Check for
Updates

NIMBLENET: Serverless Computing for the Extreme
Edge in Factory Environments

Kilian Miller*
kilian.felix.mueller@fau.de
Institute for Smart Electronics and Systems,
Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU)
Erlangen, Germany

Peter Ulbrich
peter.ulbrich@tu-dortmund.de
Department of Computer Science 12,
Technische Universitat Dortmund
Dortmund, Germany

Abstract

Modern factories are moving towards modular layouts with
more generic production cells, allowing rapid production
customization. Here, the cell’s edge nodes exhibit consid-
erable heterogeneity, ranging from simple microcontrollers
to fully-fledged computing systems, which mandates that
assembly-specific serverless functions used by Automated
Guided Vehicles (AGVs) navigating through and linking the
production cells are platform-independent. These moving
manufacturing processes call for an adapted communication
and distribution infrastructure to maintain low response
times while minimizing network traffic.

We present NIMBLENET, a lightweight distribution and
orchestration approach for serverless functions, specifically
tailored for IoT devices in industrial factory settings. NIMBLE-
NET leverages lightweight sandboxing such as WebAssem-
bly, dynamic dependency management, and a neighbor-first
caching strategy to enable efficient, platform-independent
deployment of tasks at the extreme edge. Our simulations
and real-world evaluations demonstrate that our approach
facilitates the dynamic deployment and execution of tasks on
resource-constrained devices while optimizing the network
load within a mesh network configuration.

“Both authors are affiliated with Siemens AG, Research and Predevelopment.
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
WOSC °24, December 2-6, 2024, Hong Kong, Hong Kong

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1336-1/24/12
https://doi.org/10.1145/3702634.3702953

19

Maximilian Seidler*
maximilian.seidler@fau.de
Department of Computer Science 4,
Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU)
Erlangen, Germany

Norman Franchi
norman.franchi@fau.de
Institute for Smart Electronics and Systems,
Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU)
Erlangen, Germany

CCS Concepts: « Software and its engineering — Dis-
tributed systems organizing principles; « Computer
systems organization — Embedded and cyber-physical sys-
tems; « Networks — Mesh networks.

Keywords: Serverless computing, Edge computing, IoT, Web-
Assembly, Dynamic task deployment, Network efficiency

ACM Reference Format:

Kilian Miller, Maximilian Seidler, Peter Ulbrich, and Norman Franchi.
2024. NIMBLENET: Serverless Computing for the Extreme Edge in
Factory Environments. In 10th International Workshop on Serverless
Computing (WOSC °24), December 2—6, 2024, Hong Kong, Hong Kong.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3702634.
3702953

1 Introduction

The increasing complexity and customization of products,
coupled with the unpredictability of global markets, has
necessitated the development of more adaptable manufac-
turing processes. These are tailored to smaller batch sizes
and designed to be flexible and responsive to changing mar-
ket demands. Hence, companies are transitioning from line
production, which is limited by factory layout, to cellular
layouts. This shift is a strategic move towards a more adapt-
able approach, resulting in a process-driven factory where
the manufacturing is specifically tailored to each workpiece.

Without traditional fixed production stations and con-
veyor systems, Autonomous Guided Vehicles (AGVs) have
emerged as the new backbone of the manufacturing process.
They primarily transport workpieces but also facilitate pro-
duction by carrying components and information about the
workpiece states, precedent, and ascendant processing steps.
In this paper, we urge the AGV not only to be equipped
with the tangible elements necessary for the manufactur-
ing process, but also to describe the manufacturing steps
at each cell. Thus, the AGV guides the assembly sequence
by coordinating the machines and managing their interac-
tions. This software integration consolidates manufacturing

https://orcid.org/0009-0002-0781-4798
https://orcid.org/0009-0007-1601-9311
https://orcid.org/0000-0002-4224-9205
https://orcid.org/0000-0002-2777-4722
https://doi.org/10.1145/3702634.3702953
https://doi.org/10.1145/3702634.3702953
https://doi.org/10.1145/3702634.3702953
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3702634.3702953&domain=pdf&date_stamp=2024-12-02

WOSC 24, December 2-6, 2024, Hong Kong, Hong Kong

AGV1-n

. Network
Link
"7 Sidelink
*~-- range

@

0m

10 m]
Network < Cell CeII CeII Cell
Edae & Core -).

