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Abstract

We present PSL, a lightweight, secure and stateful Function-
as-a-Serivce (FaaS) framework for Trusted Execution Envi-
ronments (TEEs). The framework provides rich program-
ming language support on heterogeneous TEE hardware for
statically compiled binaries and/or WebAssembly (WASM)
bytecodes, with a familiar Key-Value Store (KVS) interface to
secure, performant, network embedded storage. It achieves
near-native execution speeds by utilizing the dynamic mem-
ory mapping capabilities of Intel SGX2 to create an in-enclave
WASM runtime with Just-In-Time (JIT) compilation. PSL is
designed to efficiently operate within a asynchronous envi-
ronment with a distributed tamper-proof confidential storage
system, assuming minority failures. The system exchanges
eventually consistent state updates across nodes while uti-
lizing release-consistent locking mechanisms to enhance
transactional capabilities. The execution of PSL is up to 3.7x
faster than the state-of-the-art SGX WASM runtime. PSL
reaches 95k ops/s with YCSB 100% read workload and 89k
ops/s with 50% read/write workload. We demonstrate the
scalability and adaptivity of PSL through a case study of
secure and distributed training of deep neural network.
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1 Introduction

Trusted Execution Environments (TEEs) are becoming a pop-
ular way to deploy security-critical applications in untrusted
environments. TEEs, such as Intel Software Guard Exten-
sions (SGX) and AMD Secure Encrypted Virtualization (SEV),
execute privacy-preserving applications in secure enclaves
with confidentiality, integrity, and strong isolation from the
untrusted kernel or infrastructure. Unfortunately, develop-
ing and managing applications on TEEs can be error-prone
and complex. Inadvertent programming errors can result in
long development cycles and private data leakage.
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Figure 1. Use Case of PSL in Distributed Learning Train-
ing on Confidential Data. In PSL, we consider privacy-
preserving distributed deep learning training on untrusted
infrastructure. Contrary to the conventional secure enclave
programming interface that forces users to protect their data
with hand-crafted remote encryption schemes, PSL provides
Function-as-a-Service (Faas) with simple and easy-to-use
interfaces, in which users exploit standardized mechanisms
to store the function and parameters to servers, verify that
an expected function will be executed with confidentiality
and integrity, and invoke the function.

In contrast, serverless computing, with the Function-as-a-
Service (FaaS) model, is an emerging computing paradigm
that streamlines application development and deployment
without the complexity of building and maintaining the in-
frastructure. With Faa$S, one can decompose data-intensive
applications into many functions and exploit massive paral-
lelism and scalability of cloud infrastructure.

In this paper, we show how FaaS becomes an effective op-
tion for TEE-based applications by offloading the burden of
managing underlying cryptographic hardware infrastructure
and state management to the framework. Our secure FaaS
framework scales easily across different computing infras-
tructures, such as multi-cloud and edge-cloud environments,
with varying security policies.

Statefulness, a property provided by some of the FaaS
frameworks, such as Faasm [40] and Cloudburst [42], al-
lows applications to get access to a Key-Value Store (KVS) to
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exchange the states with other FaaS workers. Instead of rely-
ing on some external database service, stateful FaaS enables
state sharing natively, thereby increasing system availability
and lowering the latency of propagating state updates. State-
fulness is useful for data-intensive applications, such as video
processing [48], machine learning [8], and robotics [25, 26].
However, the way in which statefulness is integrated into a
FaaS environment is a crucial consideration for in-enclave
applications to reduce the risk of inadvertent data leakage.
By way of example, Figure 1 shows a distributed learning
algorithm that trains on private data. A stateful and secure
FaaS framework can streamline the development and deploy-
ment of this application by shielding the user from having
to manage the enclave environments of multiple workers,
verify that workers are running correct code, protect and
secure training data through encryption and signatures, and
schedule communication for updates to model data.
Challenges in stateful FaaS have been greatly discussed
and mostly addressed in out-of-enclave setting, such as [40,
42], and challenges in providing a usable execution frame-

work have been proposed such as Graphene [43], Occlum [38].

However, limited systems have been proposed in in-enclave
stateful FaaS due to the following challenges:

Execution Model: Heterogeneous TEE hardware involves
varied programming capabilities, leading to a trade-off among
language support, portability, and the capability to isolate the
application from the runtime.

For instance, AMD SEV provides secure enclaves as confi-
dential VMs, thus programming akin to standard cloud vir-
tual machines. In contrast, Intel SGX! , one of the dominating
secure enclaves available on Intel processors, requires that
predefined functions calls from untrusted operating system
to enclave and from enclave to untrusted operating system.
While this reduces the Trusted Computing Base (TCB) by
only including required components, it necessitates special-
ized designs and modifications to both the program and its
associated libraries.

In the basic SGX model, the binary is required to be stati-
cally linked to ensure the loaded code pages cannot be mod-
ified, leading to large binaries and limited modularity and
portability. The basic model also does not provide confiden-
tiality of the executable — a significant limitation in today’s
untrusted environments.

Providing an efficient execution model that unifies het-
erogeneous TEE hardware is important. Existing work uses
interpretation: for example, S-FaaS [4] only supports inter-
preted runtimes like Javascript and WebAssembly Micro
Runtime (WAMR) or use ahead of time (AOT) compilation
that requires compiling to the correct target CPU and special
care needed to work inside secure TEEs.

1SGX is available for all Intel processors before 2022, and currently available
for all Intel Xeon servers. This work assumes its latest generation (SGXv2).

State Security: Since TEEs do not guarantee secure or
trusted storage, state out of the enclaves needs to be con-
fidential and tamper-proof. This requires encryption and
signatures on the critical path of propagating state updates.
Naively applying conventional encryption and signature
schemes leads to an inefficient protocol with compute-bound
bottlenecks. Any system using such cryptographic scheme
should also have a dedicated key management infrastructure.

Consistency: Existing TEE-based consistent state man-
agement generally use consensus protocols for total order
over all operations being executed in the system. We argue
that this is not the perfect fit for FaaS. Firstly, not all appli-
cations need a total order. Using a leader-based consensus
protocol like Raft [33] (as used in CCF [24]), leads to lower
overall throughput as only the leader node is allowed to pro-
pose writes. However, the strong total order and consensus
might limit the scalability of FaaS workers. Secondly, the
churn in a FaaS environment is supposed to be much higher
than a distributed database setting. Consensus protocols gen-
erally have a reconfiguration phase which causes a node
joining the system to have some added startup latency. This
latency is critical for FaaS applications that are generally
short-lived.

