
Maximizing VMs’ IO Performance
onOvercommitted CPUswith Fairness

Tong Xing∗
The University of Edinburgh

tong.xing@ed.ac.uk

Cong Xiong
The University of Edinburgh
c.xiong-1@sms.ed.ac.uk

Chuan Ye
Huawei Cloud

yechuan@huawei.com

QiWei
Huawei Cloud

weiqi4@huawei.com

Javier Picorel
Huawei Cloud

javier.picorel@huawei.com

Antonio Barbalace†
The University of Edinburgh
antonio.barbalace@ed.ac.uk

Abstract
To improve resource utilization and reduce costs many

Cloud providers adopt virtual machines (VMs) overcommit-
ment. While effective, this strategy may lead to adverse out-
comes, significantly affecting aVM IOperformancewhen one
virtual CPU (vCPU) is preempted by another vCPUwithin the
same runqueue of the VM scheduler – i.e., same physical CPU
(pCPU). Additionally, the responsiveness of a VM is reduced
during the inactive time of the vCPU, and it necessitates an
extra schedule timeslice to react to any IO event. While such
problems have been studied in academia and industry, no
previous solution has been deployed in production. This is be-
cause for example certain solutions require modifications of
theguestVM,which is in contrastwith industry requirements.

We propose Anubis, a new IO-aware VM scheduler target-
ing Linux KVM, the most popular VMM in today’s Clouds,
without requiring any guest VMmodifications. Anubis short-
ens the IO event pending time by lightweight monitoring IO
events including interrupt delivery and KVM exit. For the
vCPU running the IO activity, Anubis provides an accurate
boost,which is exclusively active onlyduring theperiodwhen
the vCPU has IO activity. While the IO performance is maxi-
mized,Anubis still guarantees fairnessamongVMs.ThevCPU

∗Tong Xing has started this work when at Stevens Institute of Technology,
Hoboken, NJ, USA
†Antonio Barbalace has started this work when at Huawei Technology,
Munich, Bavaria, Germany

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0387-4/23/11. . . $15.00
https://doi.org/10.1145/3620678.3624649

that doesn’t have IO activity and belongs to the same VMwill
voluntarily yield the computing resources to counterbalance
the unfairness created by the vCPU that has been given a
performance boost. Overall, Anubis is a practical solution
that provides close-to-non-overcommit performance for IO
workloads in VM overcommitted scenarios.
CCS Concepts
• Software and its engineering → Scheduling; Cloud
computing;Virtual machines.
Keywords
Overcommit, compute resources, virtualization, fair sched-
uling, Linux, KVM, low-latency, IO performance
ACMReference Format:
Tong Xing, Cong Xiong, Chuan Ye, Qi Wei, Javier Picorel, and Anto-
nio Barbalace. 2023. Maximizing VMs’ IO Performance on Overcom-
mitted CPUs with Fairness. InACM Symposium on Cloud Comput-
ing (SoCC ’23), October 30–November 1, 2023, Santa Cruz, CA, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3620678.
3624649

1 Introduction
It is well known that many of the workloads running in

the Cloud are not always busy [19]. Hence, Cloud providers
consolidate multiple workloads together, on a single phys-
ical server, overcommitting servers’ hardware resources –
starting from a per-workload declared resources demand,
usually estimated as the worst case/peak hardware resources
required [4, 16, 18, 48]. This paper focuses on CPU resources,
and looks atmultiple-CPU Virtual Machines (VMs) as single-
tenantworkload bearers.When consolidating several VMs on
the samephysical server,while overcommitting resources, the
virtualCPUs (vCPUs) of differentVMsare going topotentially
run on the same physical CPU (pCPU). The hypervisor (or
Virtual Machine Monitor, VMM) scheduler time-multiplexes
different vCPUs on each pCPU, trying either to meet a spe-
cific SLA, or to achieve the fair sharing of a pCPU by different
vCPUs, while balancing the load among pCPUs [12]. Herein,
we focus on the latter – the fair scheduling [12, 37] of over-
committed VMs, which unfortunately, due to the semantic gap

93

https://doi.org/10.1145/3620678.3624649
https://doi.org/10.1145/3620678.3624649
https://doi.org/10.1145/3620678.3624649
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620678.3624649&domain=pdf&date_stamp=2023-10-31

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

Figure 1:VM overcommitted impact on IO Event

between the hypervisor scheduler and the software running
in the VM, often creates VM IO performance degradation,
especially for low-latency IO workloads.
The Problem. Because by overcommitting resources sev-

eral vCPUs are time multiplexed on a single pCPU, a single
vCPU doesn’t run all the times. The tasks of a vCPU run
only when that vCPU is running: when a vCPU exhausts its
time slice, it is preempted, and paused – i.e., inactive, causing
also its tasks to pause execution. Fig. 1 compares the case of
overcommit (2 vCPUs on 1 pCPU), with non-overcommit: IO
events arenotdeliveredwhenavCPU is inactive.This can lead
to several issues, particularly for IO-related workloads: (1) as
the vCPU is paused, all interrupts, including the ones from IO
devices and inter-processor-interrupts (IPIs), cannot be pro-
cessed timely. Consequently, IO-related tasks cannot respond
quickly to incoming interrupts; (2) the vCPU could be pre-
empted in themiddle of IO task processing, leading to substan-
tial tail latency for the IO-related service; (3) the throughput of
IO-related tasks could be impacted because fewer IO requests
are processed per unit of time, this results in fewer responses
being issued, which in turn triggers fewer requests in the sub-
sequent service round.How to alleviate the impact of vCPUs
becoming inactive? To put it in another way, could the perfor-
mance of VMs’ IO tasks in an overcommitted scenario be as
good as their performance in a non-overcommit scenario?

Current Solutions. The problem of IO performance degra-
dation due to inactive vCPUs in an overcommitted scenario is a
classical problem in thefield of systems research [15, 20, 21, 23,
34–36, 40, 44, 45, 52, 62, 63, 65, 70, 71]. Existing most related
worksmainly adopt one of two strategies: (1) patching theVM
scheduler to minimize vCPU inactivity periods (vSlicer [70],
vBalancer [15], AQL_sched [65]); (2) tracking IO tasks execu-
tion within vCPUs to guarantee they can process IO events
without interruption – i.e., avoid descheduling (xBalloon [63],
vMigrater [35], partial-boost [40]).

Those approaches have different limitations detailed in § 3.
For example, the state-of-the-art work on the topic – vMi-
grater, requires modifications to the guest VM – i.e., it is not
transparent/no legacy support, which compromises its direct
applicability in Cloud environments. Additionally, vMigrater
demonstrated to be effective for VMs with a large number of
vCPUs, while less effective on VMs with a few vCPUs (e.g.,
1, 2, 4). However, it is known that more than 86% of the VMs
in the Cloud use 4 vCPUs or less [26] – hence, vMigrater is
not a generic solution.

Our approachdraws inspiration from these previousworks,
but doesn’t merely combine them. Instead of simply reduc-
ing vCPU inactivity time, we propose enhancing the vCPU’s
responsiveness by prioritizing VMs that receive IO event.
Moreover, we suggest a shift in focus from ensuring the prior-
ity of the IO task inside the vCPU to the priority of the vCPU
in which the IO task(s) is(are) running.

Anubis.We observe that if an application doing IO would
have run directly on an OS sitting on bare-metal, instead than
in a VM, the OS scheduler would have wake up the applica-
tion waiting for IO soon after the IO interrupt is received.
Hence, we asked ourselves: can the hypervisor identify the IO
events occurring in a VM and change VM’s vCPUs scheduling
decisions accordingly? For example, by immediately waking
up a non-running vCPUwhen it receives an IO interrupt to
enable low-latency IO processing.
To optimize IO performance, it is crucial to give priority

to the vCPU running IO task processing, ensuring that it will
not be preempted. Thus, can we accurately identify the start
and end point of an IO event within a vCPU? While this sounds
promising from an IO performance point of view, the idea
may lead to unfairness with the co-executing VMs, which
may suffer from the reduced amount of resources. Hence, can
the new scheduler conserve fairness?

We designed and implementedAnubis to answer the above
questions. Anubis is a new IO-aware VM scheduler that ex-
tends widely-used traditional fair scheduling algorithms [12]
implemented in modern Operating Systems (OSes) and hy-
pervisors – hence, it strives to make fair scheduling decisions
for the VMs. To reduce the vCPU inactivity Anubis carefully
traces the interrupt delivery from the hypervisor and ensures
the interrupt will be processed once it is delivered, while this
may increase the number of context switches, we evaluate its
overhead, which is minimal. To maintain the priority of the
vCPU that is running the IO, Anubis uses lightweight VM in-
trospection techniques to track IO events per vCPU, requiring
no guest VM software modificationwhatsoever. The accuracy
of detecting IO events is important, Anubis boosts the priority
of the relevant vCPUs only during the IO events period. To
maintain fair VM scheduling decisions Anubis introduces a
debt-like system.

Anubis is implemented around the Linux KVM hypervisor.
Therefore, it extends the Linux kernel’s CFS scheduler and
the Linux’s KVM subsystem. Anubis has been thoroughly
evaluated: in all overcommit scenario(s) it improves the IO
performance close to the non-overcommit scenario. Hence,
significantly reducing IO applications’ latency.

Contributions.Wemake the following key contributions:
• First, we identify how the fair scheduling of VMs is a major
factor affecting the IO performance of overcommitted VMs.
Moreover, we analyze why previous works failed in provid-
ing solutions that can be deployed by Cloud providers.

94

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

• Second, we introduce Anubis, which improves the IO per-
formancewhile conserving fairness.Anubis doesn’t require
any guest VMmodification, and it is designed around three
key ideas: mitigate the impact of vCPU inactivity, accu-
rately maximize the IO performance, and ensure overall
fairness; each introducing newmechanisms and policies.

• Third, we implemented and exhaustively evaluated a pro-
totype of Anubis based on (one of the latest) vanilla Linux
KVM releases. Showing that Anubis is easy to deploy, and
it actually improves the IO performance with fairness.

