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ABSTRACT
Achieving efficient execution of distributed pipelines in serverless
environments is essential to minimize both execution time and op-
erational costs in cloud settings. This paper presents an approach to
predict and optimize the duration of a serverless pipeline executed
and parallelized with Lithops, using a geospatial water consump-
tion analysis pipeline as a case study. The hyperparameters of the
XGBoost model were optimized using Optuna, resulting in a 75.34%
reduction in Mean Absolute Error (MAE) compared to a baseline
model, and a 79.9% reduction in execution time compared to subop-
timal configurations. Additionally, the model reduced the number
of necessary pipeline executions by 30% compared to a full Design
Space Analysis (DSA), leading to a 30% cost savings. These results
highlight the model’s ability to significantly improve both execu-
tion efficiency and cost-effectiveness, showcasing the benefits of
using Lithops for serverless pipeline optimization.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Operational analysis; Use cases; Software design techniques;
• Computing methodologies → Classification and regression
trees; Feature selection; Regularization; Cross-validation; Super-
vised learning; MapReduce algorithms.
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1 INTRODUCTION
Serverless data analytics pipelines are increasingly popular for pro-
cessing large datasets due to their scalability, cost-effectiveness, and
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ease of use. By abstracting the infrastructure management, they
allow developers to focus solely on writing code. Lithops [1], an
evolution of Pywren [2], is designed to execute Python functions
as serverless tasks across multiple cloud providers, automating re-
source provisioning and scaling. Through rounds of map functions
that interact with object storage, these platforms streamline the de-
velopment of data-intensive applications requiring dynamic scaling
and parallelism.

Lithops manages infrastructure across cloud providers to exe-
cute functions in parallel, breaking tasks into smaller units and
automating resource provisioning based on user configurations like
runtime memory and ephemeral storage. Using AWS Lambda’s [3]
dynamic allocation of vCPUs and memory, it scales resources on
demand, optimizing costs for large datasets.

The pipeline executed on Lithops and AWS Lambda processes
geospatial water consumption data in multiple stages. It starts by
splitting input data into smaller chunks, which are processed in par-
allel by AWS Lambda functions to handle tasks such as data prepa-
ration, raster interpolation, and evaporation computation. Lithops
manages task distribution, ensuring efficient use of resources as
each Lambda function independently processes its chunk. This ap-
proach leverages serverless scalability, enabling seamless handling
of complex, large datasets by automatically scaling resources based
on demand and reducing operational overhead through pay-per-use
billing.

The predicted optimal configuration adjusts key parameters like
memory, splits, and vCPUs. For example, allocating more memory
allows fewer, larger tasks, reducing cold start overhead, while fewer
splits minimize coordination costs. These adjustments improve
processing efficiency and cost-effectiveness on serverless platforms.

Despite these advantages, optimizing the performance and cost-
efficiency of serverless data analytics pipelines remains a challenge.
Execution time and costs depend on various configuration parame-
ters, such as memory, vCPUs, ephemeral storage, and the degree
of parallelism (e.g., splits). Finding the optimal configuration is
complex due to the multitude of possible parameter combinations.
Exhaustive testing through Design Space Analysis (DSA) can be
costly and inefficient, as it requires multiple pipeline executions
under varying settings.

1.1 Problem Statement
The challenge is to find optimal configurations that minimize time
and costs without exhaustive testing. For pipelines that run repeat-
edly, this optimization can lead to significant savings. Complex
parameter interactions make manual tuning inefficient, highlight-
ing the need for a smarter solution.
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1.2 Proposed Solution
We propose a machine learning approach to predict pipeline execu-
tion time based on key parameters, enabling efficient identification
of optimal settings that minimize both time and cost. By training on
a limited set of executions, our model can estimate performance for
unseen configurations, making it universally applicable to pipelines
on serverless platforms like Lithops.

