workloads has gained significant attention

due to the growing demand for scalable and cost-effective inference

serving [40]. However, the cold start problem poses a major chal-

lenge for DNN inference in serverless environments, as initializing

and loading large DNN models can cause substantial latency.

As shown in Figure 1, serving a DNN inference request in a

serverless platform involves several time-consuming steps, includ-

ing downloading model parameters from remote storage (e.g., S3,

Blob storage), loading the parameters into the serverless function’s

memory, and executing the inference computation on the input

data. Each step significantly contributes to the overall inference

latency, especially for larger and more complex DNN models.

Previous work has explored various methods to reduce cold start

latency in serverless environments by optimizing container cre-

ation, startup, runtime, and libraries [1, 2, 5, 8, 19, 31, 41]. While

promising for general serverless workloads, these techniques may

not fully address the unique requirements of DNN inference, which

involve largemodels and strict latency constraints, making application-

level bootstrap a leading time cost in the overall cold-start time.

Recent studies have specifically targeted the performance and

resource optimization of DNN workloads in serverless environ-

ments [11, 18, 22]. Although these studies have made valuable

contributions, they do not fully address the challenges of cold start

latency and resource efficiency for DNN inference in serverless en-

vironments. Our work aims to bridge this gap by proposing a novel,

framework-agnostic approach that optimizes the end-to-end perfor-

mance of DNN inference workloads through pipelined execution

and efficient resource management.

Memory Footprint. Memory consumption is a critical factor in

serverless computing [16, 18, 39], as it directly impacts both the

cost and performance of applications. Serverless platforms typi-

cally charge users based on the amount of memory allocated to

their functions, even if the actual memory usage is lower. This

pricing model incentivizes developers to carefully optimize the

memory footprint of their serverless functions to minimize costs

while ensuring adequate performance.

DNN inference workloads are particularly memory-intensive, as

they require loading large model parameters into memory during

the inference process. As shown in Figure 2, popular DNN frame-

works such as PyTorch and TensorFlow can exhibit substantial

memory overheads during the model loading phase, often far ex-

ceeding the actual runtime requirements of the inference task. This

inefficiency stems from the creation of multiple copies of model

parameters during the loading process, leading to unnecessary

memory consumption and increased costs.

Prior work has investigated various techniques for optimizing

memory usage in serverless environments, aiming to reduce costs

and improve resource efficiency. However, these solutions do not

specifically address the memory inefficiencies of DNN frameworks,

ResNet50 VGG19 RegNet GPT2 GPT2-M GPT2-XL Wav2Vec2Whisper-M Whisper-L

20

40

60

80

100

pe
rc

en
t

container and framework init
init model

download
load

execute

(a) PyTorch CPU

ResNet50 VGG19 RegNet GPT2 GPT2-M GPT2-XL Wav2Vec2Whisper-M Whisper-L

20

40

60

80

100

pe
rc

en
t

container and framework init
init model

download
load

execute

(b) PyTorch GPU

ResNet50 VGG19 RegNet GPT2 GPT2-M GPT2-XL Wav2Vec2Whisper-M Whisper-L

20

40

60

80

100

pe
rc

en
t

container and framework init
init model

download
load

execute

(c) TensorFlow CPU

ResNet50 VGG19 RegNet GPT2 GPT2-M GPT2-XL Wav2Vec2Whisper-M Whisper-L

20

40

60

80

100

pe
rc

en
t

container and framework init
init model

download
load

execute

(d) TensorFlow GPU

Figure 1: Tasks time in a cold-start scenario

which are a major contributor to the high memory footprint of

serverless inference workloads.

Transparency To Frameworks and Platforms.Optimizing DNN

inference workloads in serverless environments is challenging due

to the lack of transparency and portability across different frame-

works and platforms. Existing techniques often rely on framework-

specific modifications or deep integration with the serverless in-

frastructure, limiting their adoptability and generalizability.

Our work addresses this by proposing a framework-agnostic

approach that can be easily integrated with popular DNN frame-

works like TensorFlow, PyTorch, and MXNet, without extensive

modifications to the application code or serverless platform. Using

dynamic library interposition and function-level hooks, our solu-

tion enables transparent optimization of DNN inference workloads

across various serverless environments.

Recognizing the importance of transparency and interoperabil-

ity in serverless computing, prior work has aimed to establish

common standards and abstractions. Our approach aligns with

1953

CIKM ’24, October 21–25, 2024, Boise, ID, USA Masoud Rahimi Jafari, Jianchang Su, Yifan Zhang, Oliver Wang, & Wei Zhang

0 2 4 6 8 10 12 14 16
Time(s)

0
1000
2000
3000
4000
5000
6000
7000
8000

M
em

or
y

Us
ag

e(
M

B)

(a) PyTorch

0 2 4 6 8 10 12 14 16 18 20
Time(s)

0

2000

4000

6000

8000

10000

12000

14000

M
em

or
y

Us
ag

e(
M

B)

(b) TensorFlow

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

0

300

600

900

1200

1500

M
em

or
y

Us
ag

e(
M

B)

(c) MXNet

Figure 2: Memory usage during a cold-start

these efforts, providing a transparent, framework-agnostic solution

for optimizing DNN inference workloads in serverless environ-

ments. This contributes to building a more open, interoperable,

and performant serverless ecosystem by eliminating the need for

framework-specific modifications and enabling seamless integra-

tion with existing serverless platforms.

3 System Design
PISeL is designed to address the challenges of cold start latency and

high memory usage in serverless environments for DNN services.

The design goals of PISeL are as follows:

G1:Minimize the cold start time.Optimize the DNN application

bootstrap time due to the leading factor for the cold start

time in the serverless computing platform.

G2: Minimize the peak memory usage. Reduce the memory

copy consumption during model loading and substantially

minimize the peak memory usage.

G3: Minimize the introduced overhead. Provide a light-weight
sychronization mechanism during model loading and com-

pletely remove the synchronization after fully load.

G4: Provide the transparency to the DNN jobs. Design the

optimization mechanism which is transparent to a variety of

DNN jobs, which does not incur any code change or update

for DNN jobs.

G5: Maintain the compatibility to DNN frameworks. Provide
the compatibility to the different versions of DNN frame-

works by avoiding any deep change.

