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ABSTRACT
This paper releases and analyzes two new Huawei cloud
serverless traces. The traces span a period of over 7 months
with over 1.4 trillion function invocations combined. The
first trace is derived from Huawei’s internal workloads and
contains detailed per-second statistics for 200 functions run-
ning across multiple Huawei cloud data centers. The second
trace is a representative workload from Huawei’s public
FaaS platform. This trace contains per-minute arrival rates
for over 5000 functions running in a single Huawei data cen-
ter. We present the internals of a production FaaS platform
by characterizing resource consumption, cold-start times,
programming languages used, periodicity, per-second ver-
sus per-minute burstiness, correlations, and popularity. Our
findings show that there is considerable diversity in how
serverless functions behave: requests vary by up to 9 or-
ders of magnitude across functions, with some functions
executed over 1 billion times per day; scheduling time, ex-
ecution time and cold-start distributions vary across 2 to 4
orders of magnitude and have very long tails; and function
invocation counts demonstrate strong periodicity for many
individual functions and on an aggregate level. Our analysis
also highlights the need for further research in estimating
resource reservations and time-series prediction to account
for the huge diversity in how serverless functions behave.
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1 INTRODUCTION
Serverless computing and Function-as-a-Service (FaaS) pro-
vides cloud programmers with a convenient programming
paradigm for event-based workloads [29]. Today, serverless
computing is widely used for applications ranging from me-
dia processing [22] to processing requests from vending ma-
chines [19]. While serverless adoption has been increasing,
there are few available studies into how production server-
less systems actually perform, characterizing behavior of
both users and systems in operation [29]. However, such an
understanding is important for systems research on how to
build, manage, and enhance serverless offerings in cloud data
centers. In addition, having open datasets allows for new in-
sights into these systems and how they operate. To the best of
our knowledge, there is only one existing serverless dataset
available for the research community spanning 14 days of
Azure function invocations [26]. This dataset contains over
70 thousand functions, but provides only a limited number
of features, a short duration of 14 days, and a coarse-grained
log of per-minute invocations.

In this paper, we analyze and open-source two traces from
Huawei serverless systems 1. The first trace is at per-second

1Huawei traces available at https://github.com/sir-lab/data-release
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granularity and consists of 200 functions from private inter-
nal Huawei workloads running across multiple data centers
with 141 days of data collected over a period of 234 days. This
provides insights into fine-grained performance of these sys-
tems including response times, cold-start times, and number
of invocations per second for each function, as well as aver-
age CPU and memory usage per minute for each function.
The second trace is a coarse-grained trace of over 5000 func-
tions hosted in one availability zone from one Huawei data
center for 26 consecutive days. This second trace provides a
coarse-grained understanding of the evolution of the work-
load on a single availability zone for over 5000 functions.

This paper reports the first in-depth analysis of these two
Huawei production traces, covering statistical features of our
workloads, followed by a longitudinal analysis of periodicity
and ranking of functions across our traces.We then formulate
the prediction of these function invocations as a time series
forecasting problem using a global univariate model and
demonstrate the challenges of forecasting with models of
varying complexities on both traces. Our main contributions
can be summarized as follows:
• Characterization of production FaaS workloads: We
provide a first-of-its-kind analysis of two long-term traces
(26 days; 141 days spanning 234 days, with gaps) from pro-
duction serverless systems, together comprising over 5200
functions. Our analysis covers request arrival distribu-
tions, cold start, scheduling, network, function execution
times, code package size, resource usage and feature-level
correlations.

• Longitudinal periodicity and ranking analysis: We
conduct an in-depth longitudinal analysis of periodicity
and ranking of functions across our traces. These analyses
are of particular importance regarding function invoca-
tion, as they demonstrate a paradigm of data that exhibits
trends over the long-term (many days), yet which is also
fine-grained.

• Workload forecasting:We demonstrate the efficacy of
several machine learning models on forecasting function
request data, with the intended application of autoscaling
and scheduling. We provide an argument for why global
univariate models are better suited (compared to standard
univariate or multivariate models) to this type of data. We
also identify a challenge resulting from such data: ingest-
ing and forecasting very fine-grained (per second) and
long-term (over several days or weeks). We refer to such
data as FGLT data. Facing this challenge may require re-
thinking how modern methods operate. We hope to see
novel modeling approaches emerge based on this data and
the associated challenge.

• Open-source trace release:We open-source1 both traces
to the research community, encouraging further analysis

on serverless systems. Our traces provide a rich set of
metrics, and with 141 days of data, facilitate longitudi-
nal studies to better understand serverless systems over
longer durations.

Figure 1: Architecture of our serverless platforms and
where our function invocation prediction model will
be used.