To resolve these challenges, we observe the need for a
TEE-based stateful FaaS framework that: (1) supports mul-
tiple languages and TEEs with low overhead, while also
protecting the confidentiality of the application itself; (2)
isolates runtime from the application workers; (3) supports
efficient confidential state sharing with options for locking,
but only when necessary; (4) guarantees durable eventually
consistent state updates.

To this end, we present PSL, a secure, lightweight and
stateful FaaS framework. PSL has the following properties,
summarizing our contributions:

e PSL supports a portable binary with native sup-
port for multiple programming languages and
heterogeneous enclave hardware. It uses create an
in-enclave WebAssembly (WASM) runtime to provide
multi-language support at near-native speed. It pro-
vides support for popular secure hardware backends
(Intel SGXv2 and AMD SEV) which can be extended
to other secure hardware given a list of supported
primitives.

e PSL enables Just-In-Time compilation that out-
performs state-of-the-art SGX WASM runtimes.
Unlike traditional use of SGX, our system also permits
statically compiled binaries to be encrypted for pri-
vacy and unpacked only within the protections of an
enclave. We use the dynamic memory mapping capa-
bilities of Intel SGX2 with just-in-time compilation.

e PSL enables secure state persistence in untrusted
storage. Data outside the enclaves is always encrypted,



hashed, and signed, and durably stored in a majority
quorum of storage servers.

e PSL supports scalable, efficient, and eventually-
consistent state updates with release-consistent
locking. We provide a state update protocol that works
in an asynchronous network environment and per-
forms well even though updates are signed, hashed,
and encrypted for secure storage in the network. With
8 FaaS workers, it provides a throughput of 89k op-
s/s with a 50-50 read-write YCSB workload with all
cryptographic protocols enabled.

2 Background and Motivation

We introduce the background of secure enclave execution
and discuss the limitations of existing approaches in current
secure and stateful FaaS frameworks.

2.1 Execution Models in TEE

Trusted Execution Environments (TEEs) create enclaves which
are secure, isolated environments protected from the priv-
ileged host OS, hypervisor, and any hardware devices con-
nected to the host. There are at least two different classes of
TEEs in wide use.

The first is the confidential VMs as provided by AMD SEV
and the upcoming Intel TDX. These systems provide a pro-
gramming model akin to standard cloud virtual machines
with extra protection. Confidential VMs typically involve a
large trusted computing base (TCB), where the user needs
to trust all the binaries and drivers in the VM image pro-
vided by the infrastructure provider. The challenge in this
environment is to reduce the TCB as much as possible.

The second is exemplified by Intel SGX, which provides
a more restricted programming model that provides a se-
cure execution container more akin to a process and that
requires predefined function calls from the untrusted operat-
ing system to enclave (ecalls) and from enclave to untrusted
operating system (ocalls). While this structure reduces the
TCB by only including required components, it necessitates
specialized designs and modifications to both the program
and its associated libraries.

Providing an execution model for confidential VMs is rel-
atively straightforward, since any VM image that works on
typical cloud machines should work with minimal changes
and performance degradation in a Confidential VM domain.
As a result, we focus on providing an execution model that
works for Intel SGX. We then extend our SGX-driven execu-
tion model to Confidential VM environments by providing a
restricted unikernel-based runtime with minimal functional-
ity to mirror the needs of our SGX environment.

Existing execution models in Intel SGX can be typically
categorized as following:

1. Static linking: Conventional SGX usage statically links
all the dependencies within a single binary. SGX re-
quires loading all code pages at startup time for code
integrity, which incautious design may end up loading
with gigabytes of the binary. Conventional SGX usage
also prevents binaries from being encrypted, thereby
exposing algorithms to external analysis.

2. Interpreter: Some frameworks, such as S-FaaS, stati-
cally link a language interpreter such as Javascript.
This approach provides limited language support, and
cannot support more complex interpreted languages
such as python.

3. Library OS (LibOS): Existing work implements mini-
mal Library OS that typically proxies the system calls
to the host system out of the secure enclave. With Li-
brary OS, one can use as Linux with only one process.
Although existing container orchestration frameworks
(i.e., Kubernetes), can be utilized here, the container
must be reloaded to switch to another application.

4. Sandboxed Runtime: Using a sandboxed runtime has
become a more popular option, given the rise of We-
bAssembly. Recent systems compile WebAssembly Mi-
croRuntime (WAMR) to SGX enclaves to dynamically
interpret and execute WebAssembly.

2.2 In-Enclave Runtime

The Function-as-a-Service (FaaS) model in cloud computing
enables users to access the cloud infrastructure without con-
figuring it. Consequently, we believe that Faa$ is an attrac-
tive option for users wanting the security of TEEs without
the hardship of configuration. Conventional use of SGX by
separating trusted and untrusted components of code and
statically linking with libraries that are compatible with a
target TEE is at odds with FaaS; thus, we automatically rule
out static linking of this type. Although LibOS can allow
for running unmodified applications, it does not provide an
execution environment. While an interpreter is generally an
attractive option for FaaS, it provides lackluster performance
compared to running native code. We focus on WebAssem-
bly with its rich language support and maturity of different
runtimes that advertise near to native speeds.

2.3 A Case for a FaaS JIT Runtime

WebAssembly supports three execution modes: (1) runtime
interpretation that directly interprets bytecode without first
compiling to native machine code, (2) Ahead-Of-Time (AOT)
that compiles WASM bytecode into native machine code,
and (3) Just-In-Time (JIT) that compiles WASM bytecode
to native code at runtime. Runtime interpretation can over-
come the static linking requirement posed by SGX, because
interpretation avoids the overhead associated with compil-
ing code and the code is executed within the interpreter
itself; however, the cost of decoding instructions on the fly
is a significant overhead. AOT compiles WASM to native
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Figure 2. The architecture of PSL: The FaaS Manager launches and attests all worker enclaves. Enclave workers cache
key-value pairs in their local Memtable, and share state in an eventually consistent way using a Secure Concurrency Layer
(SCL) that takes advantage of a secure-multicast primitive within the network. The PSL-DB tracks the most recent version of
the state of each key and pushes updates to a set of replicated networked storage servers that provide state persistence.

code that is ready to execute as soon as it is loaded with a
similar mechanism as Intel SGX’s static loading but requires
knowing the right flags to configure and the correct libraries
to link that are compatible within an enclave.