To achieve G1 and G2, PISeL partitions the DNN model into

smaller parts, grouping consecutive layers while minimizing over-

head. To achieve G3, PISeL removes all the hooks and wrappers

used for partitioning and parallelization once the model is fully

loaded. This ensures zero overhead during steady-state operation,

allowing the framework to serve requests efficiently. PISeL main-

tains transparency and compatibility (G4 and G5) by using hooks

and wrappers that can be easily adapted to different DNN frame-

works. This enables seamless integration with popular libraries

such as PyTorch, TensorFlow, and MXNet.

3.1 System Overview
Figure 3 illustrates the overall architecture of PISeL, showing the

interaction between the various components. The system design

allows for efficient model partitioning and parallel downloading,

addressing G1 by minimizing cold start times and G2 by reducing

peak memory usage during loading. It achieves G3 by utilizing

a lightweight synchronization mechanism during model loading

and removing it once loading is complete, ensuring minimal over-

head. The architecture also supports G4 and G5, maintaining trans-

parency and compatibility with various DNN frameworks.

Container

Disaggregated Storage

TensorFlow
Inference

TensorFlow API

TensorFlow Plugin
Group

Partition
Agent

Group
Download &
load module

Group
Execution

TensorFlow Engine

Group Partition Repository

Sync

Container

Pytorch Inference

Pytorch API

Pytorch Plugin
Group

Partition
Agent

Group
Download &
load module

Group
Execution

Pytorch Engine

Sync

Container

MXNet Inference

MXNet API

MXNet Plugin
Group

Partition
Agent

Group
Download &
load module

Group
Execution

MXNet Engine

Sync

Model Group Partition Solver Model Group Partition Cache

Figure 3: PISeL Architecture

Model Partitioning. The first stage in PISeL involves splitting the

DNN model into partitions, where each partition consists of one or

more layers. Partitioning the model enables parallel downloading,

loading, and execution of the layers, which significantly reduces

the cold start time and peak memory usage.

When designing the partitioning strategy, we considered two

key factors: the granularity of the partitions and the overhead as-

sociated with each partition. Splitting a single layer into multiple

partitions does not provide any benefits in terms of memory usage

or response time during cold starts. This is because, during the load-

ing phase, the entire layer must be passed to the DNN framework

regardless of how it is partitioned. Therefore, our design ensures

that each layer remains intact within a partition. Additionally, to

achieve optimal performance through parallel execution and load-

ing, our partitioning strategy groups only consecutive layers within

a partition. This allows the layers to be loaded in the correct order,

enabling the DNN framework to start executing the layers as soon

as their dependencies are resolved.

The challenge lies in determining the optimal grouping of con-

secutive layers into partitions. Two main considerations guide this

decision. First, creating a new partition introduces an overhead,

which is equal to the request latency (𝑅𝐿) associated with initial-

izing the partition. Second, in the absence of overhead, the ideal

scenario for minimizing peakmemory usage and cold start response

time would be to place each layer in its own partition. However,

this approach is not practical due to the overhead associated with

managing a large number of partitions. To address this challenge,

we introduce a lower bound on the size of each partition. The par-

tition overhead can be avoided if the size of the previous partition

exceeds the product of 𝑅𝐿 and the connection bandwidth(𝐵𝑊).

1954

PISeL: Pipelining DNN Inference for Serverless Computing CIKM ’24, October 21–25, 2024, Boise, ID, USA

Model Partitioning Solver. The model partitioning objective is to

minimize the response time in cold start scenarios while reducing

the maximum memory consumption during model loading. We

formulated the problem as below:

Let 𝐷 [𝑖], 𝐿[𝑖], and 𝐸 [𝑖] denote the time taken for the 𝑖-th layer

to be downloaded, loaded, and execute the request, respectively.

Additionally, let 𝑅𝐿 represent the time remote storage takes to start

transfering a file to the application. The tasks can be defined as

𝐷 [0 : 𝑛], 𝐿[0 : 𝑛], and 𝐸 [0 : 𝑛], with dependencies 𝐸 [𝑖] → 𝐿[𝑖] →
𝐷 [𝑖]. Due to CPU and I/O constraints, only one 𝐿 or 𝐸 task and one

𝐷 task can be executed in a thread at any given moment. For each

layer, PISeL considers two options:

(1) Merging the layer with the next partition

(2) Splitting the layer from the next partition and starting a new

partition

Merging reduces the number of download requests to remote stor-

age cluster but may increase the maximum memory usage during

loading and miss the opportunity to perform 𝐿[𝑖] and 𝐸 [𝑖] while
the next partition is being downloaded.

The ideal memory management method is sequential layer load-

ing, minimizing peak memory use. However, due to considerable

transmission and synchronization overhead, PISeL partitions the

model into small-sized partitions, balancingmemory efficiency with

reduced loading delays.

PISeL proposal a model partitioning algorithm for splitting the

DNN model into optimal partitions when it receives a partitioning

order from the Partition Agent. The algorithm uses the 𝑅𝐿 and

𝐵𝑊 parameters provided in the partitioning order to determine

the optimal partition size. It downloads the model from the remote

storage (e.g., AWS S3, Google Cloud Storage, Azure Blob Storage,

etc.), groups layers into partitions such that each partition size ex-

ceeds 𝑅𝐿×𝐵𝑊 , and uploads the partitions to the Model Partitioning

Cache as shown in Algorithm 1.