2 OVERVIEW OF OUR DATASETS
This section describes the lengths and features of our traces
as well as granularities and other aggregate characteristics.

2.1 Serverless at Huawei
Serverless computing facilitated by Function-as-a-Service
(FaaS) platforms allow developers to build, run and deploy
event-driven stateless functions without the overhead of
having to provision and manage servers or backend infras-
tructure. This, in turn, allows developers to focus on the
functions they develop, rather than how they will run on the
cloud [14, 17]. Today, all major cloud providers have server-
less offerings. Under the hood, middleware such as Apache
OpenWhisk [3], Knative [18], or OpenShift Serverless [24]
are used to manage the functions submitted to the system.
The functions are then mapped to either containers [41] or
lightweight virtual machines [1]. These containers are then
orchestrated into larger applications using cloud orchestra-
tion software such as Kubernetes.

Serverless systems at Huawei are built on top of containers
and YuanRong, a scalable distributed computing kernel for
serverless workloads. YuanRong has been widely deployed
across China, Europe and Asia Pacific in nearly 20 availabil-
ity zones called ‘regions’, and serves tens of thousands of
enterprise customers across a diverse range of workloads
including data analysis, business IT applications, and deep
neural network model training and serving. YuanRong is
used to process up to 20 billion requests per day. Figure 1
shows a simplified architecture of YuanRong.

Function invocation prediction is the task of predicting
the number of function invocations arriving on the platform
at a given time for a given function. Predictions produced
by a time series forecasting model inform the scheduler and
are used to preemptively allocate an appropriate number of
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Dataset Field Description Res Unit

Huawei
Private

Function ID Unique function identifier - -
Timestamp Time when request is received sec sec
Requests Number of function invocations sec -

Function delay Average execution time averaged over all pods running that function sec ms
Platform delay Average platform overhead averaged over all pods running that function sec ms
CPU usage Percentage of allocated CPU used per function averaged over all pods min %
Mem usage Percentage of allocated memory used per function averaged over all pods min %
CPU limit Allocated CPU for all pods running that function (normalised) min cores
Mem limit Allocated memory for all pods running that function min MB
Instances Number of pods allocated to that function min -

Huawei
Public

Function ID Unique function identifier - -
Timestamp Time when request is received min min
Requests Number of function invocations min -

Cold start cost* Cold start times plus some other overheads sec ms
Package sizes* Size of functions - MB
Language* Programming language used - -

Table 1: Summary of our dataset fields with each field’s associated time-measurement granularity. The data will be
released as an open-source repository following the format in the Table. Note that fields with an asterisk (*) will
not be released.

pods to serve a particular function in order to reduce the
number and time of cold starts. On Huawei platforms, the
most popular functions are predicted with powerful models
and predictions are made every day for the entire subsequent
day. Predictions may be made for every minute or even every
second of the subsequent day. These forecasting models use
historical data, which is collected by Prometheus, to inform
their predictions, as shown in Figure 1.

2.2 Our Datasets
In this paper, we present and analyze two new datasets from
YuanRong’s serverless workloads collected using the pipeline
in Figure 1. These two traces span a period of more than 7
months with over 1.4 trillion function invocations in both
datasets combined. The two traces we open-source and ana-
lyze in this paper are:
(1) Huawei Cloud Private Functions Trace 2023

(Huawei Private):This trace is derived fromHuawei’s
internal workloads. It contains eight different metrics
for 200 functions for a period spanning 234 days. Some
metrics are reported per second, while others are re-
ported per minute. This trace contains data on the
platform itself including CPU and memory usage and
limits, along with platform and function delays.

(2) Huawei Cloud Public Functions Trace 2023
(Huawei Public): This trace is a representative work-
load from applications running on Huawei’s public-
facing FaaS platform. Huawei Public contains more
functions than Huawei Private but is reported at the

minute level and over a shorter duration, totaling 5019
functions over 26 days.We also analyze language types,
package sizes, and cold start times for this platform,
but do not release these.
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Figure 2: Sum of all requests per minute plotted for the
first 7 days of Huawei Private and Huawei Public.

Table 1 displays a summary of both traces with their re-
spective fields. Figure 2 shows the total number of invoca-
tions for each of the two traces for a sample week. Most
of the analysis in this paper is done on the Huawei Private
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trace since it contains more features. We split our charac-
terization and analysis into three different parts. Section 3
focuses on the statistical features of our datasets. Section
4 discusses periodicity, rankings, and correlations within
and across functions that inform certain design choices for
ML approaches in Section 5. Section 5 describes how to use
the insights from previous sections in order to formulate
function invocation prediction as a tractable time series fore-
casting problem, as well as some challenges that arise when
forecasting fine-grain per-second data.