Leveraging the elasticity and pay-per-use model of serverless
architecture, our approach ensures automatic scaling of resources,
optimizing costs and performance. Predictions on memory, vCPUs,
and ephemeral storage help balance speed and cost, allowing users
to pay only for what they consume.

We validated this method using a water consumption pipeline
in Murcia, Spain [4], processing geospatial climate data through
stages like:

(1) Data Preparation: Uploading and converting Digital Terrain
Models (DTMs).

(2) Raster Data Interpolation: Parallel interpolation of climate
variables.

(3) Computation of Potential Evaporation: Estimating evapo-
transpiration.

(4) Result Visualization: Generating visual representations.

Though tested with Lithops on AWS Lambda, the approach
adapts to other FaaS platforms like Azure Functions and Google
Cloud Functions [5, 6], ensuring seamless integration across providers.

1.3 State of the Art
Previous studies have explored resource optimization in server-
less environments. Arjona et al. [7] developed Dataplug, which
enhances performance through Design Space Analysis (DSA) by
varying chunk sizes. However, their approach focuses solely on
chunk size, without considering other parameters such as memory
or vCPUs. In contrast, our method achieves a 30% cost reduction
compared to DSA by optimizing multiple parameters simultane-
ously.

The Sizeless model [8] predicts optimal memory sizes based on
monitoring data from a single configuration, yielding a 2.6% cost re-
duction and a 16.7% improvement in execution time. Our approach
provides greater benefits, achieving a 19.71% cost reduction and up
to a 79.9% reduction in execution time.

Overall, our XGBoost model optimizes several parameters con-
currently, offering substantial time and cost savings compared to
prior methods.

1.4 Contributions
We present a machine learning model that predicts pipeline exe-
cution time, reducing it by up to 79.9% and lowering costs by 30%
compared to DSA. Our model optimizes multiple parameters simul-
taneously, offering a versatile solution applicable to any serverless
data analytics pipeline.

2 METHODOLOGY
Our methodology includes configuration analysis via Design Space
Analysis (DSA), data preprocessing, hyperparameter optimization,
and model evaluation. Lithops automates configuration manage-
ment and execution on AWS Lambda for efficient parallel pro-
cessing, utilizing libraries like numpy, pandas, rasterio, shapely,

scikit-learn, and Optuna [9–14] for data management and anal-
ysis.

2.1 Configuration Analysis Using DSA
The Design Space Analysis (DSA) involved executing the pipeline
with 148 configurations on Lithops, using AWS Lambda as the un-
derlying serverless platform. This approach allowed for the analysis
of key parameters affecting execution time, combining systematic
variation with selective random sampling to capture meaningful
insights.

Selection of Configurations. Configurations were selected to ex-
plore combinations of parameters that significantly impact pipeline
performance. A selective approach combined targeted ranges with
random sampling, capturing diverse scenarios while reducing the
total number of tests. This strategy effectively represented critical
variations based on prior experience and realistic use cases.

Parameters Adjusted During the DSA.
• Splits: Range of 2 to 6, to balance parallelism. More than 6
adds unnecessary overhead, while fewer than 2 limits effi-
ciency.

• Allocated Memory: 1,024 MB to 3,008 MB (maximum in
Lithops). Less than 1,024 MB was insufficient for the data
used, leading to suboptimal performance.

• Ephemeral Storage: 512 MB to 8,192 MB, varied to support
different temporary storage needs.

• vCPUs: Indirectly set by allocated memory in AWS Lambda
(0.85 to 1.61 vCPUs). Not directly controlled, but adjusted
automatically based on memory.

• Input Files and Size: Configurations with 5 or 15 files, ranging
from 0.25 to 1 GB, based on a real-world use case analyzing
water consumption in Murcia.

Each execution recorded detailed information about the pipeline
configuration and the resulting execution time. The key configura-
tion parameters collected are summarized in Table 1.