In contrast, JIT allows users to compile a single binary
that can be run on any JIT-enabled runtime. The JIT runtime
can automatically link the correct dependencies and compile
the code to become compatible with its secure hardware
backend. Furthermore, JIT’s compilation process can utilize
dynamic information, potentially optimizing the code based
on runtime conditions and the specific hardware it is run-
ning on. There is also a security advantage when using a JIT
runtime, as using JIT ensures that malicious or unknowing
clients with a faulty compiler cannot break the WebAssem-
bly sandbox. Compiling things inside a TEE adds further
assurance that the sandbox doesn’t become compromised.
There has been work done on verifying the sandboxing of
WASM binaries [28], but it currently is for nightly builds
and is not suitable for a low latency FaaS environment. With
all that said, JIT doesn’t come for free, as the drawback to
using JIT is poor cold start-up time, which is critical in a FaaS
environment. We attempt to optimize start-up time latencies
to make it more practical in a FaaS environment.

2.4 State Management

While secure enclaves protect the data during computation,
special care must be taken to protect the confidentiality and
integrity of data at rest and in transit. Scaling up with mul-
tiple FaaS eventually requires sharing of state among the
workers. This raises interesting consistency questions and
query performance issues as blocks of data as a whole must
be exchanged or stored encrypted and, therefore, can’t be
queried at a finer granularity.

Management of state in FaaS generally takes one of three
forms: (1) Stateless: The workers use an external database
service to store and retrieve state. (2) Centralized: The work-
ers use an in-cluster database to coordinate state updates

among themselves. (3) Decentralized and eventually consis-
tent: The workers periodically exchange their local cache
with each other and merge their updates using a Conflict-free
Replicated Datatype (CRDT). For use in enclave-based Faa$,
the decentralized approach is a better fit due to its higher
resilience to failures and attacks.

Another line of work runs State Machine Replication
(SMR) within enclave-based systems. While this is a sim-
ilar approach to the decentralized case above, it provides a
stronger total order guarantee, which may not be necessary
for many applications.

3 Overview

We assume a heterogeneous compute environment with var-
ied security policies and hardware configurations. For ex-
ample, components of PSL could be spread over multiple
geo-distributed cloud regions, even going across multiple
cloud providers. Another example of a target heterogeneous
environment is FaaS workers running in an edge environ-
ment where the data is persistently stored in the cloud.

3.1 Threat and Network Model

PSL adopts the typical cloud attackers who can listen and
tamper with any communications or computations. For ex-
ample, the attack may come from a compromised operating
system kernel or a malicious staff member, both situations
in which the attacker has full control over the operating
system. PSL guarantees the confidentiality, integrity, and
provenance of any data in execution and in transit. The
trusted computation base (TCB) of PSL is limited to the pro-
cessor chip, codebase, and the WASM runtime running in
an enclave, which explicitly excludes the operating system
managed by the cloud provider. PSL does not guarantee
against side-channel attacks, given that Intel SGX suffers
from various side-channel vulnerabilities [14, 16, 39]. Vari-
ous techniques [14, 32, 39, 41] proposed to mitigate the risk
of side-channel attacks for enclaves.



Since any entity outside the TEE can be malicious, we
developed our consistency protocol to work in an asynchro-
nous and Byzantine environment. A network adversary can
arbitrarily drop, delay, or replay packets. Workers in our
system can be put in network partitions for a finite but ar-
bitrarily long time. Our consistency protocol does not rely
on timeouts for any action (e.g., view changes in consensus
terminology) as a malicious OS can forever hold the system’s
progress in a livelock state.

We also assume the existence of a collision-resistant hash

function (e.g., SHA256), a secure digital signature (e.g., Ed25519),

and an authenticated encryption scheme (e.g., AES-GCM)

3.2 System Overview

Figure 2 shows the components of PSL. The FaaS Manager is
responsible for launching FaaS workers on users’ requests.
It has Key Distributor running inside an enclave which is
responsible for securely distributing user’s keys and inputs
to the FaaS workers using attested TLS channels. The FaaS
worker contains a WASM Runtime, which runs JIT-compiled
WebAssembly functions submitted by the user, with the se-
curely sent inputs. Multiple FaaS workers store their recent
state updates in an in-enclave buffer called Memtable. We
build a Secure Concurrency Layer (SCL) that encrypts and
signs the Since by assumption, messages can be lost in the
network, we have a special long-running FaaS worker, the
PSL-DB, which makes sure every worker sees linearizable
updates in state.

For durability, we assume the existence of replicated
network-embedded storage servers. Particularly, to tol-
erate f independent failures, we require n = 2f + 1 storage
servers. We always store to a majority quorum. Persistent
data is always encrypted using the user’s application key.
The user also stores the function binary and the inputs and
retrieves the output from these replicated storage servers.

3.3 Key Management

Every PSL user generates two keys: (1) Application Encryption
Key, (2) Application Signing Key.

After attestation (see Figure 3), the Key Distributor estab-
lishes TLS channels between it and the FaaS workers and the
user. The user sends these two keys through the TLS chan-
nel which in turn is sent to the FaaS workers. The storage
servers only get the public key corresponding to the Signing
key which they use to verify the signature on each block
they store.

If the signature algorithm supports, the Key Distributor
can generate child keys using a Hierarchical Deterministic
Wallet approach [23] and send one child key to each worker.
This allows fine-grained control over key access. The storage
servers are given the parent public key which they can use
to verify signatures from any child key.
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Figure 3. FaaS Manager Launch Sequence Diagram: At
initialization time, (1) user securely uploads the function and
input to storage server. (2-4) user attests FaaS manager while
FaaS manager initializes and attests FaaS workers. When
user invokes function, (5) they send a request to FaaS man-
ager and (6) FaaS Manager distributes the request to other
workers. The workers pull from storage server and execute
the function. (9-11) On completion, the worker uploads the
result to storage server and the FaaS Manager routes the
response back to the user. The detailed description of the
Launch Sequence Diagram and the security protocol can be
found in Section 4.1 with the same step indexing.