The remainder of this paper is organized as follows. § 2 in-
troduces the background and motivation of Anubis. § 3 intro-
duces the previous works. § 4 presents the design principles
anddetails of theAnubis. §5describes implementationdetails.
§ 6 presents the evaluation of the Anubis, and § 7 concludes.
2 Background &Motivation

I/O performance problems brought up by vCPU inactivity
have been studied before, but despite themany proposed solu-
tions, nonehave been integrated into production due to funda-
mental problems. In fact, the work in [40] only targets single-
CPUVMs, which are indeed very common, but multiple-CPU
VMs are even more popular today [26]. At the same time,
recent works targeting multiple-CPU VMs [35, 63] require
guest VMmodifications – including user and kernel software,
which makes them uneasy to be implemented in the Cloud.
2.1 Hypervisor
Hypervisors, or Virtual Machine Monitors (VMMs), are

software, firmware, or hardware that create and manage vir-
tual machines. There are mainly two types of VMMs: type 1,
like Xen [58], and type 2, like Linux KVM [41]. Type 1 VMMs
rundirectly on thebare-metal –without anyoperating system
or runtime in between. The scheduler is part of theVMMitself.
For example, the Xen hypervisor implements its own schedul-
ing algorithm(s), being credit2 the default [69]. Type 2 VMMs
run atop an operating systems, the operating system provides
support for devices, memory management, etc. The operat-
ing system scheduler does schedule the VMs together with
processes and threads – i.e., the VMM does not implement a
scheduler.Hence, aLinuxKVMvirtualmachine is likely sched-
uled by the Linux’s fair scheduling algorithm (details in § 2.2).
Similar to Linux KVM’s fair scheduler, also Xen’s credit2

tries to maintain fairness among running vCPUs. With both
schedulers, a vCPU running an IO task usually has higher
priority because it consumes less CPU time while waiting for
IO events. In the case of the credit2 scheduler, a vCPU run-
ning an IO task would accrue credits, and credit2 prioritizes a
vCPUwith higher credits by letting it preempt other vCPUs.
However, a vCPU that runs IO tasks as well as CPU-bound
tasks will not be prioritized by credit2. This is because such
vCPU consumes credits by running its own CPU-bound task
instead of waiting. Further details in § 2.4.

Figure 2: Ideal and worst scenarios of two cases in which
vCPU schedulingmay affect IO performance.
Currently, Anubis targets type 2 VMMs because they are

widespread [55, 73]. In fact, Linux KVM is getting more and
more traction in the Cloud, and the most recent research in
virtualization has shifted from Xen to Linux KVM, see § 3.
However, Anubis’s idea can be applied to type 1 VMMs, and
specifically to Xen by replacing KVM’s vruntime (see below)
to Xen’s credit quantum.
2.2 Fair Scheduling
Linux by default is using the Completely Fair Scheduler

(CFS) algorithm to schedule tasks (threads or processes). The
primary goal of CFS is to ensure fair distribution of CPU time
among threads, resulting in a balanced system. The key for
determining if a thread should be scheduled to run is its "vir-
tual runtime" (vruntime), which represents the amount of
CPU time a process has already consumed. Briefly, the thread
with the lowest vruntime always has the highest priority.

IO tasks often sleep while waiting for IO events, resulting
in a smaller accumulated vruntime. This gives them a higher
priority because CFS always selects the task with the low-
est vruntime. As a result, when an IO task wakes up, it will
preempt the running task, if any.
2.3 Interrupt Handling
The fair scheduling of different vCPUs equally splits the

pCPU time among vCPUs, and traditionally the VMM sched-
uler doesn’t know if a guest software is waiting for IO, or
producing IO, etc. Hence, if an IO event for an application
is received by the VMM just after the target VM’s vCPU has
beenpreempted inorder tomakeanother vCPUrunning, such
event (likely an interrupt) will be delivered to the target VM’s
vCPU at its next timeslice, which can introduce a significant
delay to the event processing, and degrade performance. This
is depicted asCASE 1 in Fig. 2.CASE 2 in the same Figure
showsamoreunfortunate scenariowhere two timeslices need
to elapse before an IO event is delivered to the application.
When a VM with multiple vCPUs receives an interrupt on
a vCPU that was not supposed to process it – because the
application requesting the IO is on another vCPU, the receiv-
ing vCPUwill generate a rescheduling IPI to the vCPUwith
the application. However, the rescheduling IPI maybe sent
to a vCPU that has just been preempted – thus, a timeslice
should pass before such IPI is processed. Moreover, the actual

95

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

interrupt may be delivered to a just preempted vCPU, adding
another timeslice to be waited for, in order to deliver the IO
event to the application in the VM.

Figure3: sysbench-seqrd [64] runningwithout (IOWork-
load only) and with CPU-bound workload (IO & CPU
workload) results normalized to the non-overcommitted
case. All VMs with 4 vCPUs, overcommit ratios 2/3/4:1.

2.4 Semantic Gap
In the overcommitted scenario, multiple vCPUs are shar-

ing the same pCPU. Between such vCPUs, in Linux KVM the
vCPU that has the lowest vruntimewill have the highest pri-
ority among others. To the host CFS, a vCPU is just another
task/thread, and because of the semantic gap, it doesn’t know
what applications are running inside the vCPU.

If a vCPU that is running an IO workload shares a pCPU
with other vCPUs running a CPU-bound workload, the host
CFS handles this case naturally well maintaining the same IO
performance as the non-overcommit case. Refer to IO work-
load only bars in Fig. 3. Because the IO thread will yield the
CPUwhenwaiting for an IOevent, thevCPUcontaining itwill
also yield the pCPU– going into idle, because there is nothing
to execute. As a result of that, a lower vruntime is accumu-
lated.Whenan IOevent for such IO thread is received, thehost
CFS will schedule the vCPU containing it to run immediately.

However, if a vCPUcontains both IOandCPU-boundwork-
loads, the behaviour changes, see IO & CPU workloads
bars in Fig. 3. Because the CPU-bound workload would con-
tinue to execute when the IO workload is waiting, the vCPU
will not yield the pCPU, and its vruntimewill accrue – like
CPU-bound only vCPUs. Thiswill deprioritize the vCPUwith
mixed workload that will not be able to process interrupts,
in a timely manner, nor to guarantee enough run-time for IO
events handling.

In summary, thehost fair scheduler considers thevCPUthat
runs both IO and CPU-boundworkloads to have the same pri-
orityof a vCPUrunningCPU-boundworkloadonly: theyboth
accumulate the same amount of vruntime in each scheduling
period. As already noted, the same applies to Xen’s credit2.
Hence, for a vCPU with mixed workload, low IO latency can-
not be guaranteed by today’sVMfair schedulers. This inspires
us todevelopanew IO-awareVMfair scheduler,which consid-
ers that IO-bound workloads benefit from promptly preempt-
ing non-IO taskswhile also benefit from not being preempted.

Table 1: Latency results of ping and seqrd when
running in aVMwith orwithout additional CPU-bound
workload. In the overcommitted case an additional
CPU-bound VM runs on the same pCPU(s).
Type Background pressure Latency(ms)
ping (non-overcommit) 1% 0.253
ping + CPU-bound (non-overcommit) 100% 0.252
ping (overcommit) 1% 0.286
ping + CPU-bound (overcommit) 100% 2.159

seqrd (non-overcommit) 2% 0.367
seqrd + CPU-bound (non-overcommit) 100% 0.367
seqrd (overcommit) 2% 0.374
seqrd + CPU-bound (overcommit) 100% 7.167

2.5 TargetWorkloads
Remarkably, when overcommitting multiple VMs hosting

CPU-bound workloads only, their performance degrades due
to the time-sharing of hardware resources – which are lim-
ited. Anubis does not target this use-case. Anubis is specifi-
cally designed to targetVMs that runboth IOandCPU-bound
workloads, a very common use-case in Cloud, which includes
Livestreamingtranscoding,Webserver,Storageservice,Email
server, etc. [6–10, 66]. Those are characterized by an IOwork-
load frequently requiring substantial compute.

Here we use two basic examples – Linux’s ping command,
and sysbench-seqrd [64], to clarify what issues we aim to
solve. In the overcommitted case, a target vCPU is co-running
on a pCPU together with a vCPU running exclusively a CPU-
boundworkload. In this context, the target vCPU experiences
the added computing pressure from the other (background)
vCPU. The target vCPU runs ping or sysbench-seqrd to-
gether with or without an additional CPU-bound workload.
As shown in Table 1, in the non-overcommit case or the

overcommitted case without CPU-bound workload, the fair
scheduler can schedule the vCPU properly: the latency re-
mains low. However, in the overcommitted scenario where
the vCPU runs an IO and a CPU-bound task, the performance
of the IO task is heavily affected: 8x and 19x longer latency.
3 Analysis of PreviousWorks

Previous works proposed various solutions to mitigate the
IO performance degradation due to vCPU inactivity in over-
committed scenarios. We organize such works into 3 cate-
gories, each of which is discussed below.Table 2 summarizes
previous works, highlighting what software modifications
they require, what VMM they target, and their key limitations.
3.1 vCPU Inactivity Period Reduction

vSlicer extends Xen’s credit scheduler [69] – a former ver-
sion of credit2. vSlicer [70] improves the vCPU responsive-
ness by increasing the task context switch rate during the
IO processing – shortening the scheduling timeslice, which
successfully reduces the IO latencies despite VM overcom-
mitment. The tail latency will be lower because the vCPU
inactivity period is shorter. However, the vCPUwill still be

96

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Figure 4: vMigrater IO process maximum extendable
runtime, 2/4/8/12 vCPUs VMs, overcommit ratio 2/3/4:1.

preempted at any time, which deteriorates the worst-case
latency as discussed in the § 2.3. Hence, two timeslices may
elapse before an interrupt is handled. Moreover, as a side ef-
fect, the shorter the vCPU inactivity period, the higher the
number of expensive VM context switches – which reduces
the total amount of work doable by VMs in the unit of time.
Similarly to vSlicer, AQL_sched [65] adjusts the sched-

uling interval of the vCPU to achieve better performance.
AQL_sched categorizes each vCPU by profiling the workload
running on the vCPU. AQL_sched associates a workload type
with each vCPU and schedules vCPU with the best "quan-
tum length" according to their type. However, the quantum
lengthhas to bepre-configured, and it is static. If the vCPUhas
changed its workload type during the runtime, AQL_sched
can’t dynamically alter the quantum length. Additionally,
AQL_sched would perform the same as vSlicer when all vC-
PUs are configured with the shortest quantum length. Thus,
AQL_sched is affected by at least the same problems as vSlicer.

Another approach is vBalancer [15], which tries to deliver
IO device interrupts only to the running vCPU(s) by redirect-
ing interrupts at the hypervisor level. This approach can re-
duce the pending time of interrupt handling. In other words,
it reduces the VM’s interrupt response time as other non-
inactive vCPUs can assist in processing interrupts quickly.
However, this approach isnot awareof the rescheduling IPI de-
livery problemmentioned in § 2.3, whichmay lead to no inter-
rupt response time reduction even if interrupts are redirected.
3.2 Partial Boosting

Partial boosting [40] focuses on single-CPUVMs scenarios,
based on the Xen VMM. The authors introduced gray-box
knowledge to try to identify IO-intensive process(es) running
on a vCPU. They claimed that an IO-intensive process usually
consumes fewCPU resources and preempts other tasks. Thus,

Table 2: Summary of previous works.
Approaches Modifies/Target VMM Limitation(s)
Partial-Boost[40] host kernel/Xen Target single-core VM, unfair in SMP
vSlicer[70] host kernel/Xen Introduces extra context switches
vBalancer[15] host kernel&guest software/Xen Only address the IO device interrupt
AQL_sched[65] host kernel/Xen vCPU quantum is fixed after profiling
xBalloon[63] host kernel&guest kernel/Xen Still preempting vCPU during IO
vMigrater[35] guest software/KVM Only works for large vCPU size of VM

frequent context switches could indicate an IO-intensive pro-
cess. Authors monitored context switches inside the vCPU
by introspecting x86’s cr3 register content, which stores a
pointer to a process page table. Once IO is detected on a vCPU,
the priority of such vCPU is boosted by putting it at the top
of the scheduler queue. After the vCPU finishes its timeslice,
it is moved to the end of the queue – to achieve fairness. We
argue that this monitoring method is not accurate enough
because the cr3 register can only be accessed after a VM exit
– i.e., when the VM is not running, which is too coarse grain
to identify what specific process is responsible for IO.
3.3 Task-aware Boosting
A similar idea to partial boosting is to accurately detect

and boost only the process that is doing the IO. xBalloon [63]
is designed to accurately boost the IO process in a scenario
where a vCPU is running both an IO process and a CPU-
boundworkload. xBalloon proposes to freeze the CPU-bound
workload when the vCPU runs the IO process – a "balloon
period". Hence, the vCPU temporally has only IO workload.
As discussed in § 2.4, this let such vCPU to preempt other
vCPUs when an IO event is received. Hence, reducing the
time from receiving to serving an interrupt. xBalloon allows
the CPU-bound workload to run after the IO process yield.
However, because the CPU-bound workload is run right after
the IO process – fully consuming a scheduling timeslice, a
fair VM scheduler will let another VM running for a timeslice.
Thus, the IOprocessmaywait a timeslice before receiving any
interrupt. Therefore, the IO performance is not maximized.