Table 1: Input Parameters Collected During DSA

Parameter Description
num_files Number of input files processed
splits Number of splits (chunks) used for parallel processing
input_size_gb Total size of the input data in gigabytes
runtime_memory_mb Amount of memory allocated for the runtime (MB)
ephemeral_storage_mbTemporary storage allocated for intermediate data (MB)
worker_processes Number of worker processes running in parallel
invoke_pool_threads Number of threads per invocation
vcpus Number of virtual CPUs allocated

Serverless architecture facilitates dynamic resource allocation,
allowing multiple functions to execute concurrently. During execu-
tion, resources such as memory and vCPUs are distributed across
parallel tasks, managed automatically by the backend (e.g., AWS
Lambda). The parameters selected in the DSA directly influence
this management; for instance, increasing memory or vCPUs can
speed up function execution, while the number of splits controls
how workloads are divided. The system optimizes this distribution,
ensuring efficient parallel processing without manual intervention,
leading to better performance and cost savings.

We collected this comprehensive dataset during the DSA, cap-
turing a wide range of configurations and execution times. This
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dataset forms the basis for training and evaluating our predictive
model.

2.2 Data Collection and Preprocessing for the
Model

The data from the 148 pipeline executions during the DSAwere used
to train the predictive model. This dataset includes both the original
input parameters (Table 1) and additional features created through
feature engineering (Table 2), which capture complex relationships
between the original parameters.

Table 2: Derived Parameters from Feature Engineering

Derived Parameter Description
memory_per_file Memory allocated per file processed (MB)
storage_per_file Temporary storage per file (MB)
vcpus_per_file vCPUs allocated per file
files_per_vcpu Number of files processed per vCPU
size_per_file Size of each file (GB)
memory_per_gb Memory allocated per GB of input size
vcpus_per_gb vCPUs allocated per GB of input size
storage_per_gb Temporary storage per GB of input size (MB)
threads_per_worker Threads running per worker process
memory_per_thread Memory allocated per thread (MB)
vcpus_per_thread vCPUs allocated per thread
memory_per_thread_vcpus_ratioRatio of memory to vCPUs per thread

Before training, several preprocessing steps were applied:
• Data Splitting: Each execution corresponds to a single row
in the dataset, and the data was randomly divided into a
training set (70%) and a test set (30%).

• Outlier Handling: All data points were retained to help the
model learn from inefficient configurations with longer exe-
cution times.

• Feature Scaling: Numerical features were scaled to prevent
bias from large-scale features.

• Logarithmic Transformation: Applied to the target variable
(execution time) to reduce skewness and stabilize variations.

• Data Augmentation: Gaussian noise was added to the train-
ing features to improve generalization.

These preprocessing techniques, along with feature engineering,
ensured that the model was trained on a diverse set of configura-
tions, capturing complex interactions and improving its ability to
predict execution time.

2.3 Hyperparameter Optimization and Model
Training

XGBoost was chosen for its efficiency in handling structured data
and its ability to capture complex relationships with minimal over-
fitting. To enhance its performance, we used Optuna to conduct a
Bayesian hyperparameter search, optimizing:

• Tree depth (max depth)
• Learning rate (learning rate)
• Number of estimators (n estimators)
• Subsampling (subsample)
• Feature fraction per tree (colsample bytree)
• L1 and L2 regularization (reg alpha and reg lambda)

The best hyperparameters found are summarized in Table 3.
Using these hyperparameters, the model was trained on 70% of

the dataset. The model was evaluated on the remaining 30% using
metrics such as MAE, MAPE, and R2. A logarithmic transformation

Table 3: Best Hyperparameters Found Using Optuna.

Hyperparameter Value
Max Depth 4
Learning Rate 0.005193
Number of Estimators 2268
Subsample 0.7467
Colsample by Tree 0.9654
Gamma 0.0101
L1 Regularization (Reg_Alpha) 0.0914
L2 Regularization (Reg_Lambda) 0.1549

on the target variable (execution time) further improved stability
in predictions.