Algorithm 1 Greedy-based Model Partitioning Algorithm

Input: 𝑚𝑜𝑑𝑒𝑙 : a sequence of layers {𝐿1, 𝐿2, . . . , 𝐿𝑛};
𝑅𝐿: request latency;𝐵𝑊 : bandwidth of the network connection

Output: Optimal partitions 𝑃 of the model

1: function ModelPartitioning(𝑚𝑜𝑑𝑒𝑙, 𝑅𝐿, 𝐵𝑊)

2: 𝑃, 𝑝i ← ∅, ∅
3: 𝑏min ← 𝑅𝐿 · 𝐵𝑊
4: for 𝑖 , 𝑙𝑎𝑦𝑒𝑟 ∈ enumerate(𝑚𝑜𝑑𝑒𝑙) do
5: 𝑝i ← 𝑝i ∪ {𝑙𝑎𝑦𝑒𝑟 }
6: if |p

i
| ≥ 𝑏min then

7: 𝑃 ← 𝑃 ∪ {𝑝i}
8: upload_to_cache(𝑝i)
9: 𝑝i ← ∅
10: if 𝑝i ≠ ∅ then
11: 𝑃 ← 𝑃 ∪ {𝑝i}
12: upload_to_cache(𝑝i)
13: return 𝑃

The algorithm iterates through the model layers, grouping them

into partitions until the size of a partition reaches the minimum

bound 𝑏min, calculated as 𝑅𝐿 × 𝐵𝑊 . Partitions are uploaded to the

Model Partitioning Cache for parallel downloading and processing.

The Partition Downloader downloads partitions in parallel, ini-

tiating the next download when the remaining size of the current

partition equals the overlay size (𝑅𝐿 × 𝐵𝑊), maximizing network

bandwidth utilization. The Partition Loader and Executioner load

and execute layers within each partition as they become available,

allowing inference requests to be processed without waiting for

the entire model to load. Condition locks synchronize the loading

and execution processes.

We next proof the correctness of the partitioning algorithm.

Theorem 1. Algorithm 1 finds the optimal partitioning strategy
that minimizes the number of partitions while ensuring that each
partition size is at least 𝑏min.

Proof. Base case: For 𝑛 = 1, if the size of the single layer 𝐿1
is at least 𝑏min, it forms its own partition, which is clearly optimal

since no better partitioning exists. If |𝐿1 | < 𝑏min, it still forms a

partition by itself, as no partitioning can increase its size, fulfilling

the minimum condition by definition of infeasibility to combine

with other layers.

Inductive hypothesis: Assume that for any sequence of layers

{𝐿1, 𝐿2, . . . , 𝐿𝑘 } of length 𝑘 , where 𝑘 ≥ 1, the algorithm finds the

optimal grouping strategy.

Inductive step: Consider a sequence {𝐿1, 𝐿2, . . . , 𝐿𝑘+1}. Let 𝑃
be the partitioning strategy produced by the algorithm for this

sequence. Suppose 𝑃∗ is any other optimal partitioning strategy for

the same sequence.

Let 𝑝ℓ in 𝑃
∗
be the last partition. If 𝑝ℓ contains 𝐿𝑘+1 and other lay-

ers starting from some 𝐿𝑖 , then by optimality of 𝑃1:𝑘 for {𝐿1, 𝐿2, . . . ,
𝐿𝑖−1} (inductive hypothesis), and since |𝑝ℓ | ≥ 𝑏min, it aligns with

the formation in 𝑃 . If 𝑝ℓ equals {𝐿𝑘+1} and |𝐿𝑘+1 | ≥ 𝑏min, 𝐿𝑘+1
forms a partition in 𝑃 optimally. If |𝐿𝑘+1 | < 𝑏min, then in 𝑃 , 𝐿𝑘+1
would join the last partition of 𝑃

1:𝑘 unless adding it exceeds a

threshold, which should be checked by the algorithm.

Thus, in each case, 𝑃 adheres to the optimal strategy, completing

the induction. □

Partitioning Cache. The Model Partitioning Cache stores pre-

computed model partitions and is designed to efficiently handle

simultaneous requests from multiple functions, using in-memory

and distributed caching techniques for fast access. When a server-

less function is triggered, it first queries this cache. If the partitions

are available, the function can immediately proceed with download-

ing and loading them, thereby reducing the latency. This avoids

the latency typically associated with on-the-fly model partitioning.

If the partitions are not available, the cache triggers the Partition

Agent to start the partitioning process. This process involves the

Model Partitioning Solver, which determines the optimal way to

partition the model based on current system configurations and

model requirements. These newly created partitions are then stored

back in the cache for future access by other functions.

Partition Agent. When a new function is initialized, the parti-

tion agent searches for pre-stored partitions in the Model Partition

Cache. If it doesn’t find any partitions in the cache, it performs an

action. First, it calculates the 𝑅𝐿 and BW parameters, then sends a

partitioning order to the partition solver with those two parameters.

𝑅𝐿 can be calculated by downloading several tiny objects stored in

remote storage, each less than a kilobyte in size, and calculating

1955

CIKM ’24, October 21–25, 2024, Boise, ID, USA Masoud Rahimi Jafari, Jianchang Su, Yifan Zhang, Oliver Wang, & Wei Zhang

the average download time. We calculate 𝑅𝐿 and 𝐵𝑊 in functions

instead of in the partition solver because the partition solver has

different resources and limitations compared to functions. If the

partition solver were to measure these parameters, the results could

be unrealistic. After this process, partitions are stored in the cache

and can be used by other functions in the future. Finally, the parti-

tion agent passes 𝑅𝐿 × 𝐵𝑊 to the partition downloader, at which

point its responsibility ends.

Partition Downloader. The Partition Downloader is responsible

for downloading the model partitions from the Model Partitioning

Cache. It receives the overlay size from the Partition Agent and

initiates a connection to the cache. To hide the overhead of ini-

tiating partition downloads, the downloader sends the download

request for the next partition when the remaining size of the cur-

rent downloading partition equals the overlay size. This technique

effectively hides the download initiation overhead and maximizes

the utilization of the available network bandwidth. Once a partition

is fully downloaded, the downloader saves it to a file and notifies

the Partition Loader to load the partition.

Partition Loader. The Partition Loader is responsible for loading

model partitions into memory. It works closely with the Partition

Downloader, which retrieves partitions from the Model Partition-

ing Cache. As each partition is downloaded, the Partition Loader

deserializes the data and loads layer parameters into memory. It

also manages condition locks for each layer, ensuring the Partition

Executioner can execute a layer only once its parameters are fully

loaded.

Parallelize Model Loading And Execution To further reduce

the cold start time, PISeL parallelizes model loading and request

execution. This is possible because layers can execute requests

as soon as their weights are loaded, and the execution process

proceeds layer by layer. By leveraging this characteristic, we can

start executing requests for the loaded layers while the remaining

layers are still being loaded.