3 STATISTICAL FEATURES OF OUR
WORKLOADS

This Section characterizes the various features of our datasets,
including invocation counts, memory and CPU usage, num-
ber of instances, execution times, cold start times, overhead
times, code package size, and runtime languages.We focus on
the statistical features of workloads using cumulative distri-
bution functions (CDFs). In CDF plots with all, median, min,
and max curves; all represents the CDF of all values across
all functions; while median, min, and max are calculated per
function (i.e., a percentile calculated for all functions over
the entire duration of the dataset), and the CDF is calculated
as a cumulative fraction of the number of functions.

3.1 Request arrivals

101 103 105 107 109

Requests per day

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1d12h 3h 1h 1m 1s
Average interval between invocations

Private
Public

Figure 3: Requests on a median day per function, with
the corresponding average interval between requests
for Huawei Private and Huawei Public.

Figure 3 shows a CDF of functions by their average number
of daily invocations from our two traces. The top horizon-
tal axis shows the mean arrival rate between invocations
corresponding to the requests per day on the bottom hori-
zontal axis. To measure requests per day, we compute the
median value of each minute of the day across all days in
the dataset and take the sum of requests on this median day.
Note that the invocation counts from Huawei Private rep-
resent 200 functions of internal Huawei applications using
serverless across all regions, while Huawei Public contains
5093 functions from one region.
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Figure 4: Huawei Private request arrivals per-second.

Huawei Public has a wide distribution of popularity of
functions as measured by requests per day and demonstrates
the variety of use within the public FaaS platform. Huawei
Private on the other hand has fewer but far more highly
requested functions, with some being invoked over 1 billion
times per day. Approximately 50% of functions in Huawei
Private are invoked at least once per second, while less than
10% of functions in Huawei Public are invoked at least once
per minute. Thirty percent of functions in Huawei Public
are invoked only once per day, and around 70% of Huawei
Public functions are invoked at most once every 12 hours.
In both datasets, a minority of top functions account for the
majority of traffic. This phenomenon is especially present
in Huawei Private.
To better understand the request arrival rate on a per-

second scale, Figure 4 plots the CDF of all function invocation
counts per second for the Huawei Private dataset. This CDF
shows that at least 40% of all invocation counts have over
100 invocations per-second at any time, with more than 10%
having more than 1000 requests per second. In addition to
the arrival rate distribution, we plot the distributions of the
median, min, and max arrival rates for each of the Huawei
Private functions. These distributions can be helpful when
designing schedulers using our dataset as they can enable
new scheduling approaches that look at the probability of
worst and best-case arrivals of requests at any given time.

The number of requests per day varies by nine orders
of magnitude across functions in Huawei Private
and seven orders of magnitude in Huawei Public.
Huawei Public has a similar profile to Azure [29],
most likely because both are public serverless traces,
while Huawei Private has much larger invocation
counts.
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(b) Number of allocated in-
stances in Huawei Private.
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(c) Cold start costs measured
at Huawei Public.
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(d) Package size per function
in Huawei Public.

Figure 5: The user-perceived times from serverless can be dominated by the platform delay (which includes the
scheduling and network setup), by the execution times, or by the cold-starts suggesting that these three metrics
need to be optimized. The number of instances and the package sizes can also affect cold starts.

3.2 Execution time, platform delay,
cold-start, and instances

One potential bottleneck with serverless systems is cold-
starts [12, 31]. Due to the burstiness of serverless workloads,
the system may not have enough containers already pro-
visioned to service incoming request bursts [20, 37]. The
system, therefore, needs to start new containers to accom-
modate these bursts, which adds latency and degrades appli-
cation performance. This cold-start time is affected by the
network cold-start time [31], the sizes of the containers, and
the need to pull containers from registries [36], among other
costs that can affect the total cold-start.
Huawei Private delays analysis. For Huawei Private,

we analyze two delays, namely, function delay and plat-
form delay. Function delay is the function execution time
measured by our system, i.e., the time it takes a function to
complete its task once scheduled. Platform delay includes
both scheduling and network delays. Platform delay has pre-
viously been found to dominate user-perceived cold-start
times in “burst-parallel” serverless jobs [31]. Burst-parallel
serverless jobs are generated by applications that invoke
thousands of short-lived distributed functions to complete
complex jobs requiring the system to start a large number of
containers that requires interconnections [7, 31]. Since these
burst-parallel functions dominate our Huawei Private data
sets, and since the Huawei Private functions represent real
applications used by millions of customers using internal
services, we analyze these two delays for the Huawei Private
dataset.
Figure 5a shows the CDFs of both platform and function

delays for Huawei Private. Over 60% of function requests
have a platform delay of less than 1ms. Almost all platform
delays are less than 10ms. Confirming previous research [31],
the platform delays have a very long tail due to the burst-
parallel nature of the workloads. Next to platform delay, we
also plot function delay on the same figure. We see that
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Figure 6: Proportion of functions by runtime language
in Huawei Public.