4 PSL Executor
4.1 Transitive Secure Worker Initialization

Conventional secure enclave requires users to directly at-
test the remote machine and establish a secure connection
between the user and the remote machine. This prevents
man-in-the-middle attack. However, FaaS is a different com-
pute paradigm that the workers should be pre-initialized
before users issue any request. Then users can enjoy fast
launching time and call the functions executed on remote ma-
chines without concern for infrastructure setup. As a result,
we introduce a FaaS manager, an indirection proxy between
workers and user, that facilitates the Faa$ initialization pro-
cess.
Figure 3 shows the lifecycle of an application in PSL:

(1) At initialization phase, user uploads the encrypted func-
tion code and function input to storage server with a key of
hashed uploaded data. The code and function are encrypted
with a symmetric key private to the client

(2) The client attests FaaS Manager with standard enclave
attestation protocol to establish a secure TLS channel

(3) the client sends symmetric key to FaaS Manager through
the secure channel

(4) FaaS Manager initializes and boots FaaS workers and
their runtime environment. This step corresponds to typical



FaaS frameworks which initiate a pool of active workers that
stand by and await for requests.

(5) FaaS Manager attests FaaS workers and establish a secure
TLS channel to each worker

(6) At run time, client invokes the function with the keys
from storage server of the function and input

(7) FaaS manager finds idle workers, and send with the keys
from storage server and the symmetric encryption key

(8) FaaS worker retrieves the input and function from stor-
age server

(9) FaaS workers execute the function based on the input
and exchange the intermediate results with other workers.

(10) At the end of the execution, FaaS worker stores the
result in storage server and returns FaaS manager with the
corresponding key.

(11) FaaS Manager return client with the key. Client retrieves
from storage server and gets the final result.

Sandbox Reloading. Loading and attesting each client
function per invocation for an enclave would have an unrea-
sonable initialization time. As a potential optimization, we
argue for reusing the execution environment across worker
functions. In this case, we save round trip time due to attesta-
tion and bootloading time for the enclave. How do we ensure
that reusing execution environments across workers is safe?
We propose using a secure sandbox to disallow client func-
tions from hijacking the worker enclave. The FaaS manager
is responsible for launching and pre-attesting worker en-
claves to ensure that they run the correct sandbox. Once the
worker enclave finishes execution, it maintains a memory
array that was allocated and used throughout the worker’s
execution. The sandbox will force the worker to only write
to memory within this memory array, which is freed and
zero’d out after the worker finishes executing or aborts due
to errors.

4.2 WASM JIT Runtime

In section 2.3, we argued for using a JIT runtime engine as
our FaaS worker execution model. Implementing a secure
JIT runtime engine is paramount. SGX1 did not allow for
dynamic memory mapping, so in order to even allow a JIT
runtime engine in SGX1, you needed to allocate a sufficiently
large, static, and executable reserved section, which would
be where the generated code resides. First, with the heterege-
nous workloads and memory consumption of FaaS, it isn’t
sufficient to have a static memory reservation for all work-
ers. Second, as the developers cannot call mprotect on the
reserved section, they risk having a code injection attack
that might hijack the sandbox.

Thus, our solution for our runtime engine should satisfy
the following properties 1) the amount of memory that the
runtime engine allocates for the worker should be dynamic
2) and the runtime engine should have the ability to unmap

or change the permissions of pages dynamically. Enclave dy-
namic memory mapping (EDMM) support was introduced in
SGX2, which enables mapping and modifying the permission
of pages dynamically after the enclave has been measured.
We use EDMM to dynamically allocate memory for each
client as well as unmap and clear the client’s memory when
execution is completed.

We port WAVM [37], a WASM JIT runtime engine that
relies on the LLVM framework for code generation, inside
of SGX. We modify WAVM to use EDMM to mmap buffers
in-enclave for the client. The WAVM runtime has a loader
which fetches code keyed on a hash outside the enclave.
Once the code is fetched, the runtime will verify that the
code is correct by hashing the module and matching it with
the original hash. Once the code is verified, it is mapped
and loaded, then goes to the LLVM pipeline. This involves
emitting LLVM intermediate representation (IR), optimizing
the IR, then generating the machine code. The memtable is
protected and managed by the runtime, so that potentially
malicious clients are sandboxed from accessing memtable
state that it doesn’t own.

The JIT runtime also links in our own WASM module
that interfaces with the KVS with simple ReadKey/WriteKey
interfaces. Clients simply need to include a header file with
no other dependencies. On top of the KVS interface, we
create shared memory through familiar array abstractions
that we call PSLArray. Multiple workers can easily share data
by writing to a PSLArray, where updates are transparently
multicasted to other workers. Later, we demonstrate how one
can use a PSLArray to have a shared distributed weight array
that multiple workers read and write to for deep learning
training.

5 Secure Concurrency Layer (SCL)

In this section, we formally define our consistency guaran-
tees and system constraints with our system design.

To the application running in a FaaS worker, our state
management mechanism interfaces as a shared memory key-
value store. We define three key guarantees of our system: (1)
Monotonicity, (2) Eventual Progress, (3) Validity. We define
these formally below:

Definition 1. Monotonicity. If a worker reads value V; for
some key k, all subsequent reads for the same key k from the
same worker returns values V5 such that

Vl Ze VZ
for some partial order <. on the space of values.

Definition 2. Eventual Progress. If a worker writes value
Vi for some key k, every worker in the system will eventually
read values V; for the key k, such that,

i<V,



Note that, we operate in an asynchronous environment
where packets can be delayed or dropped arbitrarily. Even-
tual progress guarantees that updates made by a worker are
visible to all other workers eventually. However, it does not
provide time bound for the progress to be visible.

Definition 3. Validity. If a worker reads value V for some
key k, there exists a worker that wrote the same value V for
the key k.

This property guarantees that no network adversary can
maliciously inject state updates into the system.

We observe the following constraints in a TEE-based FaaS
system: Firstly, TEE platforms often come with limited avail-
able memory. For example, Intel SGX has an Enclave Page
Cache (EPC) size of only 128MB. The encrypted paging be-
comes the performance bottleneck for large applications.
Hence, we must be efficient in the in-memory cache usage of
our application. Note that this is different from the current
design of systems like CCF [36], which assumes that the ap-
plication state is completely in memory. Secondly, we do not
assume that the TEE-enabled machines have large disk ca-
pacities. We make this distinction due to our heterogeneous
infrastructure assumption. Thus, all access to persistent data
must be through network-attached storage servers. Thirdly,
for confidentiality, all data sent outside an enclave should
remain encrypted. This incurs additional costs of encryption
on the critical path of sending messages. Also, queries on
data cannot be performed outside the TEE.