However, there are three challenges that must be addressed to

enable efficient parallelization:

• A request can only be executed in a layer after all of the

weights in that layer are fully loaded, and they should wait

if the weights are not yet available.

• The overhead introduced by the parallelization mechanism

must be minimal for each layer. Even a small overhead per

layer can accumulate and significantly increase the response

time, considering the large number of layers in complex

DNN models.

• Different types of layers have varying numbers of parameters

(e.g., weights, biases), and some layers may not have any

parameters at all. The parallelization mechanism must take

these differences into account.

To overcome these challenges, PISeL employs a condition locking

mechanism before executing layers that have at least one param-

eter. When a model is initialized, all the locks are closed. As the

layer parameters are loaded, the corresponding locks are opened,

indicating that the layers are ready for execution. To minimize the

overhead, PISeL does not apply locks to layers that do not have any

parameters. This optimization reduces the number of lock opera-

tions and improves efficiency. Furthermore, to handle the different

types of layers and their varying parameter configurations, PISeL

dynamically identifies all the persistent parameters for each layer.

The lock condition for a layer is updated only when all of its param-

eters are completely loaded. This ensures that a layer is executed

only when it has all the necessary parameters available. By using

this condition locking mechanism, PISeL effectively synchronizes

the model loading and request execution processes. Layers with

loaded weights can start executing requests immediately, while

layers with pending weights wait until they are fully loaded. This

parallelization significantly reduces the cold start time, as the ex-

ecution of layers can begin much earlier than in the traditional

sequential approach.

The Partition Loader deserializes the downloaded partitions and

loads the layer parameters consecutively. As each layer’s parame-

ters are fully loaded, the corresponding condition lock is released,

allowing the Partition Executioner to process requests for that layer.

This synchronization between the Partition Loader and Partition

Executioner ensures efficient parallel processing while maintaining

the correct execution order.

Transparency and Compatibility. A key aspect of PISeL’s design

is its transparency to DNN jobs and serverless platforms, and com-

patibility to DNN frameworks. PISeL requiresminimal code changes

to integrate with existing systems, making it highly adaptable and

easy to adopt. The use of hooks and wrappers allows PISeL to be

easily incorporated into various DNN frameworks, such as PyTorch,

TensorFlow, and MXNet. This transparency and compatibility en-

able the wider community to benefit from PISeL’s optimizations

without the need for extensive modifications to their existing code-

base. By avoiding deep changes to the frameworks, PISeL maintains

compatibility with different versions of the DNN frameworks, en-

suring a smooth integration process. Moreover, PISeL’s design is

platform-agnostic, meaning it can be easily deployed on various

serverless computing platforms without requiring any platform-

specific modifications. This flexibility allows the users to leverage

PISeL’s benefits across the different serverless providers, further

enhancing its usability and adoption potential.

4 Implementation
we have implemented a system prototype for PISeL eith 500 lines of

code in python, and we have integrated that with PyTorch, Tensor-

flow and MXnet frameworks. For each framework there are some

hooks and wrappers to do the synchronisation between download-

ing, loading and execution threads and also there is a fuction to

calculation partitioning optimization problem. Also there our mech-

anism to overlay partitions downloading to remove request latency

is implemented to a function.

5 Evaluation
In this section, we first demonstrate the response time of PISeL

in the cold start scenario and then show the peak memory usage.

We next compare the performance between the proposed layer-

grouping pipelining and the naive layer-by-layer pipelining. Finally

we also evaluate the overhead of the model partition algorithm in

PISeL. Due to the limited number of released models from MXNet

and the difficulty of model conversion from the other platfroms to

MXNet platform, we only evaluate PISeL on the two most popular

1956

PISeL: Pipelining DNN Inference for Serverless Computing CIKM ’24, October 21–25, 2024, Boise, ID, USA

DNN frameworks: Pytorch and Tensorflow on both CPU and GPU

platforms. To make it clear, our objective is not to compare these

frameworks, but to show the improvements contributed by PISeL

on each platform.

Setup:We evaluate PISeL on CPU and GPU platforms. The CPU

setup includes a server with a 24-core AMD 7402P CPU at 2.80GHz,

128GB ECC Memory (8x16GB 3200MT/s RDIMMs), and a 1.6TB

NVMe SSD (PCIe v4.0). The GPU setup includes a server with two

Intel Xeon E5-2667 8-core CPUs at 3.20GHz, 128GB ECC Memory,

two 960GB 6G SATA SSDs, and a NVIDIA 16GB Tesla V100 SMX2

GPU. Both setups connect to a multi-node, multi-storage MinIO

object storage with 10Gb/s throughput.

Workloads:DNNmodels used include ResNet50 [35], VGG19 [33],

RegNet [29], GPT2 [27], LaBSE [9], GPT2-XL [27], Wav2Vec2 [3],

Whisper-M [26], and Whisper-L [26]. We use standard configura-

tions for each model.

Metrics:Wemeasure latency and peak memory usage, reporting

the average of 30 runs. Improvement is calculated by dividing the

response time or peak memory usage with PISeL disabled by the

same metric with PISeL enabled.

Baselines: Our baselines are "No optimization" and "layer-by-

layer" pipeline. "No optimization" performs stages sequentially

(download, deserialization, loading, execution), referred to as "with-

out pipeline." "Layer-by-layer" downloads model layer by layer, with

deserialization and loading following the same pattern.

5.1 Latency in Cold-Start
One of the key improvements of PISeL is to reduce response time in

cold-start scenario. We vary the batch size from 1 to 32 to evaluate

the end-to-end request latency of small, medium and large model

size on both CPU and GPU platforms. We tested the improvement

of PISeL on both TensorFlow and Pytorch frameworks.