Figure 1. Factory floor with manufacturing cells each host-
ing IoT nodes, connected via a mesh network. AGVs navigate
the shop floor and can connect to nodes within a 10 m radius.

resources within the AGV and enables customized process
configurations and models with minimal effects on network
traffic, addressing congestion issues frequently encountered
in industrial wireless networks.

Motivating Example. The railway manufacturing en-
vironment, a representative case, is remarkably adaptable.
Whether the target product is a wagon or a locomotive, the
production process is customized, with batch sizes ranging
from one to a few hundred units. This adaptability allows for
the creation of custom components that meet the technical,
environmental, cultural, and social demands of the opera-
tional region. Components are manufactured in production
islands with task-specific tools such as assembly, welding,
gluing, or lacquering, defining the cell’s general capabilities.
These are controlled and monitored by (real-time) Internet
of Things (IoT) nodes, which offer external insights into the
workpiece and the ongoing production process, facilitating
the evaluation of manufacturing performance, quality, and
success rate. A mesh network topology connects all nodes.
Data from the IoT nodes can enhance the islands’ capabili-
ties, and combining various nodes may further augment this
advantage. The overall setup is in Figure 1.

1.1 Problem Statement

Integrating the physical and logical resources for manufac-
turing into the AGV necessitates its interaction with the
production cells. Thus, this paper addresses the issue of exe-
cuting serverless functions in an industrial factory setting.
We identified the following primary challenges:

Challenge 1: Heterogeneous & constrained computing
platforms. Hardware platforms in shop floors are inher-
ently heterogeneous, from IoT nodes built on price-sensitive
microcontrollers with limited memory to high-power Pro-
grammable Logic Controllers (PLC). Consequently, integrat-
ing state-of-the-art serverless and orchestration software is
not possible. Our approach: We leverage the WebAssembly
(WASM) bytecode format for platform independence. We
modified the WebAssembly Micro Runtime (WAMR) for tiny

20

Kilian Miiller, Maximilian Seidler, Peter Ulbrich, and Norman Franchi

devices and present a novel approach to stateful intermit-
tency and subsequent continuation of WASM programs.

Challenge 2: Communication overhead & uneven dis-

tribution. Wireless communication bandwidth is becoming
scarce, for example, due to Machine Learning (ML) clas-
sifiers boosting traffic or devoting real-time transmission
channels in Time Sensitive Networks (TSN). Consequently,
efficient load balancing that leverages domain knowledge of
the physical environment is essential to prevent congestion
from impacting or paralyzing the production process.
Our approach: The use of efficient nearest-neighbor caching
and the knowledge derivable from the manufacturing pro-
cess allows us to exploit local dependency, thereby reducing
and evening the network load. Furthermore, using transpar-
ent partial updates alleviates the burden on the network.

1.2 Contribution and Outline

To address the challenges mentioned above, we propose Nim-
BLENET, a novel approach for efficient serverless computing
in the extreme edge. We claim the following contributions:

1. We demonstrate how the relationship between manu-
facturing processes can be leveraged to split programs
into smaller subroutines, enabling efficient local and
nearest-neighbor caching and load balancing.

2. We present a novel approach to the intermittency and
continuation of WASM program execution. The ap-
proach involves stringing together WASM states and
leveraging the error mechanism to escape execution
without function termination.

3. We introduce our NIMBLENET prototype, designed for
resource-constrained devices. Furthermore, we pro-
vide extensive measurements on a real-world test bench
and simulation results to affirm our approach.

The remainder is organized as follows: In Section 2, we
present potential solutions from the literature and discuss
why they are not sufficient. Section 3 and 4 outline the inner
workings of NIMBLENET. Section 5 describes the evaluation
scenario, and Section 6 presents the results. We conclude
with a summary in Section 7.