Hyperparameter tuning and training ensured XGBoost’s accu-
racy with balanced performance.

2.4 Predicting Optimal Configurations
Using the model trained on data from the DSA (Sections 2.1 and 2.2),
we aim to optimize pipeline execution time based on specific con-
figuration parameters. Input features include original parameters
(Table 1) and derived features (Table 2).

The term ’splits,’ also known as ’chunk size,’ refers to data divi-
sion for parallel processing, where more splits increase parallelism.
Our objective is to predict execution times, identifying configura-
tions that minimize time and cost without re-running the pipeline.
For example, optimizing a pipeline with 24 input files (20 GB) on
AWS Lambda with 1 vCPU, we tested splits ranging from 3 to 6,
yielding the results in Figure 1.
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Figure 1: Predicted execution times for different splits.

Results indicate that 5 splits minimize execution time (170 s).
Further, as shown in Figure 2, 2,048 MB runtime memory achieves
optimal execution time without cost increase, as higher memory
does not yield further benefits. Given AWS Lambda scaling memory
and vCPUs proportionally, memory adjustments directly impact
computational capacity.
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Figure 2: Predicted execution times for different memory
allocations.

This approach could be automated through anOptuna-like frame-
work, where users define parameter ranges and the framework
predicts optimal configurations, streamlining the optimization of
pipeline performance while minimizing cost.
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2.5 Model Improvement Attempts
Several strategies were explored to enhance the predictive model,
but none outperformed the final XGBoost approach:

• Synthetic Data (CTGAN): Generated data didn’t improve
metrics; real data was used.

• Alternative Models: Random Forest, LightGBM [15], and ML-
PRegressor underperformed, with XGBoost as the best model.

• Ensemble Models: Achieved an MAE of at least 50, worse
than XGBoost.

• Feature Selection (RFE): Increased MAE to 51.59.

Model MAEMAPE R2
XGBoost 29.81 8.72% 0.8802
XGBoost with RFE41.5911.76%0.6056
MLPRegressor 44.9913.53%0.6126
LightGBM 46.4511.89%0.5856

Table 4: Results obtained with different models and tech-
niques

3 RESULTS AND DISCUSSION
This section assesses five approaches to predict and optimize the du-
ration of the geospatial analysis pipeline. These include a machine
learning-based model, several baseline methods, and an exhaustive
optimization technique.

3.1 Comparative Results Between Approaches
We compared several methods to assess their performance in pre-
dicting and optimizing the duration of the geospatial analysis
pipeline:

• XGBoost Model: Gradient boosting model that captures com-
plex feature interactions.

• Average (Baseline): Predicts using the mean execution time
from training data.

• Linear Regression (Baseline): Assumes linear relations be-
tween features and duration.

• PCA + Linear Regression (Baseline): Uses PCA for dimen-
sionality reduction before linear regression.

• Design Space Analysis (DSA): Tests configurations exhaus-
tively to find the optimal one but is computationally costly.

Table 5 and Figure 8 present a comparative summary, highlight-
ing XGBoost’s strong performance on test data and cross-validation
(Avg. MAE).

XGBoost
Baseline

(Average)Baseline
(Linear)

Baseline
(PCA + Linear)

0
50
100

M
A
E
(s
)

MAE Comparison Across Models

Figure 3:MeanAbsolute Error (MAE) comparison acrossmod-
els.

Table 5: Comparison of Models.

Model MAE (s)Avg. MAE (CV) (s)MAPE (%) 𝑅2

XGBoost 29.81 34.20 8.72% 0.8802
Baseline (Average) 120.90 - - -
Linear Regression 97.02 96.62 28.73% 0.3380
PCA + Linear Regression 97.70 92.03 29.04% 0.3240

Table 6: Improvement of XGBoost Over Other Models.