Figure 4 and Figure 5 show the latency and speedup for small,

medium, and large models running on the TensorFlow platform in

CPU and GPU setups. We observed: 1) As the model size grows, the

speedup increases because the DNN model bootstrap time takes an

increasing percentage of the overall cold start time. This trend is

shown in Figure 1 of § 2. 2) As the batch size increases, the speedup

first increases and then decreases. This is caused by the increasing

execution latency as the batch size increases. Once the execution

latency dominates the overall cold start time, the stage latency

across downloading, deserialization & loading, and execution can-

not be well overlapped in any partition pattern, impacting pipeline

efficiency. 3) For small models, due to the small percentage of DNN

model bootstrap in the overall cold start, PISeL does not add sig-

nificant benefits or overhead, showing similar performance to the

baseline without using the pipeline. 4) PISeL shows performance

gains on both CPU and GPU platforms. However, the speedup of

TensorFlow on the GPU in Figure 5 is generally lower than that of

PyTorch on the GPU shown in Figure 7. This is because the models

on TensorFlow are not well optimized, resulting in suboptimal per-

formance. Yet, PISeL can still achieve up to 1.32× speedup on large

models like Regnet and GPT2-XL.

We have the similar observations while running the experiments

on Pytorch platform with both CPU and GPU setup, shown in

Figure 6 and Figure 7. On CPU, we observe speed-ups of up to

1 2 4 8 16 32

1
2
3
4
5

Ti
m

e(
s)

1.03X 1.03X 1.03X 1.04X 1.06X 1.06X
W/o Pipeline PISeL

(a) ResNet101(small)

1 2 4 8 16 32

2
4
6
8

10
12

Ti
m

e(
s)

1.06X 1.06X 1.04X 1.02X 1.01X 1.01X
W/o Pipeline PISeL

(b) GPT2(small)

1 2 4 8 16 32

1
2
3
4
5

Ti
m

e(
s)

1.08X 1.09X 1.10X 1.12X 1.17X 1.24X
W/o Pipeline PISeL

(c) VGG19(medium)

1 2 4 8 16 32

5
10
15
20
25
30
35
40

Ti
m

e(
s)

1.17X 1.20X 1.18X 1.14X 1.11X 1.07X
W/o Pipeline PISeL

(d) LaBSE(medium)

1 2 4 8 16 32

5
10
15
20
25
30
35

Ti
m

e(
s)

1.28X 1.29X 1.25X 1.17X 1.13X 1.08X
W/o Pipeline PISeL

(e) RegNet(large)

1 2 4 8 16 32

5
10
15
20
25
30
35
40

Ti
m

e(
s)

1.28X 1.26X 1.15X 1.14X 1.10X 1.05X
W/o Pipeline PISeL

(f) GPT2-XL(large)

Figure 4: TensorFlow CPU

1 2 4 8 16 32

2
4
6
8

10
12
14

Ti
m

e(
s)

1.05X 1.05X 1.05X 1.05X 1.04X 1.04X
W/o Pipeline PISeL

(a) ResNet101(small)

1 2 4 8 16 32

5
10
15
20
25

Ti
m

e(
s)

1.04X 1.05X 1.05X 1.04X 1.03X 1.02X
W/o Pipeline PISeL

(b) GPT2(small)

1 2 4 8 16 32

2
4
6
8

10
12
14
16

Ti
m

e(
s)

1.13X 1.14X 1.15X 1.15X 1.16X 1.14X
W/o Pipeline PISeL

(c) VGG19(medium)

1 2 4 8 16 32
10
20
30
40
50
60
70
80
90

100

Ti
m

e(
s)

1.09X 1.07X 1.07X 1.05X 1.05X 1.04X
W/o Pipeline PISeL

(d) LaBSE(medium)

1 2 4 8 16 32

20
40
60
80

100
120
140
160

Ti
m

e(
s)

1.32X 1.27X 1.25X 1.16X 1.09X 1.07X
W/o Pipeline PISeL

(e) RegNet(large)

1 2 4 8 16 32

20
40
60
80

100
120
140

Ti
m

e(
s)

1.10X 1.10X 1.10X 1.09X 1.06X 1.05X
W/o Pipeline PISeL

(f) GPT2-XL(large)

Figure 5: TensorFlow GPU
1.36×, with the larger models like GPT2-XL and Regnet seeing

the greatest improvements. It has the same reason as the above

Tensorflow platform shows. For the larger models, the container

creation and framework initialization take a smaller proportion of

the total cold-start time, allowing the benefits of pipelining to stand

1957

CIKM ’24, October 21–25, 2024, Boise, ID, USA Masoud Rahimi Jafari, Jianchang Su, Yifan Zhang, Oliver Wang, & Wei Zhang

out. On GPU, the speed-ups are even higher as expected, reaching

1.51×. This is attributed to two factors. First, the raw execution time

on GPU is much lower than on CPU. Second, the relative loading

time is higher on GPU due to another data transmission between

CPU and GPU over the PCIe bus. As a result, on GPU there is a

greater overlap between the downloading, loading, and execution

stages, leading to more significant speed-ups. Interestingly, the peak

speed-up is often achieved at an intermediate batch size (e.g., 4 or

8) rather than the smallest or largest size. This is because at very

small batch sizes, the execution time is too short to fully overlap

with loading, while at very large batch sizes, the execution time

dominates the total time, reducing the relative benefit of pipelining.

1 2 4 8 16 32

0.5
1.0
1.5
2.0
2.5

Ti
m

e(
s)

1.04X 1.05X 1.05X 1.05X 1.06X 1.04X
W/o Pipeline PISeL

(a) ResNet101(small)

1 2 4 8 16 32

1
2
3
4
5
6
7
8

Ti
m

e(
s)

1.13X 1.12X 1.12X 1.10X 1.08X 1.08X
W/o Pipeline PISeL

(b) GPT2(small)

1 2 4 8 16 32

5

10

15

20

25

Ti
m

e(
s)

1.12X 1.07X 1.06X 1.04X 1.04X 1.03X
W/o Pipeline PISeL

(c) Wav2Vec2(small)

1 2 4 8 16 32

1

2

3

4

Ti
m

e(
s)

1.33X 1.36X 1.35X 1.33X 1.32X 1.27X
W/o Pipeline PISeL

(d) VGG19(medium)

1 2 4 8 16 32

5

10

15

20

Ti
m

e(
s)

1.13X 1.13X 1.12X 1.12X 1.12X 1.11X
W/o Pipeline PISeL

(e) LaBSE(medium)

1 2 4 8 16 32

20
40
60
80

100

Ti
m

e(
s)