Existing systems gravitate towards running a consensus
protocol among the FaaS workers. This makes these systems
perform active replication: every worker first agrees on a
common total order of commands or transactions and then
executes them to update their local state. We argue that, if
the application does not need a strict total ordering of its
commands, active replication under-utilizes the guarantees
a TEE provides. A trusted environment guards against mali-
cious code execution. If the application logic (provided by
users of our system) is correct, multiple FaaS workers could
be running multiple transactions at the same time and merge
the results eventually. This model of passive replication is
more suited for a TEE-based environment.

5.1 Merge Operation

With the above constraints in mind, we now discuss our
system design for eventual consistency. Central to this dis-
cussion is the partial order <. used for merging two values
for the same key. We assume each value V is structured as
V = (v, ts) where v is the actual data and ts is a timestamp
attached to it. We define the partial order as follows:

Vi<V & (tSl < tSz) \Y (tSl = 1Sy /\H(Ul) < H(Uz))

where H(.) is a collision-resistant hash function.

Many eventually consistent systems [18] use vector clocks
for their timestamps to capture causality, but the size of vec-
tor clocks is linear to the number of workers. Due to mem-
ory limitations in our system, we did not use a vector clock,
rather, we used a Lamport clock. This works because the only
communication between our FaaS workers is through this
eventually consistent key-value store system. When times-
tamps are equal, we use the hash of data to break the tie
instead of node identities. This mitigates the security prob-
lem that a network adversary may influence the result of the
merge by selectively dropping packets from workers.

5.2 Durable Writes

Every FaaS worker has a local cache of the writes in the
system, called the Memtable. To the application worker,
we expose a transactional interface that publishes a batch of
writes at a time. We only guarantee durability on commit. For
every key-value update, the Memtable increases the Lamport
timestamp by one.

Figure 4 describes the operations that take place on Com-
mit. We assume the existence of n = 2f + 1 storage servers,
where at most f can fail. The replication on this set of storage
servers is controlled by the FaaS worker itself.

In the FaaS worker, whenever the application performs a
write, the writes are all stored in a transaction buffer. Once
the application calls Commit on the transaction, these writes
are first stored in the Memtable and then multicast to every
other worker in the system. Simultaneously, these writes
are sent to all the storage servers and the worker waits for
f + 1 of them to return an acknowledgment. The commit
completes once the acknowledgment arrives. We attach the
hash of the previous multicast block to the current block
of writes and give it an increasing sequence number. Then
the block is encrypted using an authenticated encryption
scheme before sending it out. The storage servers only see
the encrypted blocks, which are also periodically signed by
the FaaS worker.

Once other workers receive a multicast block, it applies all
the writes to its own Memtable. If the keys already exist, it
uses the partial order <, to merge the values. Other workers
can miss some writes due to packet drops, but that does not
break the monotonicity guarantee.

5.3 PSL-DB Consistency Manager

PSL-DB periodically generates global snapshots of all writes
made by all the FaaS workers. It facilitates workers to re-
cover missed messages and acts as a database for keys not
present in the workers’ Memtables. It needs to be alive for
the entirety of the application’s lifetime.

The PSL-DB receives the multicast messages from workers
and keeps track of their sequence numbers to detect missing
blocks. If a missing block is detected, the PSL-DB uses hash
pointers attached to the later block it received to back-fill
the missing block from storage servers. It also periodically
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Figure 4. (a) Durable Commits. Worker W; multicasts a
batch of write to storage servers (Si, Sz, S3), other workers
(Wz) and PSL-DB. It only waits for f + 1 responses from
storage servers and progresses to multicast the next batch.
(b) View of PSL-DB. It has all the writes from Wj. It lags
behind W3 and it has missed an intermediate write from W;.
The blue line shows a causally consistent cut. The green line
is not a causally consistent cut until the PSL-DB back-fills
the missing block from Ws.

requests all storage servers to return the most recent block
sent by each worker and waits for the response from f +
1 storage servers. The block returned with the maximum
sequence number is guaranteed to be the most recent block
from the worker. If this sequence number is higher than the
one the PSL-DB has seen, it uses this block and its attached
hash pointer to back-fill any block that it might have missed.

This ensures that the PSL-DB’s view is always a causally
consistent cut[10] of all writes by each worker (i.e., the
subset of all writes seen by PSL-DB at any point is such that
for all write blocks in the set, its attached hash pointer points
to another write in the set, or is null). Due to message drops,
it may be lagging behind the most recent writes.

The PSL-DB has its own Memtable which is used to merge
all key-value pairs in its received blocks. It periodically
flushes the Memtable out into a Checkpoint block which
is also stored in a quorum of storage servers. Then it com-
presses the Checkpoint into a Sync Report which contains
the list of keys and their corresponding timestamps and hash
of the value stored in the checkpoint and the most recent se-
quence number seen from each worker. This Sync Report is
then multicast to all the workers. The workers use the Sync
Report to query the keys that are more updated in PSL-DB
than their own Memtable. The Sync Report also contains an
increasing sequence number and a hash pointer to the previ-
ous Sync Report and is replicated in f + 1 storage servers. So,
a worker can also recover and back-fill missed Sync Reports
from storage servers using the hash pointers. PSL-DB can
also answer queries for keys, either returning directly from
its Memtable, or sending the hash of the Checkpoint block
that has the most recent value for the key.

5.4 Release-consistent Locking

Some applications require additional mutually exclusive reads
and writes using locks. PSL-DB implements release-consisent

locking [21] with a Lock Manager that grants locks on worker’s
requests. Once a worker releases a lock, it attaches the hash
of its most recent write block with a lock release message to
the Lock Manager. The PSL-DB, on receiving the message,
makes sure it has seen that block and then issues a Sync
Report. The Sync Report is also attached with the lock grant
message to the next worker which requests to acquire the
lock, thereby making sure that that worker is updated with
all the writes made by the previous writers. This makes the
locking system release consistent and allows the application
to have total order, albeit at the cost of performance.

5.5 Discussion

Memtable size. To avoid thrashing and improve application
performance, the size of a Memtable should fit the working
set of keys. We provide a low cache mode if writes from
other workers can evict a key in the cache before being
included in a Sync Report: (1) Pins keys not included in a
Sync Report to the cache. Any attempt to evict these keys
from the Memtable blocks until a Sync Report with this key
included arrives. (2) Does not let multicast blocks from other
workers introduce new keys in the Memtable. This preserves
linearizability even when a recently written key is forced to
be evicted due to low Memtabl size.