50% of functions execute in less than 10ms, and almost all
functions complete within 1 second.
To better understand the long tails in platform delay, we

plot the number of instances allocated per function per-
minute (solid blue labeled all) for Huawei Private in Fig-
ure 5b as the number of instances can strongly influence
the network-startup times [31]. Even though a significant
percentage of our workload has at least 100 invocations per
second (roughly 60%), we allocate only one instance to serve
60% of the functions, with only less than 1% of our alloca-
tions being above 100 instances. We believe that these larger
allocations are one reason for the longer platform delays as
for many functions, the platform delay and the number of
instances are correlated as we show later.
Huawei Public delays analysis. Huawei Public repre-

sents external workloads deployed by our customers, typi-
cally with much fewer insights from our teams on what is
actually running. Hence, for Huawei Public, we decided to
analyze the cold-start costs which measure the total time
for a function to start. Figure 5c shows the cold start cost
for Huawei Public. We see that approximately 40% of cold
starts take less than 1 second, while over 90% of requests
of cold starts take less than 2 seconds. Major influences on
cold-start times include package sizes, memory usage, and
language runtimes used [37]. Figure 5d shows the package
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sizes for the functions in Huawei Public which is an indica-
tion of the size of the code running, while Figure 6 shows
the main languages used for implementing these functions.
Our data analysis shows that package sizes, the language of
implementation, and memory allocation are the three most
decisive factors on the cold-start time [37].

Platform delays, execution time, and cold-start time
distributions vary considerably and have very long
tails. This indicates the importance of optimizing
all three delays when building serverless platforms.
However, this is especially challenging given the
diversity of runtime languages used and their associ-
ated performance overheads.

3.3 Resource Usage
In serverless systems, each function is typically assigned
a resource limit by the user that represents the maximum
amount of CPU and memory that the function can use. How-
ever, functions do not necessarily use all of their assigned
resources. To better understand usage versus allocations,
we focus on data from Huawei Private. Figure 7 shows the
CDFs of absolute CPU usage, CPU limit, absolute memory
usage, and memory limit, for all allocations (marked all) as
well as median, maximum, and minimum for each function.
Our first observation is that most user-specified limits are
much higher than the actual usage, with around 60% of all
allocations using less than 0.1 cores but asking for a limit
of more than 1 core. Looking at memory usage in Figure 7c
versus memory limits in Figure 7d, we see a similar trend,
with around 50% of the functions having a limit of around 2
GB, but using only around 400 MB. This shows how users
of serverless functions are very conservative with their re-
source requirements. This gives the operators the possibility
to reuse some of this slack by over-committing the resources
using intelligent scheduling [35].
When over-committing resources, the scheduler needs

to consider the worst-case scenarios of usage, which can
be calculated from the max curves for CPU and memory
usage in Figures 7a and 7c. Over-provisioning by users is
less conservative when considering the worst-case scenario,
e.g. 10% of functions at some time used 70% or more of their
allocated memory. Hence, scheduler over-commitment must
reduce the risk of aggressive over-commitments, especially
considering that memory over-allocation can result in fail-
ures. There is still room for over-committing the resources
while not reducing the quality of service.

Estimating the size of resources required by a func-
tion is difficult for many serverless users, leading
to over-provisioned resource reservations. This sug-
gests the need for improved and automated ap-
proaches for users to determine resource limits, as
well as resource reclamation mechanisms that enable
serverless operators to reclaim some of these unused
resources.

4 THE LIFE OF A FUNCTION
We now focus on individual function behaviors and cross-
function relationships. We investigate the following char-
acteristics: periodicity, popularity ranking over time, cor-
relations between top-ranking functions, and differences
in burstiness between per-second data and aggregated per-
minute data. We also compute and discuss correlations be-
tween different features.

4.1 Are functions invocation counts
periodic?

One key characteristic of server workload data is periodicity.
This periodicity is seen in many server workloads [5, 30, 40],
including serverless workloads [20, 29]. Identifying themean-
ingful periodicities will inform scheduling and autoscaling
design choices such as the architecture of the model used
for forecasting these traces, how often to invoke it to make
a prediction, and how long into the future it should predict.