The latest work is vMigrater [35]. vMigrater keeps migrat-
ing IO thread(s) between the active vCPUs. However, it is
possible that most of the vCPUs of the VM are descheduled
(or inactive) at the same time. Fig. 4 shows the ideal runtime
of a thread that can be achieved by leveraging vMigrater idea.
We use the perf to trace the context switch of each vCPU, and
analyze how long a thread’s runtime can extend bymigrating
between running vCPUs until there is no active vCPU to mi-
grate. With overcommit ratios of 2:1, 3:1, and 4:1, the native
runtime of each vCPU accounts for 50%, 33%, and 25% of the
total timeslice respectively. With vMigrater, for the VMwith
12 vCPUs, we observed that the thread’s ideal runtime can
be up to 99.9%, 99%, and 97%. However, if the VM only has 2
vCPUs, the thread’s ideal runtime can only extend up to 74%,
55%, and 27%. The performance improvement of the 2 vCPUs
VM is minimized because most of the time, there is no active
vCPU that can hold the thread. In summary, vMigrater works
well only for VMwith a lot of CPUs.

Another issue arises with multi-thread applications. In the
worst scenario, if there is only one active vCPU, vMigrater
could migrate several IO threads to that: the IO performance
may deteriorate instead of improving. vMigrater suffers also
from interrupt delivery delays: if the interrupt handler vCPU

97

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

is inactive, the rescheduling IPI can not be delivered on time,
moreover, the IO threads may have migrated to an active
vCPU already. Finally, vMigrater’s migrating service is in
guest user-space, which could also suffer by overcommit-
ment, and the user-space implementation makes vMigrater
hard to implement in production becauseCloud providers can
hardly persuade clients to run extra services in their own VM.
4 Design

Anubis is based on the following design principles:
• Nomodifications to the guest VM software – i.e., support
legacy software stacks. Our solution should only modify
the hypervisor to ease and maximize industry adoption.

• Exploit the knowledge on the current scheduling state of
each vCPU.

• Maintain the priority of the vCPU executing IO, and accu-
rately deprioritize it once IO ceases.

• Guarantee fairness between the boosted VM and other
VMs.

Overarching Design. Anubis extends modern hypervisors
fair schedulers in order to:
• Improve theVMsoftware responsiveness to IOevents
byboosting the schedulingpriorityof avCPUthat receives
an interrupt, or a rescheduling IPI; we exploit the hypervi-
sor’s scheduler knowledge to decide if to boost the priority
or reroute an interrupt or IPI;

• Accurately maximize the VM’s IO performance by
boosting avCPUonlyduring the IOevents period, by light-
weight monitoring and introspecting each VM, in order to
identify at any time if the workload on a vCPU is IO- or
CPU- intensive. we introduce a heuristic to determine if an
IO-intensive epoch is ongoing or ceased;

• Maintain scheduling decision fairness by migrating
time quantas among vCPUs of the same VM – hence, in-
troducing a new interpretation of scheduling fairness; we
present an algorithm to conserve fairness and limit for how
long vCPUs get priority boosted.

Anubis is designed around type-2 virtualization. However, we
believe Anubis can be applied to type-1 virtualization as well.
4.1 Improve the VMResponsiveness

Asmentionedbefore, in a resourceovercommitted scenario,
the vCPU inactivity time reduces the vCPU responsiveness.
Latency-sensitive IO applications are largely affected by that
because they can’t promptly react to the arrival of IO events.
Contrary to earlier work [70] that attempted to minimize
the length of the vCPU inactivity period, Anubis modifies
the VM scheduler to improve vCPU responsiveness. It does
this by transparently observing the VM behavior to inform
scheduling decisions.
To preserve the responsiveness of the software running

in a vCPU, any incoming interrupt should be delivered to a
vCPUwithminimal delay. To achieve that, Anubis introduces

interrupt-boosting. With interrupt-boosting, the hypervisor
checks the destination vCPU of the interrupt. If the vCPU
is running, the hypervisor injects the interrupt in it directly.
Conversely, if the vCPU is not running, the hypervisor redi-
rects the interrupt to a running vCPU of the same VM – the
hypervisor will pick the one that is the most recently sched-
uled. If no vCPU of that VM is running, Anubis temporarily
raises the scheduling priority of the destination vCPU, injects
the interrupt, and wakes the vCPU up – preempting other
vCPUs. When the application waiting for an IO event and
the interrupt handling are on different vCPUs, a rescheduling
IPI is generated to wake up the IO task. Anubis detects the
"interrupt-related" rescheduling IPI, and if the destination
vCPU is not running, it temporarily increases the scheduling
priority of such vCPU, injects the IPI, and wakes the vCPU
up immediately.
Anubis doesn’t target Single-Root IO Virtualization(SR-

IOV), which has the advantage of IO pass-through. It is un-
clear how to trace IO events with SR-IOV, a solution can be
devised, but it may add (unwanted) overheads.
4.2 Maximize the VM IO Performance

Unlike the burstable VM[4, 16, 48], Anubis only boosts the
vCPU during an IO event period. This may sound similar to
previous work, in fact, [63] accomplishes this by modifying
the guest software, but Anubis solves the same at the hypervi-
sor level, without any guest software modification. Anubis’s
"accurate-boost" design tends to prevent the vCPU frombeing
preempted when it is running IO processing. Thus, Anubis
maximizes the IO performance by extending the run time
of a vCPU. In other words, Anubis dynamically adjusts the
CFS timeslice of vCPUs based on IO events. Hence, in order
to boost a vCPU during IO event periods only, Anubis must
also precisely identify vCPU’s IO event periods boundaries
– i.e., when a period starts and when it stops. Herein we intro-
duce the IO Points: a mechanism to dynamically identify the
likeliness that a vCPU is processing IO events.
4.2.1 Accurate Detection of IO Events. We noticed that
whenever a vCPU receives IO device interrupts or reschedul-
ing IPIs, the vCPUwill likely do IOprocessing. In addition, cer-
tain VM exits – specifically, the ones that read/write from/to
IOdevicememory, also indicate IOactivity. Therefore, a vCPU
will gain 1 IO Point whenever it receives IRQ, IPI, or exits
the VMwith reason MMIO. For each scheduling tick, the fair
schedulerwill check if the IO Points increased compared to the
previous tick. Succesfullyobtainingan IOPoint duringasched-
uling interval indicates that the vCPU is likely processing IO.
4.2.2 Accurate Detection of IO Events Boundaries. A
positive balance of IO Points only indicates that a vCPU is/has
been processing IO events. To boost the vCPUmore precisely,
we need to identify when IO events terminate, which allow us
to stop the boosting earlier to help maintaining fairness. Our

98

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

solution is inspired by how vanilla CFS handles IO tasks. In
the non-virtualized scenario, an IO task will voluntarily yield
CPU resources if it needs towait for IO events. Therefore, CFS
assigns higher priority to the IO task, enabling it to preempt
another running task as soon as it receives an IO event.
Being able to detect the boundaries of IO event periods

within a vCPUwill enable us to force a vCPU to yield comput-
ing resources once an IO event period ends. We observe that
we have the capability to identify and monitor the currently
executing task inside a vCPU by checking the VM guest mem-
ory from the hypervisor – i.e., via introspection. If the task
is different from the one we detected earlier the vCPUmight
have ceased IO activity. We can utilize this information to
pause a vCPU earlier; thus, "shuffle back" some fairness.

4.2.3 Accurate Boosting Preservation. The actual behav-
ior of an IO task is complicated, and the boundaries of the IO
and CPU-bound workloads are not straightforward. Here, we
introduce 2 terms; IO vCPU : the vCPU that has IO event, and
Anubis should prioritize it by preventing it from being pre-
empted.Non-IO vCPU : the vCPU that doesn’t have IO event,
and Anubis should deprioritize it, forcing it to voluntarily
yield the computing resources if in debt. In our observation,
the IO vCPUmight stall the IO activity for a short time, aswell
as a non-IO vCPUmight perform IO activity for a short time.
This interference can largely hurt the performance improve-
ment of Anubis, because it might incorrectly stop boosting
an IO vCPU or start boosting a non-IO vCPU.
Anubis relies on Confidence Points to counterbalance the

impact of unstable vCPU IO activity. Confidence Points record
the historical IO event of vCPU, thereby helping Anubis in
making accurate recognition of the IO and non-IO vCPU. The
vCPUwill accumulate 1 Confidence Point when IO Point has
increment in the previous scheduling tick. In other words,
Confidence Points indicate the vCPU had IO events during a
previous scheduling tick interval.
If an IO vCPU has an ambiguous indication, such as no

increment in IO Points but the running task still matches the
one detected during the IO event. Anubis will decrement the
current Confidence Points according to the degradation pol-
icy. Different degradation policy of Confidence Points adjust
the weight of the IO event that was completed long ago. If
the remaining Confidence Points exceed a certain threshold,
Anubis will still classify it as an IO vCPU, disregarding the
ambiguous evidence. On the other hand, the non-IO vCPU
must continuously accumulate Confidence Points to exceed
the threshold to be classified as an IO vCPU. This implies that
Anubis will only recognize a vCPU as an IO vCPUwhen it is
capable of upholding a steady IO event period.
4.3 Overall Fairness

Despite Anubis’s ability to accurately preserving the high
priority of an IO vCPU, Anubis could severely deteriorate the

performance of other VMs in the system due to the possible
high resource demands of the IO vCPU. Mainly because of:
1.Anubis allows IO vCPU to promptly preempt the running
taskwhenever an interrupt is delivered. 2.Anubis prevents IO
vCPU from being preempted, which results in an extension
of the IO vCPU runtime.
More computing resources need to be consumed to boost

the IO vCPU, but the computing resource is limited under
the overcommitted scenario. This brought us to a trade-off:
If we want to maintain the better performance of the IO vCPU,
we have to accept this unfairness. Inspired by the policy in
bare-metal scheduling, where IO and computing-intensive
workloads are running together without the semantic gap of
the hypervisor. The CFS prioritizes the IO workload, allow-
ing it to preempt computing-intensive workloads in a timely
manner and ensuring that it is never preempted by suchwork-
loads. As a solution to this trade-off, Anubis prioritizes the IO
vCPUwhile reducing priority for the non-IO vCPU that from
the same VM, thereby striving to uphold overall fairness.