Garbage Collection. Note that, the blocks made durable in
storage servers by the workers serve as a Write-Ahead Log
(WAL) for the PSL-DB. Once the PSL-DB puts the writes of
these blocks into a Checkpoint, all future reads happen from
this Checkpoint block only. Hence, once a block is added to
a Checkpoint, it can be garbage-collected from the storage
servers.

Behavior under failures. We assume that the FaaS workers
have a crash-stop failure model. We don’t allow a restarted
FaaS worker to reuse its old identity. Note that, PSL-DB is
not a single point of failure in the system. Although we do
all our evaluations with a single PSL-DB, multiple PSL-DBs
could be active at any given point in time, without a need
for coordination among them. In that case, the workers need
to send their key-value pair queries to the PSL-DB from
which they received the most recent Sync Report. A PSL-
DB can crash mid-operation and be restarted directly. The
back-filling strategy triggered by multicast from the workers
will make sure that before the next Sync Report, the PSL-
DB has seen all the blocks from all the workers. While the
PSL-DB is in a crashed state, the workers still keep making
progress using the multicast mechanism. However, since we
consider an asynchronous network environment, all queries
to the PSL-DB for key-value pairs and all lock requests will
be blocked until the PSL-DB comes back up and catches up
with all the workers.

5.6 Correctness

We state the following lemmas:



Lemma 5.1. Monotonicity with eventual progress imply lin-
earizability.

Lemma 5.2. Under an asynchronous network environment,
the protocol described above provides linearizability, eventual
progress, and validity.

We omit the proofs here for brevity.

6 Implementation

We implement PSL with ~ 21k lines of C/C++. We use a fork
of the OpenEnclave framework for our Intel SGX-specific
code that supports EDMM. In order to port WAVM, we ported
the LLVM libraries to link with OpenEnclave’s framework.
We create point-to-point persistent TCP channels using Ze-
roMQ. Communication among FaaS workers, the PSL-DB
and storage servers happens using an RPC format. We use
Ring Buffers [31, 46] to asynchronously send messages to en-
clave threads. This circumvents the need for Ecalls for every
message. The implementation of our FaaS worker can scale
up to use each core available in a machine effectively. We use
one server thread to receive messages and two for process-
ing app launch, key exchange, multicast, and Sync Report
messages. The rest of the cores can be used to run the appli-
cation. The Memtables for FaaS workers are implemented
using LRU caches.

The storage servers are implemented using RocksDB for
persistence. We disable write-ahead logging and use an 8GiB
write buffer size for performance reasons. We also provide
two alternative designs, one directly using the underlying
file system (e.g., ext4), and another providing a shim layer
over a cloud storage service (e.g., Azure Blob Storage). We
noticed that for blocks smaller than 4MiB, RocksDB provides
stable and high write throughput, as the blocks are mostly
cached in memory. For larger blocks, the file system design is
better since it frequently fills the write buffer in and causes
unnecessary compactions in RocksDB. Since most of our
experiments generate blocks smaller than 4MiB, we use the
RocksDB system for our evaluation. The cloud storage ver-
sion of the storage server provides high-latency operation.

For authenticated encryption, we use AES-GCM with 256
bit keys. AES-GCM generates a small tag containing the
Galois MAC of the data encrypted. This tag is sent along
with the encrypted data itself. Anyone holding the symmet-
ric decryption key can verify the integrity of the encrypted
message using this tag. We use RSA with 2048 bit key size
for key exchange with the FaaS manager. For all digital sig-
natures, we use Ed25519. We previously used seckp256k1.
Whereas secp256k1 provided more fine-grained control over
key management by using a child key derivation scheme like
Hierarchical Deterministic Wallet [1], Ed25519 has an order
of magnitude better performance in signing and verification.
We use SHA256 as our collision-resistant hash function. All
crypto operations are programmed in OpenSSL3.0.

We mention a few notable optimizations below.

6.1 Runtime Optimizations

Reducing Startup Costs. In order to reduce start-up la-
tency, we first identify the the phases that account for the
bulk of the cold start up latency 1) allocating memory for
the worker and 2) generating machine code. We predict and
pre-allocate memory to hide the latency required during
cold start up time for each worker. To prevent machine code
generation, we cache modules generated by JIT. We further
allow users to AOT compile binaries to save on cold start la-
tency costs. We demonstrate how much speed-up we achieve
through these optimizations in our evaluation section.

Concurrency. We enable a promise-based concurrency
model in our system. The main application thread can run
any function asynchronously and get a promise, which it
can use to wait for the result later on. If there is only one
application thread available, promises behave as if they are
run synchronously. However, if more than one application
thread is available, the promises are handed to idle threads
for parallel execution.

6.2 SCL optimizations

Multicast Batching. Since the Memtable is shared among
application threads and the multicast thread, updating the
Memtable with updates from multicast messages requires
acquiring a lock for mutual exclusion. To reduce lock con-
tention, it is preferable to have the update time short. After
every iteration of the multicast updates, we check if there
are more than one multicast updates in the Ring Buffer. If so,
we collect all of them together and batch them into one big
multicast block. In the next iteration of updates, we use this
big block for updates. This eliminates redundant keys in the
original batch. Each key only appears once in the big block.

PSL-DB LSM tree. Since PSL-DB is also used as a database
for key-value pairs, requesting a key from PSL-DB should be
made fast. However, PSL-DB also runs in a limited memory
enclave and has network-attached storage servers only. Un-
der these design considerations, we adapt the Log-structured
Merge (LSM) tree approach taken by databases like RocksDB
and LevelDB. We implement the Memtable using C++ maps.
When the Memtable is filled with a threshold number of keys,
we flush the Memtable and cache the resulting checkpoint
block in memory. A fixed-length list of cached checkpoint
blocks makes the level-1 in LSM tree terminology. The level-
2 consists of a sorted set of keys. The keys are divided into
ranges, where the PSL-DB has to keep the first key of each
range in its memory. The rest of the range is durably stored in
storage servers and is also held in another cache. When level-
1 fills up, a constant fraction of the blocks are compacted
into level-2 and then erased from memory. This is where the
design differs from traditional LSM trees. Whereas gener-
ally, LSM trees fetch data from disk to perform compaction,
we maximally utilize the in-memory cache by performing



Median 99.99%" percentile

Operation latency (us) latency (us)
ICMP Ping 641.5 1337.7
Writing to quorum 1000 180000
AES-GCM on 2KiB block 2.0 39.1
Ed25519 Sign 44.0 61.0
Ed25519 Verify 150.0 745.3
RocksDB write 7.0 357.2

Table 1. PSL Cluster System Characteristics

the compaction eagerly in memory. The sizes of all these
levels can be configured. For fetching keys, we first search
the Memtable, then the level-1 blocks in descending order,
and then finally level-2. The keys returned from level-1 and
level-2 do not contain the actual values. Rather, they contain
the hash of the Checkpoint block that has the value. This is
done to prevent double buffering. The FaaS worker request-
ing the key should, for locality, fetch the Checkpoint block
and apply all its writes to its Memtable.