Compared Model Improvement in MAE (%)
Baseline (Average) 75.34%
Linear Regression 69.26%
PCA + Linear Regression 69.47%

The results demonstrate that the XGBoost model achieved the
highest accuracy, outperforming all baseline models. It reduced
MAE by 75.34% compared to the Baseline (Average), and showed
improvements of 69.26% over Linear Regression and 69.47% over PCA
+ Linear Regression (see Table 6). These results highlight XGBoost’s
ability to effectively capture complex interactions between pipeline
parameters.

The DSA approach determines the true optimal configuration
through exhaustive testing, while XGBoost identifies near-optimal
configurations efficiently using only 70% of the data. This predictive
capability reduces the necessity for extensive trials, resulting in
significant cost savings. The financial benefits of this efficiency are
discussed in the following section.

3.2 Cost-Benefit Analysis and Efficiency
Beyond its predictive accuracy, the XGBoost model offers significant
cost savings compared to the exhaustive Design Space Analysis
(DSA). Table 7 compares configurations resulting in the minimum
and maximum execution durations, along with their respective
costs per execution.

Table 7: Configuration Comparison: Minimum vs. Maximum
Duration and Costs

Parameter Minimum DurationMaximum Duration
Number of Files 5 5
Splits 5 2
Input Size (GB) 0.25 0.25
Runtime Memory (MB) 2000 1024
Ephemeral Storage (MB) 1024 1024
vCPUs 1.13 0.58
Duration (s) 184.08 915.89
Cost per Execution (USD) 0.281 0.350
Cost Difference (USD) 0.069

The cost difference between these configurations is $0.069 per
execution, resulting in approximately 19.71% savings per run. The
initial training cost of $38.75 for the XGBoost model leads to a
break-even point after approximately 562 executions, calculated as:

𝑁break-even =
Training Cost

Savings per Execution

=
38.75 USD

0.069 USD/execution
≈ 562 executions

(1)

Assuming a rate of 10 executions per day, the model reaches
the break-even point in about two months. Figure 4 illustrates the
projected cost savings over time.

In summary, the XGBoost model delivers substantial cost savings
and a rapid return on investment. By efficiently identifying opti-
mal configurations without exhaustive testing, it proves to be an
effective and practical solution for ongoing pipeline optimization.

3.3 Comparison of Real vs. Predicted Duration
To evaluate the XGBoost model’s ability to identify optimal config-
urations, we tested it on all configurations from the Design Space
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Figure 4: Projected cost savings over time, assuming 10 execu-
tions per day. The break-even point occurs at approximately
2 months.

Analysis (DSA), including both seen and unseen setups. The config-
uration with the shortest real duration, selected by the DSA, was
excluded from the training set to evaluate whether the model could
identify it as the most efficient in the test set. The results indicated
that the configuration with the shortest predicted duration (195.26
seconds) closely matched the actual duration of 184.08 seconds, as
presented in Table 7. This alignment demonstrates the model’s ef-
fectiveness in identifying optimal configurations without the need
for exhaustive testing.

3.4 Learning Curve
Figure 5 shows the learning curve of the XGBoost model. The graph
indicates a significant reduction in error as the size of the training
dataset increases. The narrow gap between training and test errors
indicates minimal overfitting and strong generalization capacity.

During model training, the early stopping rounds technique was
implemented to prevent overfitting. This technique stops training
when no significant improvements in validation error metrics are
observed after a specified number of rounds, ensuringmore efficient
and robust training.

Figure 5: Learning curve of the XGBoost model.

3.5 Residual Analysis and Distribution of
Relative Errors

The residual analysis, shown in Figure 6, compares the residuals
of XGBoost, Linear Regression, and PCA + Linear Regression. The
XGBoost model displays residuals symmetrically distributed around
zero, suggesting greater accuracy and reduced bias. In contrast, the
residuals of the other models display greater dispersion, reflecting
less reliable predictions.