We introduce Anubis’s overall fairness design: rather than
maintaining the fairness between the boosted vCPU and the
other vCPUs, Anubis ensures the fairness among boosted VM
and the other VMs.We introduce Anubis debts to each VM,
which is shared amongst all the vCPUs associated with the
VM.Whenever a VM’s vCPU extends its runtime or forcibly
preempts background vCPU, the vCPU adds time to the debts.
In other words, Anubis boosts an IO vCPU by "borrowing"
the background vCPU’s time. Fairness is maintained when
boosted VM pays the debts back. There are two ways to main-
tain fairness:
Short-term fairness:Non-IO vCPU(s) pay the debts by

voluntarilyyielding thecomputingresource to thebackground
vCPUwhile the IO vCPU is boosting.

Long-term fairness:All vCPUs of the VM are IO vCPUs,
thedebtwillkeepaccumulating, andnoneof the IOvCPUswill
pay the debt during the IO event until there is a non-IO vCPU.

To prevent a VM from never paying its debt, Anubis config-
ures a debt threshold. If the accumulated debt surpasses the
threshold, the boost will stop. It is worth mentioning that the
IO vCPU doesn’t need to pay the debt as long as it is identified
as IO vCPU, this can maintain the IO performance no worse
than the vanilla case. The Anubis debt maximum limitation
is configurable to provide flexibility to the Cloud provider.
4.4 Malicious IO Events and Applicability
If a malicious user generates a large amount of IO events,

including rescheduling IPIs, in order to occupy system re-
sources, Anubis’ configurable limits, including the maximum
debt, will stop the vCPUs of the affected VMs from getting
boosted – at least until the debt has been paid off.

99

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

Anubis works best if each pCPU only has 1 IO vCPU to
boost. If there ismore than 1 IO vCPU running, Anubis can de-
tect the conflict because IO vCPUs are preempting each other
aggressively. Hence, Anubis will rearrange the vCPUs among
availablepCPUs.However, if the rearrangementdoesn’twork,
for example because all overcommitted pCPUs have one IO
vCPUalready,Anubiswill choose one IOvCPU to boost based
on configurable policies.
4.5 Summary of Anubis’ Features
Responsiveness. Anubis always ensures the responsiveness
of the vCPUwhen an interrupt arrives. Anubis identifies IO
activity in a vCPU using IO Points. When a vCPU receives an
interrupt, Anubis ensures the vCPU can forcibly preempt the
running task. The unfinished timeslice of background vCPU
will accumulate to the boosted VM’s debt.
Boosting. Anubis prevents IO vCPU from being preempted
during the IO event period. Anubis extends the runtime of
IO vCPU, and the extended time will accumulate to the debt.
The IO vCPU can be preempted only if it doesn’t gain any IO
Points andConfidence Points is lower than the threshold, or its
runtimehas exceeded themaximumtimeslice of the scheduler.
Accurate. Anubis accurately detects the boundaries of IO
events inside vCPU. Anubis forces non-IO vCPU to yield to
pay the debts. It is important to mention that, if a non-IO
vCPU is doing the IO event, while its Confidence Points have
not yet exceeded the threshold, it won’t be required to pay the
debts. However, the non-IO vCPUwill also not be recognized
as IO vCPU, so it will not be able to extend its runtime.
Fairness. Anubis provides overall fairness. Anubis checks
the debt of the VM at each scheduling tick. If a VM is in debt
and non-IO vCPU(s), VMwill pay the debts. Anubis only lets
the non-IO vCPU that is not doing IO event yield computing
resources to pay the debt. The debts of VM will be reduced
by the time of the unfinished part of the timeslice that the
yielding vCPUwas supposed to run.
5 Implementation

We implemented a prototype of Anubis based on Linux ker-
nel 5.10.90. Our implementation contributed around ∼2800
LoC atop vanilla Linux and ∼1800 LoC in different automa-
tion scripts. Specifically, we mainly extended the Linux CFS
scheduler and the KVM subsystem – targeting Intel x86_64
machines. Therefore, Anubis schedules only Linux tasks with
the PF_VCPU flag, which indicates the task is a vCPU. Overall,
Anubis canbe instructed to scheduleornot-schedule a specific
VM using a provided proc interface. We used QEMU 6.2.0 as
the user-space counterpart of the in-kernel KVM hypervisor.
We purposely did not modify QEMU, which can be substi-
tuted by any other similar piece of software – broadening the
applicability of Anubis to different deployments.
5.1 Interrupt Redirection and Boosting

To implement interrupt-boosting we introduced interrupt
redirection and IPI boosting in Linux KVM. In Linux, each

interrupt is bound to a fixed CPU or set of CPUs. For example,
the disk IO interrupt is usually bound to CPU0.
We implement interrupt redirection by using Intel’s logi-

cal interrupt model and rerouting the interrupt to a different
vCPU at function kvm_arch_set_irq_inatomic. However,
after version 4.14 [38, 39], Linux only supports fixed interrupt
routing, missing support for the logic interrupt model. Thus,
currently, several Linux developers are working on support-
ing the logic delivery model on recent kernels [50]. At the
same time, Intel [68] stated that the non-fixed interrupt is not
supported anymore in the x2-apicmodel. Anyway, in our
setup, the guest kernel uses the vanilla Linux kernel 4.14.0,
and in the boot-up command we have added -nox2apic flag
to disable the x2-apic. Hence, the interrupt can be redirected
to any vCPU.

Asmentioned in §2.3, it is possible that the IOprocess is not
runningonthevCPUthat receivesan interrupt.ThevCPUwill
generate a rescheduling IPI and will send it to the vCPU that
has the IO process. Anubis also checks the destination vCPU
of the rescheduling IPI in functionkvm_apic_send_ipi. If the
vCPUisnot running,CFSwill force the running task toyield to
this vCPU. If there aremore than 2 tasks in the CFS runqueue,
wewill use the set_next_buddy() function tomake sure the
next wake-up task is the vCPU we are trying to boost. As a
result, the IO process inside the boosted vCPU is able to wake
up on time. Thus, the responsiveness of vCPU is guaranteed.
5.2 Accurate Boosting
Interrupt redirection and boosting are effective for short

lived IO events. But what if an IO event lasts for a long time?
For example, a continuous disk read. Unlike previous works,
such as [40], which guess vCPU’s IO activity by observing
the context switch rate, Anubis uses a set of strategies to ac-
curately identify when a vCPU is doing IO. We describe their
implementation below.
IO Points. The occurrence of the delivery of IO device in-
terrupt or rescheduling IPI indicates a potential IO event
would happen in vCPU. In x86 virtualization, an MMIO fault
is signaled by a vmx ept_misconfig fault, indicating that
the vCPU is involved in the IO event. We implemented a per-
vCPU variable called IO Points, which is a new feature we
added in each vCPU struct task_struct. vCPU will gain
1 IO Point whenever an IO device interrupts, rescheduling IPI,
or KVM exit reason with MMIO occurs. Anubis compares the
current vCPU IO Pointswith the previous recording in each
schedule tick, implemented in check_preempt_tick(). Any
increment of the IO Points indicates the vCPU had a potential
IO event in the previous schedule tick.
IO Task Introspection. However, previously introduced evi-
dence doesn’t reveal the actual cessation time of the IO event.
Therefore, Anubis monitors the running task of a vCPU to
detect the end of the IO event. Previous work [40] relies on
the cr3 register. cr3 register stores the address of the running

100

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

task’s page table directory (pgd). Changing of cr3 register in-
dicates changing of running task. However, the guest cr3 reg-
ister is only observable during the KVM exit period. The host
can not inspect the running task of vCPUwhen VM stays in
the guest mode. Instead, Anubis leverages the current_task
pointer, similarly toearlierworks [13,14, 22].Thegs (per-CPU
register) base address add current_task address become the
per-CPU variable *current, and this pointer stores the run-
ning task address. Changing of *current indicates changing
of running task. Because the current_task pointer is stati-
cally compiled, the address of current_task can be found
in the kernel symbol map(System.map). The Cloud providers
can easily get the address of current_task since they are the
VM kernel provider.

However, Cloud providers can not acquire the System.map
if clients use their customized kernel. Therefore, we have im-
plemented a heuristic approach. Because the current_task
address is a fixed address in kernel space, we can keep adding
the offset of a pointer length to the gs base address and reads
the value until the boundary, the next vCPU’s gs base ad-
dress. We will have few candidates, and most of them can be
eliminated in 3 steps: 1. current_task is a per-CPU variable,
the offset to the gs base remains the same for each vCPU;
2. current_task value change over time; 3. current_task
value iskernel spaceaddress. Initial testingshownthismethod
working also with Kernel Address Space Layout Randomiza-
tion (KASLR) or Function Granular KASLR (FG-KASLR)[46].
While Anubis mainly targets Linux guest VMs, we expect
Anubis working also with other traditional OSes. For exam-
ple, in FreeBSD, we could start introspecting curproc instead
than current_task in Linux.
Confidence Points. Guest *current address can bemapped
to host userspace via theQEMUmemory_slice. Implemented
inhandle_ept_misconfig, thehost reads the*currentvalue
during KVM exit reason for MMIO and marks the value as
IO possible. In each schedule tick the host reads the *current
again and compares the value with IO possible. A mismatch
indicates the end of the IO event. However, the mistake is
unavoidable if more than one thread is related to the IO event
because each time the host only reads one value out. Confi-
dence Points can help us to solve this issue.
Like IO Point, the Confidence Point is a per vCPU variable,

which is a new feature we have implemented in the vCPU
struct task_struct. In each schedule tick, vCPU can get 1 Con-
fidence Point if vCPU has gained IO Points in the previous
schedule tick, implemented in check_preempt_tick(). The
higher the Confidence Points, the more IO activities have been
done previously for this vCPU. In contrast, the non-IO vCPU
has to continue gainingConfidence Points until it is larger than
the threshold to be considered as an IO vCPU, as IO vCPU is
supposed to maintain a steady IO event.