2 Related Work

Before outlining our methodology, we want to highlight ex-
isting research in related fields to demonstrate that although
the approaches may appear similar, they do not address the
fundamental issues. The transfer of workloads across de-
vices, particularly from IoT nodes to edge or cloud services,
is a topic that has been extensively researched. Given that
WASM already addresses some of the aforementioned chal-
lenges, a plethora of works also exist within the context
of cloud migration and offloading. Microservice architec-
ture [3] allows for applications being composed of small,
independent services that communicate over well-defined

NIMBLENET: Serverless Computing for the Extreme Edge in Factory Environments

APIs. Well-established frameworks are Kubernetes for pack-
aging and orchestrating microservices, Eureka for discovery,
NGINX for routing, and RabbitMQ for messaging. Nurul-
Hoque and Harras [10], Kreutzer et al. [6], and Nieke et
al. [9] have developed frameworks facilitating strong and
weak migration, which involve transmitting or omitting the
application’s state, respectively. Li et al. [7] advocate for
the offloading of discrete functions to the edge, aided by
static source code annotations. Ouacha [11] enhances the
OLSR protocol for VM transmission. Cloud4loT [12] pro-
vides an execution format-agnostic solution employing Ku-
bernetes agents and OpenStack middleware, akin to Benomar
et al. [4]. Ada-Things [13] provides load-balancing strategies
for VM migration, adapting the migration method by ana-
lyzing memory page modifications. Nevertheless, all these
solutions are tailored for environments like cloud, edge cloud,
network infrastructure devices, or fog, with the assumption
of sufficient resources, i.e., tens of MBs of RAM and gen-
erally a Linux OS, thus unsuitable for numerous IoT nodes
with limited capabilities. Multi-node scheduling is not tack-
led in none of these studies. Yousafzai et al. [15] propose
a process-based migration needing a compatible process
model, specifically Linux and similar architectures. Wu et
al. [14] include proximate IoT nodes as offloading targets.
Their prototype uses HQEMU [5], a retargetable dynamic
binary translation based on QEMU and LLVM, which, along
with expensive memory remapping, requires powerful edge
devices. Dynamic linking methods like LLL [8], Zephyr’s
LLEXT [2], and Contiki’s dynamic loader [1] are complex,
error-prone, and highly architecture and OS specific.

3 Approach

As detailed in Section 1, we consider an AGV, a key element
in our manufacturing process, navigating through the shop
floor. It efficiently transports both physical and digital as-
sets, playing a crucial role in component assembly. Upon
reaching an assembly island, it directs the tools to execute
the required manufacturing steps, thereby invoking the exe-
cution of serverless functions on them.

To reduce the strain on the wireless network, it is essential
to employ adapted protocols that facilitate efficient network
traversal and minimize the overall transmission size. This
can be achieved by increasing information density using
techniques such as data compression or excluding redun-
dant data, which can be obtained from alternative sources,
i.e., caching. NIMBLENET focuses on the latter. Given the con-
straints of the factory shop floor environment, we urge utiliz-
ing process and environmental insights to enhance caching
efficiency.

Analyzing control applications for factory islands, we
found that algorithms can be divided into three primary do-
mains. The hardware-defined domain involves tasks specific

21

WOSC 24, December 2-6, 2024, Hong Kong, Hong Kong

to the configuration of devices, including sensors and actu-
ators. These are tightly coupled to the device architecture
and its peripherals. The data-defined domain is determined
by the nature of the collected, created, or evaluated data. It
is derived from different physical aspects and dimensions,
such as time series analysis applicable to a range of sensors,
image processing, or trajectory calculation. These are pri-
marily mathematical algorithms used for different purposes
on different devices. The process-defined domain pertains to
workpiece-specific details, often including physical modeling
of the workpieces or their quality classification.

Within the constrained setting of the industrial shop floor
environment, the domain subset in use exhibits significant
spatial dependency. Since hardware-defined algorithms are
linked to device hardware, they are also associated with each
device’s spatial position. Thus, serverless functions utilizing
these algorithms must run on the specific device, encour-
aging local caching on the device. Data-defined algorithms
are intrinsically linked to the physical data. This connection
arises from the interplay among the workpiece, the process
itself, and the capabilities of the cell, with the latter two
being interdependent. Consequently, the properties are as-
sociated with the cell and should be distributed across its
devices. For example, gas detection in chemical processes
typically relies on variations in electrical properties indepen-
dent of the specific sensor. Data evaluation can be shared, as
multiple gas detection sensors are often necessary. Similarly,
the process-cell combination determines whether quality
control relies on methods like electromagnetic wave analy-
sis, vibration spectral analysis, or image-based techniques
utilizing fundamental matrix or vector operations or image
recognition. Consequently, caching is beneficial on the cell
level. Ultimately, the process-defined functions result from
the sequence of steps on the workpiece. Consequently, they
are connected to the workpiece and thus (temporarily) to the
AGV. As manufacturing must be as efficient as possible, criti-
cal production processes, including the AGV’s path through
assembly cells, are assumed to be optimized. Consequently,
consecutive steps are likely to be performed in cells located
closely together on the shop floor, which motivates caching
in cell clusters.