7 Evaluation
7.1 Evaluation Setup

We use Azure DCds_v3 series machines with Intel(R) Xeon(R)
Platinum 8370C CPU @ 2.80GHz and Linux kernel 6.5 for our
Intel SGX2 environments. For our experiments on SCL, we
use a cluster of 10 machines with 8 vCPUs and 64GiB mem-
ory. For our experiments on the runtime, we use 2 machines
with 16 vCPUs and 128GiB memory. For storage servers, we
use three Azure D8d_v5 machines with 8 vCPUs and 32GiB
memory. We use a partition of 128GiB ephemeral storage.
We set up a Kubernetes cluster using K3S with the SGX2 and
storage machines where we set the resource requests in such
a way that each entity (FaaS manager, PSL-DB or worker)
gets a machine by itself.

7.2 Execution Microbenchmarks

In Figure 5, we compare with another SGX runtime Twine
[30], which uses AOT compilation and is based off of the Web
Assembly MicroRuntime (WAMR). We run the Polybench
[35] suite which is a collection of compute bound bench-
marks compiled using Emscripten [2] with -O3. For Twine,
the benchmarks were compiled using WAMR’s own AOT
compiler (wamrc) with -O3. We also compare PSL against
running the benchmarks on WAVM outside of SGX. PSL
outperforms Twine in a majority of the benchmarks, even
achieving up to 3.7x speedup over Twine. In order to ensure
that the performance is not simply due to the differences in
runtime, we normalize the performance relative to running
WAVM outside of an enclave and compare against WAMR,
the runtime Twine uses. We see that the majority of bench-
marks WAVM and WAMR perform around the same, yet
PSL’s performance over Twine remains strong.
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Compared to native performance, we expect slowdown
as previous work has shown that running in WASM gener-
ates more memory operations, produce more instructions
that branch, and generates more instructions [27]. A cache
miss in SGX is costly, relative to outside an enclave, as the
memory has to be decrypted when it goes into the processor.
For example, the correlation benchmark of Polybench does
operations on > 20 MiB, which is the size of the L1 + L2
cache combined. This accounts for why 2 of the benchmarks,
correlation and covariance have a significant slowdown due
to L1/L2 cache missing. Note that the same slowdown also
appears in Twine.

7.3 Startup Latency

In Figure 6, we show the performance of an active worker
retrieving a invocation request up until it returns the first
instruction. Cold start up latency for JIT scales with the bi-
nary code size as generating machine code dominates cold
start latency. As expected, for cold AOT, the start up doesn’t
scale as much as JIT with binary size. For both JIT and AOT,
caching the generated code significantly improves perfor-
mance. For PSL workers, this demonstrates the importance
of pre-fetching and warming up the cache with libraries we
expect the user to link with.

7.4 SCL Benchmarks

Workloads. Unless stated otherwise, we use the YCSB[15]
benchmark to test SCL. We use a workload of 300,000 unique
keys with 100 byte values. Since we are operating in a FaaS
environment, we run YCSB from trace files, rather than us-
ing a client machine. Workload trace files with varying read-
write ratios are generated per worker and stored in the stor-
age servers. The workers are given the hash of the trace files
as input. The workers retrieve its file from storage servers
and start processing requests in batches. We use a batch size
of 20 in our experiments. We let each experiment run for at
least 5 minutes and sample throughput at every 5s interval
once it is stabilized.

Scaling. We run the YCSB workload with 0, 50, and 100%
write ratio. Figure 7 shows the scaling of the system for 1,
2, 4, and 8 FaaS workers running 6 application threads each.
We achieve up to 95k operations per second for the 100%
read case. The 100% write case does not scale as well due to
multicast traffic.

Cryptographic overhead. From Table 1, we know that
the individual cryptographic operations take 10s ps. We run
an eight worker setup with number of 1, 3, and 6 application
threads and vary the amount of signatures done. Figure 8
shows the aggregate throughput achieved by the system.
The overhead of signatures is ~ 10%. The system saturates
the network as well as the CPU cores in the machine.
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Figure 5. Execution Cycle Comparison on PolyBench between Twine[30] and PSL. All cycles are normalized by running
PolyBench on WAVM (Native) without SGX. WAMR (the runtime of Twine) and WAVM (the runtime of PSL) demonstrate
similar Native performance. However, PSL-JIT demonstrates up to 3.7 times latency improvement compared to Twine.

Configuration

JIT (Warm)
N AOT (Warm)
1 mmm AOT (Cold)
1 mmm i7T (Cold)

ol

10
10%4

103

Log Scale Average Start-up Time (ms)

80 KB 129 KB 5190 KB

Generated Code Size (KiB)

Figure 6. Startup Time Comparison of PSL Under dif-
ferent WASM Compilation Options and Cache Status
The startup time includes the time of fetching the code and
input from storage server and loading the code to enclave.
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Figure 7. Throughput Scalability With The Number of
Workers on Different Read-Write Ratios Each worker
runs 6 application threads and signs for every 200" block.

Release-consistent locking. Release-consistent locking
mechanism gives a considerable overhead. The throughput
of a single-threaded 1 worker system with no locking is
around 17k ops/s. However, that with locking drops to 8k
ops/s. This throughput remains almost fixed as we scale to
2, 4, and 8 workers as mutual exclusion only allows one
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Figure 8. Overhead of Signatures vs Number of applica-
tion threads in an 8 worker setup. "sign all" signs every
block; "sign every 200" defers signature for every 200 blocks;
"no sign" turns off both signature and verification, and only
encrypts the blocks. The throughput overhead from signing
all blocks to not signing is ~10%.

worker to progress at a time. We therefore conclude that
release-consistent locking should be used very rarely. We
emulate single-threaded Paxos in our implementation and
the throughput is 9.2k ops/s which is close to our throughput
with release-consistent locking.