The current degradation policy of Anubis in using is to
divide Confidence Points by two. For example, with a thresh-
old set as four, if an IO vCPU has a steady IO event in the
previous 100 schedule ticks. After the IO event is completed,
this IO vCPUwill lose all Confidence Points in five ticks, and
be recognized as a non-IO vCPU. On the contrary, a non-IO
vCPU needs a steady IO event lasting at least four schedule
ticks to be considered as an IOvCPU.HigherConfidence Points
threshold indicates harder to recognize a vCPUas an IOvCPU.
Confidence Points degradation policy and the Confidence

Points threshold are fully configurable.
5.3 Anubis Debt System
Anubis maintains fairness among VMs.We implemented

a feature in each struct kvm structure called debt. Unlike
the current burst VM used in the Cloud [4, 16, 48], the Anubis
debt gives more granularity by boosting vCPU solely during
the IO event period, rather than being constantly active. Each
vCPU of the VMwill contribute to the debts by accumulating
the time gained from other backgrounds vCPU, and vCPUs of
the same VM can synchronize access to this shared variable,
controlled by spin-lock. Whenever a vCPU preempts an-
other vCPU or extends its runtime, the vCPUwill accumulate
the "borrowed" time to its debts.
Anubis checks the debts at every schedule tick, imple-

mented in check_preempt_tick(). Anubis set aMaximum
Debt threshold to prevent the IO vCPU boosting endlessly. If
the total debt reaches such threshold, the IO vCPU boost will
be disabled, it can’t preempt other vCPUwhen an interrupt
is delivered or maximize the IO performance by extending its
runtime when it gains IO Points. TheMaximumDebt thresh-
old is fully dynamically configurable, for example, a Cloud
provider can set the threshold based on its cost structure.
5.4 Anubis Policies
Anubis provides configurable policies for worst-case sce-

narios. When an IO vCPU is preempted by another IO vCPU
(both Confidence Points are larger than the threshold), Anubis
recognizes the pCPUhasmore than one IO vCPU.Anubis first
tries to rearrange the vCPUs by switching the core affinity of
a IO vCPUwith another non-IO vCPU of the same VM. If the
rearrangement doesn’t work, for example because all vCPUs
of the VM are IO vCPU, a different policy must be chosen.
Currently, Anubis only boosts the IO vCPU that has the high-
est Confidence Points. However, the decision is configurable;
for example, the IO vCPU that has the lowest debts will be
boosted, or no vCPU is boosted.
In summary, to gain better performance Anubis can toler-

ate the aggressive preemption triggered by interrupt delivery,
which happens between multiple IO vCPUs. However, due
to limited compute resources in the overcommitted scenario,
Anubis allows only one IO vCPU to maximize its IO perfor-
mance by extending its runtime.

101

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

(a) Vanilla result (b) Anubis result

Figure 5:Time interval betweenKVMdelivered interrupt and receiver vCPU is active, 4 vCPUsVMs, overcommit ratio 2:1
6 Evaluation
Testbed. We run experiments on a custom-built server based
on the Supermicro X11DPi-N motherboard with a total of
768GB of DRAM and two Intel(R) Xeon(R) Gold 6230R CPUs
at 2.1GHz – 26 cores each.While supported by Anubis, hyper-
threading is disabled formore consistent results. For the same
reason, all experiments are run with the CPU performance
profile – disabled frequency scaling, and disabled turbo boost.
VMs have 8GB of RAM, and between 2 and 8 vCPUs. Each
guest runs Ubuntu 18.04 LTS with vanilla (unmodified) Linux
kernel 4.14.0-041400-generic. The host runsUbuntu 22.04 LTS
with Linux kernel 5.10.90 extended with Anubis. The host
kernel scheduling frequency is 1𝑘𝐻𝑧, so the scheduling tick
is set to 1𝑚𝑠 , and the scheduler period (sched_latency_ns)
is set to 8𝑚𝑠 as recommended by Red Hat [28].

We considered VM overcommitted ratios of 2:1, 3:1, and 4:1
vCPUs to pCPU, which we believe are the most relevant for
the state of the practice, as most of the elastic Cloud specifica-
tions [3, 11, 17, 18, 25, 26, 32, 43, 54, 67] – but Anubis put no
limitations on the actual overcommitted ratio. In our exper-
iments, all the pCPUs reside in the same NUMA node, and we
divided those pCPUs into two pools [53]. A computing pool,
depending on the vCPUs size of the VMwe test, 2 to 8 pCPUs,
which hosts all vCPUs – with a 2:1, 3:1, or 4:1 overcommitted
ratio; and another pool, 2 to 8 pCPUs hosting anything else,
including all vHost and QEMU-IO threads. This ensures that
only vCPUs contend for the same pCPU resource.
Benchmarks. Table3 lists the real-worldworkloadsweused
in the evaluation.Werun the samecomputing-intensivework-
load, sysbench-cpu benchmark[64], for all the VMs to create
backgroundpressure, andoneVMruns the IO-intensivework-
load as the test case. Our upper bound is the non-overcommit
case: each vCPU of the VM is running solely on a pCPU.

Table 3:Macro-benchmarks test set
Application Description
HBase Sequential scan records with YCSB [72].
HDFS Sequential read 26GB with TestDFSIO [27].
MySQL seqrd and seqwr 10GB files with sysbench [64].
MongoDB Insert with MongoDB-performance-test [56].
Nginx Concurrent requests with ApacheBench [5].
Postmark Simulate mail servers files operations [57].
Redis Set values with Redis-benchmark [60].

Experiments. We evaluated how § 6.1: Anubis shortens the
vCPU inactivity time; § 6.2: Anubis improves the VM’s IO
performance under the overcommit scenario; § 6.3: Anubis
maintains short-term and long-term fairness; but also § 6.4:
Anubis overheads; § 6.5: Anubis vs latest work; and § 6.6:
Anubis in serverless computing scenarios.
6.1 vCPUResponsiveness

Boosting based on device interrupt and rescheduling IPI, to-
gether with the interrupt redirecting improve the responsive-
nessof thevCPU.WeuseLinuxkernel event tracepoint tohelp
us understand howAnubis can help reduce interrupt pending
time. For each coming interrupt(device interrupt or reschedul-
ing IPI);When theKVMdelivered the interrupts to a vCPUwe
recorded thefirst timestampat function__apic_accept_irq.
Thenwe record the timewhen receiver vCPU is active by trac-
ing the scheduler event tracepoint sched:sched_switch.We
measure the time interval between those 2 events. If the inter-
rupt receiver vCPU is active when the interrupt is delivered,
the time interval would be 0 because the vCPU at that time
is active to handle the interrupt. In this experiment, we use
2 VMs, each has 4 vCPUs and overcommit at 4 pCPUs. We
choose the Nginx server as the IO-intensive workload, and
both VMs also run sysbench-cpu as the computing-intensive
workload. In total,wehavemeasured about∼35000 interrupts.
The experimental results are presented in Fig. 5. The y-axis
represents the time interval expressed in milliseconds, and
the x-axis denotes each interrupt measurement.
The vanilla case results are depicted in Fig. 5a. Here, we

observe that the average interval time between the delivery
of the interrupt and the vCPU resuming operation is approx-
imately 3-4𝑚𝑠 . In the worst-case scenario, expected as we
analyzed in § 2.4, the interrupt come right after the vCPU
got preempted. This duration can extend up to about 7-8𝑚𝑠 ,
equivalent to roughly 1 schedule timeslice of a task entity on
CFS in our setup. Additionally, if the IO thread is not execut-
ing on this vCPU, an extra rescheduling IPI is necessitated.
In the worst-case scenario, a maximum of 14-16𝑚𝑠(twice the
maximum delay) must pass before the VM can respond to the
interrupt. Notice that we only trace the time interval of the
individual interrupt, the result in Fig doesn’t show the accu-
mulated delay time of the consecutive IO device interrupts
+ rescheduling IPI delivery mentioned above.

102

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

(a)Micro. "S" single thread, "M"multi-threads) (b)Macro

Figure 6: Benchmarks results, normalized to the non-overcommit case, 4 vCPUs VMs, overcommitted ratio of 2/3/4:1
On the contrary, Fig. 5b presents the results of Anubis,

which adopts interrupt redirecting and boosting, the vCPU
resumes operation in a timely manner and is capable of re-
sponding to the interrupt event within 1𝑚𝑠 of its delivery
in most instances. Although this does not guarantee that the
active vCPUwill process the interrupt immediately after the
recipient, the unavoidable delay time is trimmed by about
350% on average for each individual interrupt.
6.2 IO Performance
Here we tested Anubis’s performance improvement com-

pared with the vanilla case for both disk IO and network IO
applications. Our upper bound is the non-overcommit case,
in which the vCPU is solely running on a pCPU. Results show
in Fig. 6.
Micro-benchmark. We conducted a series of disk read and
write tests using sysbench-fileio[64], and iPerf3[33] for net-
work IO testing. The results are displayed in Fig. 6a, and nor-
malized to thenon-overcommit case.WithAnubis enabled, on
average, there is a notable performance improvement when
compared to the vanilla case, ranging from 59% to 500%, and
the performance has improved from 45% to 97% compared to
non-overcommit VM.
Macro-benchmark. We tested both single-thread andmulti-
threadreal-worldapplications, includingHDFS[30],LEMP[42],
MongoDB[49], Postmark[57], Redis-server[59], HBase[29],
Hadoop[27], andMySQL[64]. Themacro application setup de-
tails and its corresponding benchmarkwe choose are listed in
Table 3. Results are normalized to the non-overcommit case
and present in Fig. 6b. On average, with Anubis, the through-
puts of these benchmarks are improved by about 70%, 84%,
and 103% than vanilla KVM for the settings with overcom-
mitted ratios of 2:1, 3:1, and 4:1 respectively. In terms of the
non-overcommit case, the Anubis improves the performance
up to 40% to 97% of the non-overcommit VM performance.

Bothmicro andmacro benchmarks show thatwith a higher
overcommitted ratio, on average the degree of improvement
relative to the vanilla case remains approximately constant.
However, achieving the performance of non-overcommit

cases becomes increasingly difficult. This can be attributed to
Anubis’s design, which takes care of fairness among the VMs.
Different number of vCPUs. We run VMs with different
numbers of vCPUs to demonstrate that Anubis can still meet
the promised performance improvements. The experiments
run the same macro benchmark set, with an overcommitted
ratio of 2:1, and each VM with 2, 4, and 8 vCPU, the results
show in Fig. 7. We can observe that the different numbers of
vCPUs do not affect the performance improvement of Anubis.
Additionally, the performance improvement of Anubis can be
even better if theVMhasmany vCPUs. Because themore non-
IO vCPUs, the easier the fairness to achieve, Anubis can boost
the IO vCPUmore aggressively. On average, the performance
improvement remains about 38% to 500% compared with the
Vanilla case, and 60% to 97% compared with the upper bound
non-overcommit case.

Figure 7: Macro-benchmark, normalized to non-
overcommit case, 2/4/8 vCPUs, overcommitted ratio 2:1

Figure 8: Fairness of Burst VM to achieve the Anubis
performance, 4 vCPUs, overcommitted ratio 2/3/4:1

103

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

(a) Short-term fairness, different number of
IO vCPU

(b) Short-term fairness, per pCPU in detail

(c) Long-term fairness and performance in different
stages

Figure 9:Anubis fairness evaluation

6.3 Overall Fairness
This section illustrates how Anubis guarantees fairness

among overcommitted VMs. § 6.3.1 show that Anubis is not
a simple boost like burst VM. § 6.3.2 illustrate how Anubis
ensure short-term fairness § 6.3.3 describe how Anubis guar-
antee long-term fairness. In the following experiments, we
use perf to trace the context switch for each vCPU task, and
based on that, we can correctly accumulate the actual execu-
tion time of each vCPU task.