With NIMBLENET, we propose to use this spatial depen-
dency and the resulting caching opportunities. As workloads
are inherently unknown, a static distribution is not feasible.
We utilize a heuristic approach for distributing the server-
less functions at runtime among the production cells and
shop floor nodes, depending on their domain. This approach
enables us to achieve near-optimal caching performance by
leveraging domain-specific separation. This caching behav-
ior is particularly advantageous in manufacturing processes
with small batch-to-batch or entity-to-entity variances, as
demonstrated in the railway manufacturing example in Sec-
tion 1.

WOSC 24, December 2-6, 2024, Hong Kong, Hong Kong

Rather than relying on one monolithic function, NIMBLE-
NET’s compilation toolchain enables compiling programs
into several serverless functions that depend on each other.
On execution, each call to one of the dependencies is con-
verted into a control transfer to the NIMBLENET runtime
component. NIMBLENET then automatically resolves this de-
pendency and loads and executes it, including parameter and
return value marshaling. These serverless functions can be
derived from the program code of the manufacturing process
programs by sorting and aggregating the use of functions
from libraries on which the programs are built. As the num-
ber of functions is limited, our approach is based on static
function maps, which enable the separation of functions into
domains such as controls, time series data assessment, state-
changing data assessment, and others. These can then be
connected to the presented caching domains.

4 Implementation

In the following, we detail the runtime component of N1m-
BLENET, which is a prerequisite for all nodes contributing to
the system. It comprises a local cache, a scheduler, and mul-
tiple executors. The nodes are arranged in a mesh network,
with nodes in close spatial proximity forming connections.

Acquisition. Upon reaching a new manufacturing cell,
the AGV initiates manufacturing process execution on dif-
ferent nodes based on the production process by instructing
the invocation of specific serverless functions. These nodes
check if the requested function exists in the local cache. If
found, it is labeled as reserved, indicating its necessity for
future execution and ensuring it is not evicted. If absent, the
function is retrieved from other nodes or a central registry.
Acquisition is initiated with a broadcast request to direct
neighbors (TTL = 1). If no neighbor responds positively, a
second global broadcast is initiated. The node with the low-
est response time is intrinsically chosen as the winner. Before
starting the transmission of the binary, metadata, including
the function’s size, is exchanged. The local cache is assessed
to verify whether it can hold the function’s binary. If stor-
age is inadequate, unnecessary functions are removed. The
binary is then transferred, cached locally, and marked as
reserved.

Execution. After acquiring a function, it may be executed
using an appropriate of the executor instances. Various ex-
ecutors are supported when they adhere to the required API
This includes a “native” executor, which is capable of running
functions tailored to specific hardware or interact with the
system, if necessary. The executors are based on cooperative
scheduling. When a serverless function calls upon a depen-
dency, control is transferred to the NIMBLENET runtime. Sub-
sequently, it preserves the state, marshalls arguments, and
initiates the dependency function’s execution on its device,
restarting acquisition if necessary. In our implementation,

22

Kilian Miiller, Maximilian Seidler, Peter Ulbrich, and Norman Franchi

we developed executors for the WASM binary format and
precompiled Python binaries'. The WAMR carries out the
WASM execution. Dependency execution utilizes WASM’s
import feature via a wrapper function. This wrapper function
preserves the execution state. Given the limited resources
of certain IoT devices used, only the state of the serverless
function is retained, enabling the reuse of the same executor
instance. The state comprehensively includes the WASM call
stack, operand stack, heap, and global variables. Selected
runtime data is also stored to accelerate program restart.
Subsequently, the wrapper function indicates an error state
to the WAMR executor, immediately terminating the WASM
execution. The dependency function is then loaded into the
same executor instance. To restore to the original serverless
function, the saved WASM state is reloaded. The call stack is
then adjusted by eliminating the final stack frame and decre-
menting the instruction pointer, enabling the dependency
call to recommence which directly evaluates to the results
from the dependency.