1.10X 1.07X 1.06X 1.03X 1.02X 1.01X
W/o Pipeline PISeL

(f) Whisper-M(medium)

1 2 4 8 16 32

5

10

15

Ti
m

e(
s)

1.31X 1.34X 1.36X 1.28X 1.21X 1.18X
W/o Pipeline PISeL

(g) RegNet(large)

1 2 4 8 16 32

10

20

30

40

Ti
m

e(
s)

1.24X 1.24X 1.22X 1.20X 1.19X 1.17X
W/o Pipeline PISeL

(h) GPT2-XL(large)

1 2 4 8 16 32

30
60
90

120
150
180

Ti
m

e(
s)

1.32X 1.33X 1.14X 1.09X 1.04X 1.03X
W/o Pipeline PISeL

(i) Whisper-L(large)

Figure 6: PyTorch CPU

1 2 4 8 16 32

1
2
3
4
5

Ti
m

e(
s)

1.46X 1.46X 1.46X 1.46X 1.46X 1.45X
W/o Pipeline PISeL

(a) ResNet101(small)

1 2 4 8 16 32

2
4
6
8

10
12
14

Ti
m

e(
s)

1.20X 1.20X 1.21X 1.21X 1.21X 1.23X
W/o Pipeline PISeL

(b) GPT2(small)

1 2 4 8 16 32

5
10
15
20
25
30

Ti
m

e(
s)

1.34X 1.34X 1.36X 1.25X 1.18X 1.15X
W/o Pipeline PISeL

(c) Wav2Vec2(small)

1 2 4 8 16 32

2
4
6
8

10

Ti
m

e(
s)

1.42X 1.42X 1.43X 1.43X 1.43X 1.42X
W/o Pipeline PISeL

(d) VGG19(medium)

1 2 4 8 16 32

5
10
15
20
25
30

Ti
m

e(
s)

1.03X 1.03X 1.04X 1.05X 1.05X 1.10X
W/o Pipeline PISeL

(e) LaBSE(medium)

1 2 4 8 16 32

10
20
30
40
50

Ti
m

e(
s)

1.62X 1.62X 1.61X 1.60X 1.59X 1.47X
W/o Pipeline PISeL

(f) Whisper-M(medium)

1 2 4 8 16 32

5
10
15
20
25
30
35
40

Ti
m

e(
s)

1.37X 1.37X 1.38X 1.38X 1.38X 1.39X
W/o Pipeline PISeL

(g) RegNet(large)

1 2 4 8 16 32

20

40

60

80

Ti
m

e(
s)

1.51X 1.50X 1.46X 1.43X 1.36X 1.32X
W/o Pipeline PISeL

(h) GPT2-XL(large)

1 2 4 8 16 32

20
40
60
80

100
120

Ti
m

e(
s)

1.57X 1.58X 1.60X 1.64X 1.63X 1.57X
W/o Pipeline PISeL

(i) Whisper-L(large)

Figure 7: PyTorch GPU

5.2 Peak Memory Usage
Figure 8 and Figure 9 compare the peak memory usage of PISeL

with the original TensorFlow and PyTorch frameworks across small,

medium and large models. PISeL consistently reduces the peak

memory footprint for all model sizes and frameworks. For PyTorch,

the memory savings are most pronounced for large models, with

PISeL reducing the peak usage by over 2× for GPT2-XL, Regnet,

and Whisper-Large. This is achieved by splitting the model pa-

rameters into the different groups, and then loading each group

is individually taken at the different time slot. In this way, it can

significantly reduce the memory consumption during the loading

stage than copying the whole model parameters. For example, load-

ing GPT2-XL with vanilla PyTorch requires over 18GB of GPU

memory, while PISeL cuts this down to less than 8GB. The memory

savings are smaller but still significant for TensorFlow, ranging

from 1.22 − 1.42×. The lower savings are due to an existing op-

timization in TensorFlow that splits model loading into chunks.

However, PISeL still reduces the peak usage by 4GB for GPT2-XL,

from 13GB to 9GB, a significant reduction especially when deploy-

ing on GPUs with limited memory. For small models like ResNet

and Wav2Vec2, the memory overheads are less prominent as the

models themselves are much smaller. Nevertheless, PISeL consis-

tently uses less memory than the baselines. These results highlight

the importance of PISeL’s memory management. By enabling incre-

mental loading, PISeL substantially reduces the memory footprint,

allowing larger models to be deployed on a given GPU and enabling

denser multi-tenancy.

ResNet101 GPT2

250

500

750

1000

1250

1500

1750

2000

M
em

or
y(

M
b)

1.01X 1.00X

W/o Pipeline PISeL

(a) small

VGG19 LaBSE

2000

4000

6000

8000

M
em

or
y(

M
b)

1.01X 1.13X

W/o Pipeline PISeL

(b) medium

RegNet GPT2-XL

2000

4000

6000

8000

10000

12000

14000

M
em

or
y(

M
b)

1.22X 1.42X

W/o Pipeline PISeL

(c) large

Figure 8: Peak Memory Usage(TensorFlow)

ResNet101 GPT2 Wav2Vec2

250

500

750

1000

1250

1500

1750

2000

M
em

or
y(

M
b)

1.23X 1.34X 1.37X

W/o Pipeline PISeL

(a) small

VGG19 LaBSE Whisper-M

2000

4000

6000

8000

10000

M
em

or
y(

M
b)

1.07X 1.55X 2.23X

W/o Pipeline PISeL

(b) medium

RegNet GPT2-XL Whisper-L

2500

5000

7500

10000

12500

15000

17500

20000
M

em
or

y(
M

b)
2.00X 2.42X 2.40X

W/o Pipeline PISeL

(c) large

Figure 9: Peak Memory Usage(PyTorch)

5.3 Pipelined Model Transmission and Loading
Figure 10 and Figure 11 shows the total time measured by the client

for issuing an inference task until finishing its inference, which

includes the latency of container creation, runtime and library load-

ing, and DNN model bootstrap. Layer-by-layer pipeline overlaps

the download, deserialization and load, and computation at the

granularity of layer. But because it has download and load over-

head and synchronization overhead for every layer, it has worse

performance on both Tensorflow and Pytorch frameworks for both

small and large models. For both Layer-by-layer and PISeL pipeline

mechanisms, As the batch size further increases, we do not see the

sustained speedup growth. This is because as the larger batch size

1958

PISeL: Pipelining DNN Inference for Serverless Computing CIKM ’24, October 21–25, 2024, Boise, ID, USA

grows, the computation is expected to increase accordingly, which

breaks the well overlapping across the stages if a stage’s time is

substantial long. Then the pipeline efficiency gets impacted.