6.3.1 Anubis vs Burst. To substantiate the delta of our ap-
proach versus a naive boost solution, we set up an experiment
to illustrate how Anubis is different compared to the burst
VM in Cloud [4, 16, 48]. Fig. 8 shows the fairness results of
the 4 vCPU VM under-overcommit and running the same
macro benchmark sets. The performance results are the same
asFig. 6b. Themost interesting part is thewhite bar, theBurst,
which indicates howmanyCPU resources the overcommitted
vanilla VM needs to burst to achieve the same performance

as Anubis. With the same performance improvement, Anubis
offers a nearly ideal fairness rate, which proves that Anubis
can accurately detect and boost the IO vCPU.

6.3.2 Ensure Short-term Fairness. As mentioned in § 4.3,
non-IO vCPUs can yield computing resources(paying debts)
while the IO vCPU is boosting(borrowing debts). The more
non-IO vCPUs, the better the fairness can be achieved. Thus,
we have picked single-thread and multi-thread IO-intensive
workloads to show the difference. We use a 4 vCPUs VM,
and we show the fairness between the boosted VM and the
background VMs with overcommitted ratio from 2:1 to 4:1.

Fig. 9a presents the overall fairness of the boosted VM dur-
ing the Boosting time. The 4 cases are as follows: 1-IO-vCPU:
The sysbench-seqrd thread is pinned to the vCPU that handles
the interrupt. 2-IO-vCPU: The redis-server thread is pinned to
the vCPU that doesn’t handle the IO device interrupt, while
the vCPUhandling the interrupt is alsomarked as an IOvCPU.
3-IO-vCPU and 4-IO-vCPU: each PHPworker and the Nginx
server is pinned to a vCPU, while 3-IO-vCPU case we leave
1 vCPU as non-IO vCPU.

In the scenario of 1-IO-vCPU, the fairness across VMs is
closely related to the base case due to a higher number of
non-IO vCPUs. However, as the number of the IO vCPU in-
creases, short-term fairness begins to deteriorate due to the
scarcity of the non-IO vCPU available to offset the debts ac-
cumulated during the Boosting stage. Detailed insight into
the achievement of short-term fairness is depicted in Fig. 9b.
Which presents CPU resource usage per vCPU in the case
of an overcommitted ratio of 4:1. Observations reveal that
Anubis facilitates non-IO vCPUs in yielding CPU resources
to background vCPUs, while correctly boosting IO vCPUs.
Despite these insights, it’s worth noting that short-term

fairness can be better. In our experimental setup, we created
a worst-case distributed scenario by forcibly assigning the
IO threads to different vCPUs to showcase the worst-case
fairness of Anubis. In the following section, we will discuss
how Anubis can maintain long-term fairness, especially in
the context of multi-thread IO-intensive workloads.

6.3.3 GuaranteeLong-termFairness. In theAnubisdebts
system, there are 3 stages during the execution time. Boost-
ing: The debts are increasing, IO vCPUs are demanding more
running time and keep borrowing debts, and less payback
from non-IO vCPU.Balanced: The debts are dynamically sta-
ble, with no increase or reduction. This could happen either
by debts having reached the maximum limitation or enough
payback of the debts by the non-IO vCPUs.Paying: The debts
are reducing, and non-IO vCPUs pay more debts than IO vC-
PUs borrow,which usually happenswhen IO event is finished.
In this experiment, we useNginx server as the test benchmark
as it is a complicated multi-thread IO-intensive workload.

104

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

(a) Background computing-intensive workload execu-
tion time, measured during Boosting stage

(b) Number of Context Switch, measured during
Boosting stage

Figure 10:Anubis overheads evaluation
Fig. 9c shows how the VM fairness and the Nginx perfor-

mance change during the Boosting, Balanced, and Paying
stages. The x-axis is sampled every 100𝑚𝑠 , we used perf
to record the context switch and accumulate the actual run-
time of each vCPU within the 100𝑚𝑠 interval to generate
the fairness rate. Initially, we execute the Nginx server [51]
under the vanilla case, recording per-request latency from the
Apache benchmark [5]. In the middle of execution, Anubis is
activated, resulting in a boosted state for the VM. In return,
the latency is reduced during the Boosting stage. To avoid
significant unfairness, the VM’s boosting is curtailed once the
accumulated debt hits the maximum limitation, marking the
start of the Balanced stage. Owing to the IO vCPU’s exemp-
tion from paying debt, the performance declines but remains
noworse than the vanilla case. Following the completion of
all requests by theNginx server, Anubis identifies the absence
of any IO event. The IO vCPUs change to non-IO vCPUs and
start to pay back the debt by yielding computing resources
to the background VMs. The experiment proves that Anubis
can guarantee long-term fairness.
6.4 Overhead Assessment
We check the background VM workload execution time

to show the affection of Anubis to the background VM. The
experiments are running 4 vCPUsVMwith anovercommitted
ratio of 4:1, and we run the same macro benchmarks set to
show the performance impact on the background VM. The y-
axis denotes the execution time of the background computing-
intensive workload(a multi-thread prime number calculator).
All the experiments’ measurements happen in the Boosting
stage because we believe if we measure in the long-term, the
execution time would not be affected as shown in Fig. 9c.
Results shown in Fig. 10a, in most cases, the background VM
doesn’t get affected. However, if the boosted IO workload
has many IO vCPUs (Nginx case), the performance of the

Figure 11:Anubis vs Previous works

Figure 12:Anubis + FaaS(OpenLambda) evaluation

background VMwould drop to about 75% compared with the
vanilla case.

In order to justify that Anubis does not bring overheads by
increasing the expensive VM context switch like the previ-
ous work [70], we use the perf tool to accumulate the total
context switches of each VM and compare it with the vanilla
case under different overcommitted ratios. Shown in Fig. 10b,
the number of context switches is reduced in several cases.
After analysis,we believe it is because the IOvCPUcan escape
from being preempted whenever it can gain IO Points until
the maximum timeslice. The more IO vCPUs(Nginx case), the
fewer the context switchwould happen as the IO vCPUwould
keep running. For other cases, the number of context switches
remains the same compared to the vanilla case.

We further use perf tool to measure the cost of Anubis in-
trospection during each scheduling interval (every 1𝑚𝑠). The
cost is about 150 cycles, which is trivial, and we acknowledge
that there is still space for further optimization.
6.5 Anubis vs PreviousWorks
We compared Anubis with vanilla Linux, vBalancer [15],

vMigrator [35], and the combination of vMigrator with vBal-
ancer – this is because vMigrator must run with vBalancer
to enable interrupt redirection. We primarily compared with
the result of vMigrator because, in their paper, they have
compared with other approaches, vSlicer[70], xBalloon[63],
and none of them have better performance compared with
the vMigrater. We didn’t use the open-source code from the
vMigrater because it does need kernel modifications from
vBalancer, unlike what we originally understood from the

105

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

paper 1. Because the interrupt redirection is part of theAnubis
design, we can emulate the vBalancer by just enabling the IO
device interrupt redirection of Anubis.
In this experiment, we ran VMs that have different vCPU

sizes from 2 to 8 vCPUs, and with the overcommitted ratio
from 2:1 to 4:1, the performance result is shown in Fig. 11.
As we explained previously, if we run the vMigrater only,

the performance of the IO application will not be increased
because the vCPU that receives the IO device interrupt will
not send the rescheduling IPI if it is not running. Additionally,
asFig. 4 shows, under theovercommitted ratio of 2/3/4:1,with
the 2 vCPU VM, the IO thread runtime can only extend up to
74%/54%/47% of maximum timeslice. While in the 4 vCPUs
and 8 vCPUs VM, the IO thread ideal extendable runtime can
extend up to 90%/78%/60% and 100%/95%/88% of maximum
timeslice. As we expected, the experiment result shows that
the improvement of vMigrater+vBalancer to the IO applica-
tion is minimal in 2 vCPUs VM, and the vMigrater+vBalancer
approach starts to work in the 4 and 8 vCPUs VM cases. How-
ever, Anubis offers similar results to the vMigrater approach
and apply to the VMs with different number of vCPUs. While
we tested our emulated vMigrater across all benchmarks, due
to the lack of original kernel support, our results diverged
from those reported in their paper – they areworse, making it
difficult for us to validate the correctness of our results. There-
fore, we only report the sysbench-seqrd as it was the most
stable result we achieved. After comparing the results in their
paper, which are also normalized to the non-overcommit case,
we found that in some benchmarks vMigrater can achieve
slightly better results than Anubis. However, vMigrater re-
quires a VM to have many vCPUs (12 vCPUs) to accomplish
this, whereas Anubis has no such prerequisites. Moreover,
since Anubis doesn’t necessitate modifications to the guest
VM, it is more adaptable and flexible for implementation in
a real Cloud environment.
6.6 Serverless Computing Scenario

Function as a Service(FaaS) is an emerging paradigmwhere
users upload and execute small pieces of code, or functions in
the Cloud. Major Cloud providers are already offering FaaS
solutions [2, 24, 47]. A recent study of Azure Functions [61]
shows that serverless functions execution time is below 10 sec
for 90% functions. Given these characteristics of serverless
computing,Cloudprovidersdesire toaggressivelyconsolidate
plenty of function instances into one physical host [1].
We use the open-source OpenLambda [31] FaaS frame-

work for our serverless computing experiment. We deployed
1 OpenLambda server per VM, configured with maximal
spawns of 100 functions each time.We have registered 3 func-
tions: echo, download, and compress services. Echo: The

1We did exchange several emails with the authors to reach such a conclusion.
Moreover, we were unable to get a working code from the authors.

client posts data to the server, and the server returns the same
data back.Download: We deploy a VM on another host as
a storage machine connected to the OpenLambda VM. The
client posts an HTTP request with an encoded descriptor
to Lambda. The Lambda function will decode the descriptor
and locate the target data in the storage machine. Then the
Lambda function copies the target data from the storage ma-
chine to the client through the network. Compression: In
this experiment, we are emulating a video stream service. The
client posts a request to the Lambda server with the encoded
video ID and level of video quality. The Lambda function first
locates the video data by decoding the video ID and copying
100 picture frames of the video from the storage machine.
Then the Lambda function will compress all frames with the
requested quality and send them to another storage machine.
We have measured the latency of each request and com-

pared the result to both vanilla and non-overcommit cases,
and the results are in Fig. 12. We can see that the compres-
sion service gets lower improvement comparedwith the Echo
service. Because the compression service also includes the
computing-intensive workload, but Anubis only boosts the
IO-intensive part of the service.
7 Conclusion
This paper identifies why low-latency IO cannot be guar-

anteed today in virtualized setups with overcommitted re-
sources – focusing on CPU, which hasn’t been adequately
studied before. Previous works focus mostly on the direct
reason causing slow IO: the vCPU containing the IO task has
been descheduled. This paper spotlight the indirect reason: IO
device interrupts or rescheduling IPIs are not immediately dis-
patched to vCPUs.We introduce Anubis, a new IO-aware VM
scheduler that can precisely identify IO processing happen-
ing in a vCPU and accurately boost the vCPU priority during
the IO processing only. Notably, Anubis does not require any
guest software modification.
In summary: 1. Anubis mitigates the impact of vCPU in-

activity: instead of shortening the inactive period of a vCPU,
Anubis improves the responsiveness of the vCPU by waking
it up on time when there is a pending interrupt for it; 2.Anu-
bis maximizes the IO performance of a IO vCPU during an
IO event period: instead of ensuring the priority of IO tasks
inside the vCPU, Anubis maintains the IO vCPU priority by
maximizing its runtime within the IO event period; 3.Anu-
bis ensures overall fairness among VMs while improving the
IO performance: instead of maintaining the fairness of IO
vCPU and other vCPUs, Anubis ensures fairness among VMs
through a debt system.