Eviction. Once the serverless function has completed, its
reservation flag is removed. Subsequently, the eviction ap-
proach, dependent on the system environment, takes over.
For our evaluation, we employ the least recently used (LRU)
strategy due to its simplicity, effectively illustrating NIMBLE-
NET’s applicability.

5 Experimental Setup

The evaluation setup is aligned with the motivating example
discussed in Section 1. A shop floor spans an area 80 m by
60 m, with IoT sensor nodes placed 20 m apart. When an
AGV enters a 10 m perimeter around a node, it establishes
a connection and periodically executes different serverless
sensing and perception functions on that node to assess
workpiece and overall production cell state. The simulation
then encompasses network traffic and node execution.

We tested our approach on two real-life testbeds, (1) cen-
tered around thirteen edge nodes where each is a Rasbperry Pi
Zero 2 W and (2) a highly-constrained testbed of twelve con-
strained nodes each represented by a Raspberry Pi Pico W.
Former devices feature a 1 GHz BCM2835 with 512 MB RAM.
Latter devices are constrained to two ARM Cortex M0+ cores
operating at 133 MHz and 256 kB RAM. The evaluation pre-
sented here was performed on the highly constrained testbed
(2) with limited function size to show the applicability of our
approach to even the most constrained devices. However,
we found the same and even elevated benefits of our ap-
proach compared to the monolithic function approach when
performing the same evaluation on our high-power testbed
(1) and scheduling larger functions like complex on-device
image processing and classification for quality assurance.

!Python binaries serve as a format for viability assessment and lack cross-
platform execution capabilities.

NIMBLENET: Serverless Computing for the Extreme Edge in Factory Environments

TX: 724 KB TX:69.0KIB TX: 633KIB TX: 67.8Ki8
RX: 501.7 KiB RX: 590.2 KiB RX: 550.3 KiB RX: 489.6 Ki§

o © © ©

TX: 1017.8 KIBTX: 499.6 KB TX: 523.9 KiB_TX: 67.0 KB
RX: 796.3 KB RX: 9982 KB RX: 11 MiB RX: 554.1 KiB

TX: 370.9 KiB TX: 561.9 KiB TX: 536.5 i TX: 374.9 KiB
RX: 501.7 KB RX: 590.2 KiB RX: 550.3 KB RX: 489.6 Ki&

0 © & ©

TX: 782.9KiB TX: LOMB TX: 1.2 M8 TX: 503.6 KiB
RX: 796.3 KIB RX: 998.2 KIB RX: L1 Mig RX: 554.1 KB

TX: 5.0 MIB TX: 2.3 MiB TX: 989.2 KIB TX: 68.9 KiB. TX: L1MiB TX: 998.9 KiB TX: 872.2 KiB TX: 393.0 KiB
RX: 1.2 MiB RX: 1006.4 KB RX: 885.0 KIB RX: 504.8 KIB RX: 1.2 MiB RX: 1006.4 KIB RX: 885.0 KIB RX: 504.8 KiB

Monolithic Nimble

0B 2.0 MiB 4.0 MiB 6.0 MiB 8.0 MiB

Total Network Traffic Simulation

10.0 MiB

WOSC 24, December 2-6, 2024, Hong Kong, Hong Kong

TX: 160.8 KiB TX: 298.0 KiB TX: 170.0 KiB TX: 12.3 Kig.
RX: 529.4 KiB RX: 624.6 KiB RX: 591.9 KiB RX: 508.9 KiB

o © & ©

TX: 1.6 MiB TX: 750.8 KIB TX: 204.8 KIB TX: 9.2 Kig
RX: 842.8KiB RX: 1OMIB RX: 1.1 MiB RX: 6011 Ki§

TX: 401.4 KiB TX: 501.8 KiB TX: 4833 Ki8 TX: 426.0 Ki§
RX: 593.9 KiB RX: 600.1 KiB RX: 577.5 KiB RX: 579.6 KiB.