1 2 4 8 16 32

1
2
3
4
5
6

Ti
m

e(
s)

1.25X 1.25X 1.25X 1.26X 1.26X 1.20X
Layer-by-Layer PISeL

(a) ResNet101(small)

1 2 4 8 16 32

10

20

30

Ti
m

e(
s)

1.09X 1.09X 1.04X 1.03X 1.04X 1.05X
Layer-by-Layer PISeL

(b) RegNet(large)

Figure 10: Pipeline on TensorFlow

1 2 4 8 16 32

1

2

3

4

5

Ti
m

e(
s)

2.20X 2.13X 2.12X 2.10X 2.01X 1.81X
Layer-by-Layer PISeL

(a) ResNet101(small)

1 2 4 8 16 32

5

10

15

20

Ti
m

e(
s)

1.47X 1.48X 1.48X 1.43X 1.39X 1.26X
Layer-by-Layer PISeL

(b) RegNet(large)

Figure 11: Pipeline on PyTorch
5.4 Partitioning Time
We measure the time taken by PISeL ’s optimal grouping algorithm

to partition models for PyTorch and TensorFlow. Figure 12(a) shows

PyTorch results, while Figure 12(b) shows TensorFlow results.

For PyTorch models, partitioning times range from 3.5 ms for

VGG19 to 167 ms for Whisper-L, increasing with model size and

complexity. Even the largest model (Whisper-L) partitions in under

200 ms, negligible compared to loading and inference times. Tensor-

Flowmodels show similar trends, with times from 1.5 ms for VGG19

to 40 ms for GPT2-XL, due to fewer models tested. These times add

minimal overhead to inference latency. PISeL ’s efficient algorithm

achieves these low times by pruning suboptimal partitions based on

computation and transmission times and those violating memory

constraints, allowing quick optimal partitioning.

6 Related Work
In this section, we provide a synthetic summary on existing works

on serverless computing DNN inference optimization.

Cold-Start Optimization: There have been extensive efforts to

improve cold start time. Almost of these works focus only on the

optimization of container startup, runtime and libraries. RunD [19],

SAND [2], FireCracker [1], Faasm [31] seeked the lightweight

virtualization technologies to pursue lower overhead. Seuss[5],

Catalyzer[8], Fastlane [17] redesigned the container runtime to op-

timize the runtime loading. Ping et al. [21], Xanadu [7] pre-creates

a container pool with the different resource configurations to hide

the container startup time. However, the application-level cold start

is often overlooked. PISeL focuses on the optimization of DNN

application-level cold start by leveraging the inherent characteris-

tics of DNN models.

DNN Serving: Many techniques and systems have been pro-

posed to improve the performance of DNN serving systems and

ResNet101 VGG19 RegNet GPT2 LaBSE GPT2-XL Wav2Vec2 Whisper-M Whisper-L
0

25

50

75

100

125

150

175

Pa
rti

tio
ni

ng
 T

im
e(

m
s)

(a) Partitioning time for PyTorch models.

ResNet101 VGG19 RegNet GPT2 LaBSE GPT2-XL
0

10

20

30

40

Pa
rti

tio
ni

ng
 T

im
e(

m
s)

(b) Partitioning time for TensorFlow models.

Figure 12: Comparison of partitioning times.

the resource utilization through the intelligent scheduling like

REEF [13], AlpaServe [20], Orion [34], AdaInf [32], Muxflow [42],

and Deepboot [6]. There are some other works focusing on batch

size selection to optimize the performance of the DNN inference [11,

22]. MLProxy[22] employed a dynamic batching to optimize re-

source utilization andmeet SLAs in serverlessML inference. Tetris [18]

explored tensors sharing to reduce the memory usage. Our work

is orthogonal to these works. PISeL introduces a novel pipelining

approach that is transparent to the DNN framework and serverless

platform, and reduces both cold-start latency and memory usage.

Model Pipeline: Pipeline is a classical method to hide latency by

overlapping and paralleling the different operations, which is widely

used in the computer systems. ByteScheduler [25], Pipedream [24],

BytePS [14], and Bamboo [36] overlapped the computation and

communication in the distributed training system to accelerate

the training time. Pipeswitch [4], and Mobius [10] overlapped and

pipelined the communication and computation across the CPU and

GPU. PISeL specializes in pipelining for inference workloads in a

serverless computing by overlapping the parameter download from

the remote storage, deserialization and loading, and computation.

The whole pipelining process is designed to be transparent to the

DNN jobs and easily maintain the compatibility across the different

versions of DNN frameworks.

7 Conclusion
We present PISeL, a system that enables fast application-level cold

start for DNN inference in serverless computing. By introducing

model pipelining, PISeL reduces cold start time and peak mem-

ory usage by overlapping parameter downloads, deserialization,

loading, and computation. To optimize this pipeline, PISeL uses

a greedy-based partition algorithm to balance pipeline bubbles

and synchronization. Additionally, PISeL employs plugin and hook

points to ensure transparency and compatibility with various DNN

jobs and frameworks. Our experiments on different DNN mod-

els and CPU/GPU platforms demonstrate that PISeL significantly

reduces cold start time and peak memory usage.

1959

CIKM ’24, October 21–25, 2024, Boise, ID, USA Masoud Rahimi Jafari, Jianchang Su, Yifan Zhang, Oliver Wang, & Wei Zhang

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight

virtualization for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20). 419–434.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}: Towards {High-
Performance} serverless computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18). 923–935.

[3] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.

wav2vec 2.0: A framework for self-supervised learning of speech representations.

Advances in neural information processing systems 33 (2020), 12449–12460.
[4] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. {PipeSwitch}: Fast

pipelined context switching for deep learning applications. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). 499–514.

[5] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make serverless fast.