The paper provides several experimental results to support
Anubis’ efficiency and its benefits vs state of the art. The code
is available at https://github.com/systems-nuts/Anubis.

106

https://github.com/systems-nuts/Anubis

Maximizing VMs’ IO Performance on Overcommitted CPUs with Fairness SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

References
[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra

Iordache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. 2020. Firecracker: Lightweight Virtualization for
Serverless Applications. In Proceedings of the 17th Usenix Conference
on Networked Systems Design and Implementation (Santa Clara, CA,
USA) (NSDI’20). USENIX Association, USA, 419–434.

[2] Amazon. 2020. AWS Lambda Website. https://aws.amazon.com/
lambda.

[3] Amazon. 2022. How Amazon ECS manages CPU and memory
resources. https://aws.amazon.com/blogs/containers/how-amazon-
ecs-manages-cpu-and-memory-resources/.

[4] Amazon. 2023. Burstable performance instances. https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
performance-instances.html.

[5] Apache. 2023. ab - Apache HTTP server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/ab.html.

[6] AWS.2023. BBCdelivers live,UHDcoverageofUEFAEurosandWimble-
don with AWS. https://aws.amazon.com/cn/blogs/media/bbc-delivers-
live-uhd-coverage-of-uefa-euros-and-wimbledon-with-aws/.

[7] AWS. 2023. Explore.org live streams nature cams to global audiences
with AWS. https://aws.amazon.com/cn/blogs/media/explore-org-live-
streams-nature-cams-to-global-audiences-with-aws/.

[8] AWS. 2023. LAMP Server on AWS. https://aws.amazon.com/
marketplace/pp/prodview-gqnnpbafrkkys.

[9] AWS. 2023. Partner Success with AWS. https://aws.amazon.com/
partners/success/.

[10] AWS. 2023. Washington Post’s Arc publishing platform uses AWS
to transform the broadcast landscape. https://aws.amazon.com/cn/
blogs/media/washington-posts-arc-publishing-platform-uses-aws-
to-transform-the-broadcast-landscape/.

[11] Blueprint. 2022. https://blueprints.launchpad.net/nova/+spec/nova-
change-default-overcommit-values.

[12] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy
Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and Julien
Sopena. 2018. The Battle of the Schedulers: FreeBSDULE vs. Linux CFS.
In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). 85–96.

[13] Kevin Burns, Antonio Barbalace, Vincent Legout, and Binoy Ravin-
dran. 2014. KairosVM: Deterministic introspection for real-time
virtual machine hierarchical scheduling. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA). 1–8.
https://doi.org/10.1109/ETFA.2014.7005061

[14] Kevin Burns, Vincent Legout, Antonio Barbalace, and Binoy Ravindran.
2019. PrVM: A Multicore Real-Time Virtualization Scheduling
Framework with Probabilistic Timing Guarantees. SIGBED Rev. 16,
3 (nov 2019), 14–20. https://doi.org/10.1145/3373400.3373402

[15] Luwei Cheng and Cho-Li Wang. 2012. VBalance: Using Interrupt
Load Balance to Improve I/O Performance for SMP Virtual Machines
(SoCC ’12). Association for Computing Machinery, New York, NY,
USA, Article 2, 14 pages. https://doi.org/10.1145/2391229.2391231

[16] Huawei Cloud. 2023. Elastic Cloud Server (ECS). https:
//www.huaweicloud.com/intl/en-us/product/ecs.html.

[17] Huawei Cloud. 2023. A Summary List of x86 ECS Specifica-
tions. https://support.huaweicloud.com/intl/en-us/productdesc-
ecs/ecs_01_0014.html.

[18] Key concepts and definitions for burstable performance instances. 2023.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
credits-baseline-concepts.html.

[19] Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani, and Ammar
Rayes. 2015. Efficient datacenter resource utilization through cloud
resource overcommitment. In 2015 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). 330–335.
https://doi.org/10.1109/INFCOMW.2015.7179406

[20] Xiaoning Ding, Phillip B. Gibbons, and Michael A. Kozuch. 2013. A
Hidden Cost of VirtualizationWhen Scaling Multicore Applications. In
5th USENIXWorkshop onHot Topics in Cloud Computing (HotCloud
13). USENIX Association, San Jose, CA. https://www.usenix.org/
conference/hotcloud13/workshop-program/presentations/ding

[21] Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch, and Jianchen
Shan. 2014. Gleaner: Mitigating the Blocked-Waiter Wakeup Prob-
lem for Virtualized Multicore Applications. In 2014 USENIX Annual
TechnicalConference (USENIXATC14).USENIXAssociation,Philadel-
phia, PA, 73–84. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ding

[22] Michael Drescher, Vincent Legout, Antonio Barbalace, and Bi-
noy Ravindran. 2016. A Flattened Hierarchical Scheduler for
Real-Time Virtualization. In Proceedings of the 13th International
Conference on Embedded Software (Pittsburgh, Pennsylvania)
(EMSOFT ’16). Association for Computing Machinery, Article 12,
10 pages. https://doi.org/10.1145/2968478.2968501

[23] Sahan Gamage, Cong Xu, Ramana Rao Kompella, and Dongyan Xu.
2014. VPipe: Piped I/O Offloading for Efficient Data Movement in
Virtualized Clouds (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/2670979.2671006

[24] Google. 2020. Google Cloud Functions. https://cloud.google.com/
functions.

[25] Google. 2022. Get more from every core: Announcing CPU overcommit
for Compute Engine. https://cloud.google.com/blog/products/
compute/cpu-overcommit-for-sole-tenant-nodes-now-ga.

[26] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. 2020. Protean: VMAllocation
Service at Scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 845–861.
https://www.usenix.org/conference/osdi20/presentation/hadary

[27] Hadoop. 2023. https://hadoop.apache.org/.
[28] Red Hat. 2017. https://access.redhat.com/documentation/en-us/red_

hat_enterprise_linux/6/html/6.0_technical_notes/deployment.
[29] HBase. 2023. https://hbase.apache.org/.
[30] HadoopDistributed File System (HDFS™). 2023. https://hadoop.apache.

org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesi.
[31] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran

Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2016. Serverless computation with openlambda. In 8th
USENIXWorkshop onHot Topics inCloudComputing (HotCloud 16).

[32] IBM. 2022. https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_
1.1.3/com.ibm.cloudin.doc/admintasks/configuring/customizing/
allocation_ratio_templates.htm.

[33] iperf3. 2023. https://github.com/esnet/iperf.
[34] Kenta Ishiguro, Naoki Yasuno, Pierre-Louis Aublin, and Kenji Kono.

2021. Mitigating Excessive VCPU Spinning in VM-Agnostic KVM.
In Proceedings of the 17th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (Virtual, USA)
(VEE 2021). Association for Computing Machinery, New York, NY,
USA, 139–152. https://doi.org/10.1145/3453933.3454020

[35] Weiwei Jia, Cheng Wang, Xusheng Chen, Jianchen Shan, Xiaowei
Shang, Heming Cui, Xiaoning Ding, Luwei Cheng, Francis C. M. Lau,
Yuexuan Wang, and Yuangang Wang. 2018. Effectively Mitigating
I/O Inactivity in VCPU Scheduling. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (Boston, MA,
USA) (USENIX ATC ’18). USENIX Association, USA, 267–279.

107

https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/blogs/containers/how-amazon-ecs-manages-cpu-and-memory-resources/
https://aws.amazon.com/blogs/containers/how-amazon-ecs-manages-cpu-and-memory-resources/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://aws.amazon.com/cn/blogs/media/bbc-delivers-live-uhd-coverage-of-uefa-euros-and-wimbledon-with-aws/
https://aws.amazon.com/cn/blogs/media/bbc-delivers-live-uhd-coverage-of-uefa-euros-and-wimbledon-with-aws/
https://aws.amazon.com/cn/blogs/media/explore-org-live-streams-nature-cams-to-global-audiences-with-aws/
https://aws.amazon.com/cn/blogs/media/explore-org-live-streams-nature-cams-to-global-audiences-with-aws/
https://aws.amazon.com/marketplace/pp/prodview-gqnnpbafrkkys
https://aws.amazon.com/marketplace/pp/prodview-gqnnpbafrkkys
https://aws.amazon.com/partners/success/
https://aws.amazon.com/partners/success/
https://aws.amazon.com/cn/blogs/media/washington-posts-arc-publishing-platform-uses-aws-to-transform-the-broadcast-landscape/
https://aws.amazon.com/cn/blogs/media/washington-posts-arc-publishing-platform-uses-aws-to-transform-the-broadcast-landscape/
https://aws.amazon.com/cn/blogs/media/washington-posts-arc-publishing-platform-uses-aws-to-transform-the-broadcast-landscape/
https://blueprints.launchpad.net/nova/+spec/nova-change-default-overcommit-values
https://blueprints.launchpad.net/nova/+spec/nova-change-default-overcommit-values
https://doi.org/10.1109/ETFA.2014.7005061
https://doi.org/10.1145/3373400.3373402
https://doi.org/10.1145/2391229.2391231
https://www.huaweicloud.com/intl/en-us/product/ecs.html
https://www.huaweicloud.com/intl/en-us/product/ecs.html
https://support.huaweicloud.com/intl/en-us/productdesc-ecs/ecs_01_0014.html
https://support.huaweicloud.com/intl/en-us/productdesc-ecs/ecs_01_0014.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://doi.org/10.1109/INFCOMW.2015.7179406
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/ding
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/ding
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ding
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ding
https://doi.org/10.1145/2968478.2968501
https://doi.org/10.1145/2670979.2671006
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/blog/products/compute/cpu-overcommit-for-sole-tenant-nodes-now-ga
https://cloud.google.com/blog/products/compute/cpu-overcommit-for-sole-tenant-nodes-now-ga
https://www.usenix.org/conference/osdi20/presentation/hadary
https://hadoop.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/6.0_technical_notes/deployment
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/6.0_technical_notes/deployment
https://hbase.apache.org/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesi
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesi
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/admintasks/configuring/customizing/allocation_ratio_templates.htm
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/admintasks/configuring/customizing/allocation_ratio_templates.htm
https://www.ibm.com/docs/en/cic/1.1.3?topic=SSLL2F_1.1.3/com.ibm.cloudin.doc/admintasks/configuring/customizing/allocation_ratio_templates.htm
https://github.com/esnet/iperf
https://doi.org/10.1145/3453933.3454020

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tong Xing, Cong Xiong, Chuan Ye, QiWei, Javier Picorel, and Antonio Barbalace

[36] Ardalan Kangarlou, Sahan Gamage, Ramana Rao Kompella, and
Dongyan Xu. 2010. vSnoop: Improving TCP Throughput in Vir-
tualized Environments via Acknowledgement Offload. In SC ’10:
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–11.
https://doi.org/10.1109/SC.2010.57

[37] J. Kay and P. Lauder. 1988. A Fair Share Scheduler. Commun. ACM
31, 1 (jan 1988), 44–55. https://doi.org/10.1145/35043.35047

[38] Linux kernel. 2023. https://elixir.bootlin.com/linux/v4.14.325/source/
arch/x86/kernel/apic/apic.c.