TX: 788.5 KIB TX: 1.0 MiB
RX: 878.6 KiB RX: 1.0 MiB

e
0

TX: LOMIB TX: 502.8 KiE
RX: 11 M8 RX: 606.2 ki

TX:5.8MiB TX: 2.3 MiB TX: 430.1 KiB TX: 16.4 KiB
RX: 14 MB RX: 10 MB RX: 955.4 KiB RX: 534.5 KiB

Monolithic

TX: 11MiBTX: 1.2 MiB
RX: 12 MiB RX: 1.3 Mig

Nimble

TX: 1O MiBTX: 416.8 KiB
RX: LOMIB RX: 579.6 i

0B 2.0MiB 4.0 MiB 6.0 MiB 8.0 MiB

Total Network Traffic Testbed

10.0 MiB

Figure 2. Network load distribution: Simulation and testbed results for monolithic vs. nimble approach

Simulation
—~ 30.0 MiB
& 25.0 MiB {5 -1€6
2 20.0 MiB -
T 15.0 MiB 1o
£ 10.0MiB{ ©
T 5.0MiBq{
F 0.0 B === : : : : : :
0 1000 1500 2000 2500 3000 3500
Time (s)
Testbed
—~ 30.0 MiB
& 25.0 MiB {5 -1€6
2 20.0 MiB -
= 15.0 MiB {o
£ 10.0MiB4{ ©0 200 400 zzad
© 5.0 MiB T e e T R o
F 0.0 B == : : : : : :
0 500 1000 1500 2000 2500 3000 3500
Time (s)
—— Total Nimble - RX Nimble TX Monolithic
—=- TX Nimble Total Monolithic RX Monolithic

Figure 3. Total network load: Simulation and testbed results

Table 1. Evaluation scenario setup parameters

Parameter Min ‘ Max Parameter Min ‘ Max
Scenario duration (s) 3600 Cache size (bytes) 32768
unique MPs 200 MP response time (s) | 0.1 ‘ 0.5
MP memory (bytes) | 100 | 500 # unique SFs 50
SF response time (s) | 0.01 2 SF memory (bytes) 100 ‘ 500
SF per MP 3 7 # AGVs 20
MPs per AGV 20 Trigger interval (s) 9 ‘ 11
AGV speed (m/s) 0 1

*MP: manufacturing process step, SF: serverless function

6 Evaluation and Results

This section assesses NIMBLENET through simulation and
a testbed. Six simulations are conducted with parameters
specified in Table 1. These procedures are then replicated on
the real-world testbed. We compare NIMBLENET’s dependent
function sets to traditional monolithic serverless execution.

Network Traffic Distribution. Figure 2 illustrates the
combined network traffic, encompassing sent (TX) and re-
ceived (RX) bytes, for each node executing both NIMBLENET
and monolithic applications over one hour. Results are shown
from our simulations on the left side, while the right side
depicts the real-world testbed. Measurements reveal a four-
fold and fivefold reduction in transmitted bytes for nodes
closest to the network edge with NIMBLENET compared to
monolithic methods for simulation and testbed, respectively.

23

o Simulation

[

£

=1

[

(%}

c

o

&

g4 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Time (s)

B Testbed

GJ

£

o 61 L%l 44 A FX

3 °] SRR

§ ¥ X

g4 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Time (s)

—8— Total Nimble —-%=- Executor Nimble

Total Monolithic Executor Monolithic

Figure 4. Response time: Simulation and testbed results

The network traffic is more evenly spread across nodes, high-
lighting source dispersion when querying programs. Data
reception remains the same across both scenarios due to
identical programs being used.

Total Network Load. Figure 3 illustrates the temporal evo-
lution of the network load as captured from the testbed and
simulation. Initially, the total load for the NIMBLENET method
is moderately elevated, attributed to the additional over-
head of routing and querying. The equilibrium is achieved
at t = 300s in the simulation and ¢t = 400 s in the testbed.
Beyond this point, the efficiency of on-device caches and
nearest-neighbor caching strategies becomes apparent. Fur-
thermore, the trend observed in simulations is evident in the
practical deployment. However, the testbed shows a small
rise in total network traffic relative to the simulation due
to additional housekeeping packets and packet loss arising
from hardware limitations in the real world.