In Proceedings of the Fifteenth European Conference on Computer Systems. 1–15.
[6] Zhenqian Chen, Xinkui Zhao, Chen Zhi, and Jianwei Yin. 2023. DeepBoot:

Dynamic Scheduling System for Training and Inference Deep Learning Tasks in

GPU Cluster. IEEE Transactions on Parallel and Distributed Systems (2023).
[7] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mitigat-

ing cascading cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference. 356–370.

[8] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-

uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond startup for serverless

computing with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467–481.

[9] Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei

Wang. 2020. Language-agnostic BERT sentence embedding. arXiv preprint
arXiv:2007.01852 (2020).

[10] Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu.

2023. Mobius: Fine tuning large-scale models on commodity gpu servers. In

Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 489–501.

[11] Pin Gao, Lingfan Yu, YongweiWu, and Jinyang Li. 2018. Low latency rnn inference

with cellular batching. In Proceedings of the Thirteenth EuroSys Conference. 1–15.
[12] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. 2020. Serving {DNNs} like clockwork: Perfor-
mance predictability from the bottom up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 443–462.

[13] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-

scale preemption for concurrent {GPU-accelerated}{DNN} inferences. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22).
539–558.

[14] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A unified architecture for accelerating distributed {DNN} training in

heterogeneous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 463–479.

[15] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja

Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on

serverless computing. arXiv preprint arXiv:1902.03383 (2019).
[16] Daniel Kelly, Frank Glavin, and Enda Barrett. 2020. Serverless computing: Behind

the scenes of major platforms. In 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). IEEE, 304–312.

[17] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-

lane: Accelerating {Function-as-a-Service} Workflows. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 805–820.

[18] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022. Tetris: Memory-

efficient serverless inference through tensor sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22).

[19] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha,

Qiang Wang, Weidong Han, and Minyi Guo. 2022. {RunD}: A Lightweight

Secure Container Runtime for High-density Deployment and High-concurrency

Startup in Serverless Computing. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). 53–68.

[20] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin

Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. 2023.

{AlpaServe}: Statistical multiplexing with model parallelism for deep learning

serving. In 17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23). 663–679.

[21] Ping-Min Lin and Alex Glikson. 2019. Mitigating cold starts in serverless plat-

forms: A pool-based approach. arXiv preprint arXiv:1903.12221 (2019).

[22] Nima Mahmoudi and Hamzeh Khazaei. 2022. Mlproxy: Sla-aware reverse proxy

for machine learning inference serving on serverless computing platforms. arXiv
preprint arXiv:2202.11243 (2022).

[23] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco.

2020. Distributed inference acceleration with adaptive DNN partitioning and

offloading. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 854–863.

[24] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.

PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM symposium on operating systems principles. 1–15.

[25] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan

Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-

tributed DNN training acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 16–29.

[26] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and

Ilya Sutskever. 2023. Robust speech recognition via large-scale weak supervision.

In International Conference on Machine Learning. PMLR, 28492–28518.

[27] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[28] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.

{INFaaS}: Automated model-less inference serving. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 397–411.

[29] Nick Schneider, Florian Piewak, Christoph Stiller, and Uwe Franke. 2017. Reg-

Net: Multimodal sensor registration using deep neural networks. In 2017 IEEE
intelligent vehicles symposium (IV). IEEE, 1803–1810.

[30] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Serverless comput-

ing: a survey of opportunities, challenges, and applications. Comput. Surveys 54,
11s (2022), 1–32.

[31] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for effi-

cient stateful serverless computing. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 419–433.

[32] Sudipta Saha Shubha and Haiying Shen. 2023. AdaInf: Data Drift Adaptive

Scheduling for Accurate and SLO-guaranteed Multiple-Model Inference Serving

at Edge Servers. In Proceedings of the ACM SIGCOMM 2023 Conference. 473–485.
[33] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[34] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware,

Fine-grained GPU Sharing for ML Applications. In Proceedings of the Nineteenth
European Conference on Computer Systems. 1075–1092.

[35] Sasha Targ, Diogo Almeida, and Kevin Lyman. 2016. Resnet in resnet: Generaliz-

ing residual architectures. arXiv preprint arXiv:1603.08029 (2016).
[36] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia

Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bamboo: Making pre-

emptible instances resilient for affordable training of large {DNNs}. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
497–513.

[37] Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian

He, and Liping Zhang. 2021. Morphling: Fast, near-optimal auto-configuration

for cloud-native model serving. In Proceedings of the ACM Symposium on Cloud
Computing. 639–653.

[38] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K. Ramakrishnan, Yangfei

Zheng, Meng Yan, Xiaohong Zhang, and Alex X. Liu. 2022. DeepScaling: mi-

croservices autoscaling for stable CPU utilization in large scale cloud systems. In

Proceedings of the 13th Symposium on Cloud Computing (San Francisco, California)
(SoCC ’22). Association for Computing Machinery, New York, NY, USA, 16–30.

https://doi.org/10.1145/3542929.3563469

[39] Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, Han Zhao, Deze Zeng, Qian Peng,

Xueqi Wu, Haifeng Zhao, Senbo Fu, et al. 2024. FaaSMem: Improving Memory

Efficiency of Serverless Computing with Memory Pool Architecture. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. 331–348.

[40] Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu. 2021. 𝜆dnn: Achieving

predictable distributed DNN training with serverless architectures. IEEE Trans.
Comput. 71, 2 (2021), 450–463.

[41] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,

Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for low-

latency, high-throughput inference. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 768–781.

[42] Yihao Zhao, Xin Liu, Shufan Liu, Xiang Li, Yibo Zhu, Gang Huang, Xuanzhe

Liu, and Xin Jin. 2023. Muxflow: Efficient and safe gpu sharing in large-scale

production deep learning clusters. arXiv preprint arXiv:2303.13803 (2023).

1960

https://doi.org/10.1145/3542929.3563469

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Design
	3.1 System Overview

	4 Implementation
	5 Evaluation
	5.1 Latency in Cold-Start
	5.2 Peak Memory Usage
	5.3 Pipelined Model Transmission and Loading
	5.4 Partitioning Time

	6 Related Work
	7 Conclusion
	References