Figure 7 shows the distributions of actual and predicted values
for XGBoost. The close alignment suggests the model effectively
captures data patterns, though slight discrepancies in lower-value
regions indicate potential for improvement. Enhancing results for
higher execution times may involve adding more samples from such
configurations. Overall, the model demonstrates robust predictive

performance, with opportunities for further enhancement through
feature engineering or hyperparameter tuning.

Figure 6: Residual comparison across models: XGBoost dis-
plays symmetric residuals around zero, suggesting higher
accuracy and lower bias.

Figure 7: Distribution of relative errors in the test set for the
XGBoost model.

3.6 Actual vs. Predicted Duration Comparison
Across Models

Figure 8 compares actual versus predicted durations for XGBoost,
Linear Regression, and PCA + Linear Regression. The dashed red
line indicates an ideal fit where predicted values match actual dura-
tions.

The XGBoost model (in blue) aligns closely with the ideal line,
demonstrating higher prediction accuracy. In contrast, predictions
from simple linear regression (in green) and PCA + Linear Re-
gression (in orange) exhibit greater scatter, particularly for longer
durations, indicating their inability to effectively capture complex
interactions in the data.

4 CONCLUSION
In this work, we addressed the challenge of optimizing distributed
pipeline execution in serverless environments using an XGBoost-
based approach. By predicting optimal configurations, our model
successfully reduced execution time and costs on cloud platforms
Lithops, achieving up to a 79.9% reduction in execution time and
around 30% cost savings compared to an exhaustive Design Space
Analysis (DSA). This significantly enhanced both efficiency and
cost-effectiveness.

Serverless computing presents unique challenges for runtime
estimation due to its dynamic and ephemeral nature. Unlike tra-
ditional environments, serverless platforms automatically scale
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Figure 8: Comparison of actual vs. predicted duration for
various models, highlighting the performance of XGBoost
against simpler regression methods.

resources, but this scaling is not always linear or predictable. It
depends on factors such as cold starts, variable latency, and cost-
to-performance trade-offs across different configurations. Our ap-
proach addresses these challenges by effectively learning from
limited configuration data to predict optimal settings.

Furthermore, the model leverages Lithops’ ability to abstract
backend differences, ensuring consistency in key parameters (e.g.,
memory, vCPUs, ephemeral storage) across FaaS platforms like
AWS Lambda, Google Cloud Functions, and Azure Functions. This
adaptability facilitates cross-provider deployment and effective
optimization, independent of the underlying cloud provider.

Additionally, this approach recovers the initial training invest-
ment of 38.75 USD within two months, leading to substantial long-
term savings.

4.1 Main Contributions
• Optimal Configuration Prediction: The XGBoost model pre-
dicts configurations that minimize execution time, achieving
up to 30% cost reduction compared to DSA.

• Enhanced Performance Metrics: The model surpassed all
baseline approaches, with a 75.34% improvement in MAE
over Baseline (Average), and 69.26% over Linear Regression,
and 69.47% over PCA + Linear Regression, effectively captur-
ing complex parameter interactions.

• Cost Efficiency: The model reduces execution times by up to
79.9% and costs by approximately 30%, requiring 30% fewer
executions compared to exhaustive methods like DSA. For
example, running 50 experiments instead of 100 results in a
50% cost reduction.

• Universal Applicability: The model’s adaptability and stan-
dardized parameter collection via Lithops enable deploy-
ment and optimization across FaaS platforms, including AWS
Lambda, Azure Functions, and Google Cloud Functions, en-
suring consistent optimization for any pipeline configura-
tion.

4.2 Future Directions
As the dataset grows, the model’s accuracy and generalization
can improve. While techniques like ensemble learning have been
explored, further research into advanced architectures could boost
predictive performance and refine optimization.

Additionally, the approach also has the potential to standardize
the optimization of distributed pipelines across cloud platforms, of-
fering a balance between accuracy, cost, and operational efficiency.
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