Response Time. Figure 4 illustrates the average response
time for all completed serverless functions within a 100s
sliding window. Despite the raw execution times of func-
tions being almost identical, the NIMBLENET method achieves
quicker acquisition compared to the monolithic method as
the caching shows its strengths. This is particularly advan-
tageous given a substantial hop delay of ~ 100 ms per hop
in the mesh setup or when the link speed imposes a con-
straint, as seen with larger serverless functions. Additionally,

WOSC 24, December 2-6, 2024, Hong Kong, Hong Kong

the slight average execution delay of NIMBLENET, approx-
imately 30 ms, arises from performing more code loadings
and setups. Caching benefits are validated by previous mea-
surements showing the same break-even point between 300
and 400 s in our real-life testbed. Figure 4 illustrates that
both the simulation and the actual execution on the testbed
demonstrate a similar initial pattern, where the overall re-
sponse times increase significantly until most of the tasks are
propagated into the system. After approximately 400 s for
the testbed, the response time improvements resulting from
nearest neighbor acquisition and local caching become evi-
dent, and NIMBLENET outperforms the monolithic approach.

7 Conclusion

We introduced NiMBLENET, a lightweight, platform-inde-
pendent distribution and orchestration approach for IoT de-
vices in dynamic industrial settings. Leveraging WebAssem-
bly sandboxing, dynamic dependency management, and a
neighbor-first caching strategy, NIMBLENET enables efficient
edge deployment of serverless functions on all device classes.
Our simulations and IoT factory testbed evaluations demon-
strate that NIMBLENET reduces and balances network load
across IoT nodes in a mesh network. The communication
load on the sink node - the entry point to the mesh - is
significantly reduced due to caching serverless functions be-
tween nodes. This caching allows nodes to share functions
directly without always accessing the network edge where
the functions are originally stored. Additionally, dependent
serverless functions improve code reuse and optimize net-
work efficiency. As a result, network usage decreases, and
response times are faster compared to the monolithic ap-
proach. These findings indicate that NIMBLENET effectively
addresses the challenges of dynamic task deployment and
management in heterogeneous industrial environments. By
enhancing network efficiency and response times through
effective caching and hierarchical code organization, Nim-
BLENET proves well-suited for modern, modular factories
that rely on dynamic task assignments and diverse hardware
platforms.

Acknowledgments

This work was funded by the German Federal Ministry of
Education and Research (BMBF) jointly under grant number
16KISK098 (6G-ANNA) and 16ME0454 (EMDRIVE). Special
thanks to the CERN openlab for evaluating NIMBLENET.

References

[n.d.]. ContikiOS: The Dynamic Loader. https://github.com/contiki-
os/contiki/wiki/The-dynamic-loader.

[n.d.]. Zephyr Linkable Loadable Extensions (LLEXT). https://docs.
zephyrproject.org/latest/services/llext/index.html.

Nuha Alshuqgayran, Nour Ali, and Roger Evans. 2016. A Systematic
Mapping Study in Microservice Architecture. In 2016 IEEE 9th Inter-
national Conference on Service-Oriented Computing and Applications