[39] Linux kernel. 2023. https://elixir.bootlin.com/linux/v4.14.325/source/
arch/x86/kernel/apic/apic_flat_64.c.

[40] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, and Joonwon
Lee. 2009. Task-AwareVirtualMachine Scheduling for I/OPerformance.
(VEE ’09). Association for Computing Machinery, New York, NY, USA,
101–110. https://doi.org/10.1145/1508293.1508308

[41] Linux KVM. 2023. https://www.linux-kvm.org/page/Main_Page.
[42] LEMP. 2023. https://lemp.io/.
[43] Scott D. Lowe. [n. d.]. Best Practices for Oversubscription of CPU,

Memory and Storage in vSphere Virtual Environments. Dell.
[44] Hui Lu, Brendan Saltaformaggio, Ramana Kompella, and

Dongyan Xu. 2015. VFair: Latency-Aware Fair Storage Sched-
uling via per-IO Cost-Based Differentiation (SoCC ’15). Associ-
ation for Computing Machinery, New York, NY, USA, 125–138.
https://doi.org/10.1145/2806777.2806943

[45] Hui Lu, Cong Xu, Cheng Cheng, Ramana Kompella, and
Dongyan Xu. 2015. vHaul: Towards Optimal Scheduling of
Live Multi-VM Migration for Multi-tier Applications. In 2015
IEEE 8th International Conference on Cloud Computing. 453–460.
https://doi.org/10.1109/CLOUD.2015.67

[46] LWN. 2011. https://lwn.net/Articles/444503/.
[47] Microsoft. 2020. Microsoft Azure Functions. https:

//azure.microsoft.com/en-us/services/functions.
[48] Microsoft. 2023. https://learn.microsoft.com/en-us/azure/virtual-

machines/sizes-b-series-burstable-workload-example.
[49] MongoDB. 2023. https://www.mongodb.com.
[50] Ricardo Neri. 2022. https://www.spinics.net/lists/kernel/msg4348466.

html.
[51] Nginx. 2023. https://nginx.org/.
[52] Diego Ongaro, Alan L. Cox, and Scott Rixner. 2008. Scheduling

I/O in Virtual Machine Monitors. In Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (Seattle, WA, USA) (VEE ’08). Asso-
ciation for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/1346256.1346258

[53] OpenEuler. 2022. https://docs.openeuler.org/en/docs/20.03_LTS_SP2/
docs/Virtualization/best-practices.html.

[54] Openstack. 2022. https://docs.openstack.org/arch-design/design-
compute/design-compute-overcommit.html.

[55] Oracle. 2023. https://www.oracle.com/uk/a/ocom/docs/why-kvm-
is-winning.pdf.

[56] Mongodb performance test. 2023. https://github.com/idealo/mongodb-
performance-test.

[57] PostMark. 2023. https://www.filesystems.org/docs/auto-
pilot/Postmark.html.

[58] Xen Project. 2023. https://xenproject.org/.
[59] Redis. 2023. https://redis.io/.
[60] Redis-benchmark. 2023. https://redis.io/docs/management/

optimization/benchmarks/.
[61] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:

Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference (USENIX ATC’20). USENIX
Association, USA, Article 14, 14 pages.

[62] Jianchen Shan, Weiwei Jia, and Xiaoning Ding. 2017. Rethinking
MulticoreApplication Scalability onBigVirtualMachines. In 2017 IEEE
23rd International Conference on Parallel and Distributed Systems
(ICPADS). 694–701. https://doi.org/10.1109/ICPADS.2017.00094

[63] Kun Suo, Yong Zhao, Jia Rao, Luwei Cheng, Xiaobo Zhou, and Francis
C. M. Lau. 2017. Preserving I/O Prioritization in Virtualized OSes.
In Proceedings of the 2017 Symposium on Cloud Computing (Santa
Clara, California) (SoCC ’17). Association for Computing Machinery,
New York, NY, USA, 269–281. https://doi.org/10.1145/3127479.3127484

[64] sysbench. 2023. https://github.com/akopytov/sysbench.
[65] Boris Teabe, Alain Tchana, and Daniel Hagimont. 2016. Application-

Specific Quantum for Multi-Core Platform Scheduler. In Proceedings
of the Eleventh European Conference on Computer Systems
(London, United Kingdom) (EuroSys ’16). Association for Com-
puting Machinery, New York, NY, USA, Article 3, 14 pages.
https://doi.org/10.1145/2901318.2901340

[66] Twitch. 2023. https://blog.twitch.tv/en/2017/10/10/live-video-
transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-
489c1c125f28/.

[67] Vmware. 2022. https://www.reddit.com/r/vmware/comments/dl2bt8/
do_you_overcommit_cpu_in_your_environement/.

[68] Intel® 64 Architecture x2APIC Specification. 2023. https:
//www.naic.edu/~phil/software/intel/318148.pdf.

[69] xen. 2013. https://wiki.xenproject.org/wiki/Credit2_Scheduler.
[70] Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan Kangarlou, Ra-

mana Rao Kompella, and Dongyan Xu. 2012. VSlicer: Latency-Aware
Virtual Machine Scheduling via Differentiated-Frequency CPU Slicing
(HPDC ’12). Association for Computing Machinery, New York, NY,
USA, 3–14. https://doi.org/10.1145/2287076.2287080

[71] Cong Xu, Brendan Saltaformaggio, Sahan Gamage, Ramana Rao
Kompella, and Dongyan Xu. 2015. VRead: Efficient Data Access for
Hadoop in Virtualized Clouds. In Proceedings of the 16th Annual
Middleware Conference (Vancouver, BC, Canada) (Middleware ’15).
Association for Computing Machinery, New York, NY, USA, 125–136.
https://doi.org/10.1145/2814576.2814735

[72] Yahoo. 2023. Yahoo! Cloud Serving Benchmark. https:
//github.com/brianfrankcooper/YCSB.

[73] Olive Zhao. 2021. https://forum.huawei.com/enterprise/en/why-
are-huawei-cloud-computing-products-switched-from-xen-to-
kvm/thread/818617-893.

108

https://doi.org/10.1109/SC.2010.57
https://doi.org/10.1145/35043.35047
https://elixir.bootlin.com/linux/v4.14.325/source/arch/x86/kernel/apic/apic.c
https://elixir.bootlin.com/linux/v4.14.325/source/arch/x86/kernel/apic/apic.c
https://elixir.bootlin.com/linux/v4.14.325/source/arch/x86/kernel/apic/apic_flat_64.c
https://elixir.bootlin.com/linux/v4.14.325/source/arch/x86/kernel/apic/apic_flat_64.c
https://doi.org/10.1145/1508293.1508308
https://www.linux-kvm.org/page/Main_Page
https://lemp.io/
https://doi.org/10.1145/2806777.2806943
https://doi.org/10.1109/CLOUD.2015.67
https://lwn.net/Articles/444503/
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable-workload-example
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable-workload-example
https://www.mongodb.com
https://www.spinics.net/lists/kernel/msg4348466.html
https://www.spinics.net/lists/kernel/msg4348466.html
https://nginx.org/
https://doi.org/10.1145/1346256.1346258
https://docs.openeuler.org/en/docs/20.03_LTS_SP2/docs/Virtualization/best-practices.html
https://docs.openeuler.org/en/docs/20.03_LTS_SP2/docs/Virtualization/best-practices.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://www.oracle.com/uk/a/ocom/docs/why-kvm-is-winning.pdf
https://www.oracle.com/uk/a/ocom/docs/why-kvm-is-winning.pdf
https://github.com/idealo/mongodb-performance-test
https://github.com/idealo/mongodb-performance-test
https://www.filesystems.org/docs/auto-pilot/Postmark.html
https://www.filesystems.org/docs/auto-pilot/Postmark.html
https://xenproject.org/
https://redis.io/
https://redis.io/docs/management/optimization/benchmarks/
https://redis.io/docs/management/optimization/benchmarks/
https://doi.org/10.1109/ICPADS.2017.00094
https://doi.org/10.1145/3127479.3127484
https://github.com/akopytov/sysbench
https://doi.org/10.1145/2901318.2901340
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/
https://www.reddit.com/r/vmware/comments/dl2bt8/do_you_overcommit_cpu_in_your_environement/
https://www.reddit.com/r/vmware/comments/dl2bt8/do_you_overcommit_cpu_in_your_environement/
https://www.naic.edu/~phil/software/intel/318148.pdf
https://www.naic.edu/~phil/software/intel/318148.pdf
https://wiki.xenproject.org/wiki/Credit2_Scheduler
https://doi.org/10.1145/2287076.2287080
https://doi.org/10.1145/2814576.2814735
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://forum.huawei.com/enterprise/en/why-are-huawei-cloud-computing-products-switched-from-xen-to-kvm/thread/818617-893
https://forum.huawei.com/enterprise/en/why-are-huawei-cloud-computing-products-switched-from-xen-to-kvm/thread/818617-893
https://forum.huawei.com/enterprise/en/why-are-huawei-cloud-computing-products-switched-from-xen-to-kvm/thread/818617-893

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Hypervisor
	2.2 Fair Scheduling
	2.3 Interrupt Handling
	2.4 Semantic Gap
	2.5 Target Workloads

	3 Analysis of Previous Works
	3.1 vCPU Inactivity Period Reduction
	3.2 Partial Boosting
	3.3 Task-aware Boosting

	4 Design
	4.1 Improve the VM Responsiveness
	4.2 Maximize the VM IO Performance
	4.3 Overall Fairness
	4.4 Malicious IO Events and Applicability
	4.5 Summary of Anubis' Features

	5 Implementation
	5.1 Interrupt Redirection and Boosting
	5.2 Accurate Boosting
	5.3 Anubis Debt System
	5.4 Anubis Policies

	6 Evaluation
	6.1 vCPU Responsiveness
	6.2 IO Performance
	6.3 Overall Fairness
	6.4 Overhead Assessment
	6.5 Anubis vs Previous Works
	6.6 Serverless Computing Scenario

	7 Conclusion
	References