Cache performance. To understand the performance of
the system with bigger application sizes, we increase the
number of keys in the YCSB trace such the total YCSB appli-
cation size becomes 256MiB. For this application we run with
Memtable sizes of 64, 128 and 256MiB. We get throughput of
53.6k, 54k, and 63.2k ops/s respectively for a 50% write work-
load. Since SGX comes with 128MiB EPC size, using caches
higher than that size does not scale well due to expensive
paging operations.

Behavior under failure. To test the failure resilience of
our system, we experimented with a faulty storage server
that drops 2/3rds of all blocks it receives. This simulates
a storage server with a lossy link. The time-series for the
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Figure 9. Throughput Timeline under transient stor-
age server failures. The red lines denote the exact time one
healthy storage server crashes and comes back up respec-
tively. During the downtime the commits happen through 1
healthy and 1 lossy server, prompting multiple retries.

experiment is shown in Figure 9. In the beginning, we see
that the throughput of the system faces no drops due to the
lossy storage server, since the other two servers send the
acknowledgments immediately. Then we kill one healthy
storage server number and bring it back up after some time.
During this phase, the throughput drops to almost half. But
it smoothly recovers when the healthy storage server comes
back up.

7.5 Case Study: Distributed and Privacy Preserving
Deep Neural Network Training

We demonstrate the applicability and scalability by training
a Deep Neural Network with multiple workers. Workers are
connected by PSL with a shared memory paradigm. and how
scaling multiple numbers of workers can finish computing
long, intensive tasks, we see how PSL can scale to do secure
deep neural network training.

We train a language model on Eurlex [9], that has more
than 1 million parameters with ADAM optimizer [49]. We
port the Sub-linear Deep Learning Engine (SLIDE)[11], a

CPU-based deep learning algorithm that utilizes multi-threading

to reduce training time. The original SLIDE reports better
performance than training with GPUs. We implement the
data loader that fetches the training set and the SLIDE code
from the storage server. The parameters of the deep learning
model, such as biases and weights, are exchanged through a
shared memory array abstraction. The per-epoch latency is
collected for 10 epochs. We also compare these benchmarks
to compiling SLIDE with -O3 and running natively.

Figure 10 shows that PSL achieves almost linear scaling as
we scale from 1, 2, 4, and 8 worker nodes on distributed train-
ing latency. Furthermore, PSL only introduces 2x overhead
compared against running with an unsecured and unsand-
boxed native worker, despite (1) the overhead of publishing
the training data and weights to the storage server, (2) the
overhead of SGX in data confidentiality, integrity and isola-
tion, and (3) the overhead of WASM sandbox, which provides
dynamic safety checks[27].
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Figure 10. Normalized Latency Speedup of Distributed
Deep Learning Training with increasing number of
workers. PSL is only two times slower compared to a native
worker with no enclave protection and WASM sandboxing.
The speedup is linear with increasing number of workers in
this domain.

8 Related Work

Current Frameworks for FaaS. There are existing state-
less cloud-based FaaS implementations that support differ-
ent forms of isolation. There is container based isolation
like OpenWhisk [19] and OpenFaaS [34] that are stateless.
There is also more lightweight forms of isolation like AWS
Lambda [7] which is based on the Firecracker MicroVM [3].
Faasm [40] is the most similar to us as they use a WASM
runtime engine, but do not run inside secure hardware. An
earlier implementation, Secure Concurrency Layer [13], that
exchanges states on a peer-to-peer network [12], only works
for Intel SGX with limited programming language support.

Secure Execution with TEE. There is existing FaaS based
secure hardware that focus on optimizing specific metrics
like cold start latencies by reusing enclave [50] or enable
scalable memory sharing to securely share FaaS runtimes
[20, 29, 47]. In contrast, PSL attempts to build an entire FaaS
framework with stateful computation. S-Faa$ [5] and Oc-
culum [38] proposes a FaaS framework on top of secure
hardware. S-FaaS$ introduces transitive attestation similar to
PSL and contributes a secure resource measurement to bill
clients accurately using Intel TSX extensions. Occulum uses
SFI to create light-weight enclaves, but only support state-
less computation and also rely on specific Intel hardware
extensions.

Consistency protocols on TEE. Consistency protocols on
TEEs generally fall into two categories: (1) running the whole
protocol inside enclave, e.g., CCF[24], (2) using enclaves as
trusted endorsers, e.g., Nimble[6]. Although projects in the
first category have larger TCB sizes, the confidentiality guar-
antees are also higher. Hence, PSL uses a similar approach.



A similar line of work tries to adapt known consensus proto-
cols into TEEs. [44, 45]. TEEs provide the non-equivocation
guarantee which helps CFT protocols give BFT guarantees.
However, naively using this leads to easy responsiveness
attacks. FlexiTrust protocols [22] solve this issue by using
more nodes but provide better performance. However, all
these works guarantee total order at the cost of parallelism.
To the best of our knowledge, PSL is the first to formally
consider performant eventual consistency in a TEE-based
system with asynchronous network.

9 Conclusion and Future Work

In this work, we present PSL, a lightweight, secure and state-
ful FaaS framework in TEE that supports WASM with JIT
compilation which scales to multiple workers a provide 95k
ops/s write throughput. It ensures secure state persistence
and scalable and efficient eventual state consistency. We
show a case study of distributed training on confidential
data with PSL to show its adaptivity and scalability. We
leave it as future work to verify JIT transformations with
a formal security guarantee. We leave addressing rollback
attacks, provenance tracking, and long-term key storage as
future works.

We leave it as future work to reduce cold start latency of
JIT by WASM runtime swapping: upon a cold start, the code
starts an interpreted version of WAMR, while the JIT engine
compiles code in the background. In addition, we assume
JIT engine is trusted in transforming WASM to machine
code. To fully trust the transformations, one can create a
JIT engine, such as [17] on creating verified binary lifters,
that only transforms verified transformations in the code. In
future work, we would also like to compare our performance
against state-of-the-art TEE-based consensus protocols, such
as MinBFT[44], FlexiBFT[22].
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