24

Kilian Miiller, Maximilian Seidler, Peter Ulbrich, and Norman Franchi

(SOCA). 44-51. https://doi.org/10.1109/SOCA.2016.15
[4] Zakaria Benomar, Francesco Longo, Giovanni Merlino, and Antonio
Puliafito. 2020. Cloud-Based Enabling Mechanisms for Container
Deployment and Migration at the Network Edge. ACM Transactions
on Internet Technology 20, 3 (June 2020), 25:1-25:28. https://doi.org/
10.1145/3380955
Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-
Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
2012. HQEMU: A Multi-Threaded and Retargetable Dynamic Bi-
nary Translator on Multicores. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimization (CGO ’12).
Association for Computing Machinery, New York, NY, USA, 104-113.
https://doi.org/10.1145/2259016.2259030
Marius Kreutzer, Maximilian Leonhard Seidler, Konstantin Dudzik,
Victor Pazmino Betancourt, and Jiirgen Becker. 2024. Migration of
Isolated Application Across Heterogeneous Edge Systems. In 2024
IEEE 8th International Conference on Fog and Edge Computing (ICFEC).
Philadelphia, USA, 1-7.
Borui Li, Wei Dong, and Yi Gao. 2021. WiProg: A WebAssembly-
based Approach to Integrated IoT Programming. In IEEE INFOCOM
2021 - IEEE Conference on Computer Communications. 1-10. https:
//doi.org/10.1109/INFOCOM42981.2021.9488424
[8] Joy Mukherjee and Srinidhi Varadarajan. 2005. Develop Once Deploy
Anywhere Achieving Adaptivity with a Runtime Linker/Loader Frame-
work. In Proceedings of the 4th Workshop on Reflective and Adaptive
Middleware Systems (ARM 05). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/1101516.1101517
Manuel Nieke, Lennart Almstedt, and Rudiger Kapitza. 2021.
Edgedancer: Secure Mobile WebAssembly Services on the Edge. In Pro-
ceedings of the 4th International Workshop on Edge Systems, Analytics
and Networking (EdgeSys 21). Association for Computing Machinery,
New York, NY, USA, 13-18. https://doi.org/10.1145/3434770.3459731
Mohammed Nurul-Hoque and Khaled A. Harras. 2021. Nomad: Cross-
platform Computational Offloading and Migration in Femtoclouds
Using WebAssembly. In 2021 IEEE International Conference on Cloud
Engineering (IC2E). 168-178. https://doi.org/10.1109/IC2E52221.2021.
00032
Ali Ouacha. 2021. Virtual Machine Migration in IoT Based Predicted
Available Bandwidth and Lifetime of Links. International Journal of
Computing and Digital Systems 10 (April 2021). https://doi.org/10.
12785/ijcds/110104
Daniele Pizzolli, Giuseppe Cossu, Daniele Santoro, Luca Capra,
Corentin Dupont, Dukas Charalampos, Francesco De Pellegrini, Fabio
Antonelli, and Silvio Cretti. 2016. Cloud4IoT: A Heterogeneous, Dis-
tributed and Autonomic Cloud Platform for the IoT. In 2016 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). 476-479. https://doi.org/10.1109/CloudCom.2016.0082
Zhong Wang, Daniel Sun, Guangtao Xue, Shiyou Qian, Guoqiang
Li, and Minglu Li. 2019. Ada-Things: An Adaptive Virtual Machine
Monitoring and Migration Strategy for Internet of Things Applications.
J. Parallel and Distrib. Comput. 132 (Oct. 2019), 164-176. https://doi.
org/10.1016/j.jpdc.2018.06.009
Chao Wu, Yaoxue Zhang, and Yongheng Deng. 2019. Toward Fast
and Distributed Computation Migration System for Edge Computing
in IoT. IEEE Internet of Things Journal 6, 6 (Dec. 2019), 10041-10052.
https://doi.org/10.1109/J10T.2019.2935120
Abdullah Yousafzai, Ibrar Yagoob, Muhammad Imran, Abdullah Gani,
and Rafidah Md Noor. 2020. Process Migration-Based Computational
Offloading Framework for IoT-Supported Mobile Edge/Cloud Com-
puting. IEEE Internet of Things Journal 7, 5 (May 2020), 4171-4182.
https://doi.org/10.1109/J10T.2019.2943176

5

—

(6

—

[7

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

Received 20 February 2007; revised 12 March 2009; accepted 5 June
2009

https://github.com/contiki-os/contiki/wiki/The-dynamic-loader
https://github.com/contiki-os/contiki/wiki/The-dynamic-loader
https://docs.zephyrproject.org/latest/services/llext/index.html
https://docs.zephyrproject.org/latest/services/llext/index.html
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1145/3380955
https://doi.org/10.1145/3380955
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1109/INFOCOM42981.2021.9488424
https://doi.org/10.1109/INFOCOM42981.2021.9488424
https://doi.org/10.1145/1101516.1101517
https://doi.org/10.1145/3434770.3459731
https://doi.org/10.1109/IC2E52221.2021.00032
https://doi.org/10.1109/IC2E52221.2021.00032
https://doi.org/10.12785/ijcds/110104
https://doi.org/10.12785/ijcds/110104
https://doi.org/10.1109/CloudCom.2016.0082
https://doi.org/10.1016/j.jpdc.2018.06.009
https://doi.org/10.1016/j.jpdc.2018.06.009
https://doi.org/10.1109/JIOT.2019.2935120
https://doi.org/10.1109/JIOT.2019.2943176

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution and Outline

	2 Related Work
	3 Approach
	4 Implementation
	5 Experimental Setup
	6 Evaluation and Results
	7 Conclusion
	Acknowledgments
	References