Daily Periodicity. We analyze the workloads’ daily peri-
odicity of each function in the traces. We follow this with
a comprehensive analysis of periodicity at any period. The
daily periodicity of a function can be measured by the nor-
malized peak height of its power spectral density (PSD) at the
daily frequency. PSD is ameasure of a time-series’ power con-
tent distribution with frequency. We measure the PSD value
for daily periodicity of all functions and plot them in Figure
8 as a scatter plot. Most highly requested functions on each
platform have daily periodicity, especially in Huawei Public.
Functions with fewer requests per day may also have strong
periodicity. There are a few high-request, low-periodicity
functions in both datasets, pointing to functions with large,
aperiodic bursts. Diurnal patterns are typically due to either
human activity during the day, or increased batch processing
and analytics jobs during the night.

Other periodicities. To obtain amore complete picture of
periodicity in our datasets, we now examine all periodicities.
Given a signal’s frequency spectrum, the most significant
periodicity is defined by the height of the largest peak in the
normalized PSD. The frequency at which this peak occurs
represents the period with the strongest influence on the
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Figure 7: Distribution of resource usage and limit in Huawei Private.

(a) Huawei Private. (b) Huawei Public.

Figure 8: Periodicity vs number of requests on median
day. Periodicity of Huawei Private is generally higher
than that Huawei Public. Note that both traces have
similar trends for periodicity greater than 10−4, but
Huawei Public has more low-request functions with
insignificant periodicities.

overall signal. We can plot requests per day against the fre-
quency where the PSD is largest, as shown in Figure 9. We
can then color the points based on the height of the peak,
with 1 representing a signal perfectly periodic at that fre-
quency, and 0 representing a completely aperiodic signal. In
this analysis, we only include functions with more than one
consecutive day of data since a large number of functions in
our workloads are invoked for less than one day.
Figure 9 shows the relationship between invocations per

day for each function, the interval at which function invo-
cations have maximum periodicity, and the power of that
periodicity from PSD analysis, i.e., the frequency with high-
est power for each function given its invocation rates. We
see significant periodicities at 1 day, 12 hours, 8 hours, and
smaller minute-level intervals. This is an interesting obser-
vation for serverless system operators. While 24, 12, and
8-hour intervals for strong periodicity can be explained by
the day-and-night effect, the per-minute periodicity cannot.
Aggregate periodicity. To understand the overall peri-

odic behavior of workloads, we study the autocorrelation
function (ACF) of the total requests for both platforms. At a
given lag 𝜏 , autocorrelation computes the correlation of a sig-
nal with that same signal, but with the latter copy shifted by
𝜏 . The ACF is then plotted against lag to visualize the signal’s

(a) Huawei Private. (b) Huawei Public.

Figure 9: Plot of periodicity of different functions. The
horizontal axis is the median number of requests re-
ceived by a function per day. On the vertical axis is
the most prominent periodicity of that function (fre-
quency at which PSD is highest). The color is the height
of the largest PSD peak in the normalized PSD (at the
aforementioned frequency). Many functions have their
most significant periods at 1 day and 12-hour periodic-
ities, including some of the most popular functions.

self-similarity when shifted by that lag. Figure 10 shows the
ACF with lags up to eight days. Both datasets have peaks in
their autocorrelation at integer multiples of one day. Other
than small lags of one minute or one hour, autocorrelation is
highest at a lag of exactly one day, underscoring the signifi-
cance of daily periodicity across functions. Comparing the
two datasets, Huawei Private has a marginally stronger auto-
correlation at a lag of one day. However, Huawei Public has
a consistently larger confidence interval. If the correlation
is within the confidence interval, then it is not statistically
significant. Also note that Huawei Private has minor peaks
at half-day lags, where Huawei Public has troughs, which
aligns with the greater number of points on the 12h line in
Figure 9a than in Figure 9b.
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Figure 10: Correlogram of sum of all requests for en-
tire duration against time lag in minutes. The Bartlett
confidence intervals are also shown. If autocorrelation
is within the confidence interval, it is not significant.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Time (days)

0

100

200

Re
qu

es
ts

Figure 11: Sum of requests for the 3000 least popular
functions in Huawei Public.

In addition to the top functions and the total number of
requests being periodic, we have found that the least popular
functions together also exhibit periodicity. This phenome-
non is especially significant for Huawei Public, where the
bottom 3000 functions together show clear daily periodicity
over all 26 days, as shown in Figure 11.This is interesting
from the perspective of scheduling and bin packing groups
of less popular functions together, which are likely to exhibit
higher cold start times.

A significant number of functions in both platforms
have strong periodicity, especially at daily frequen-
cies or frequencies that divide equally into one day,
such as 8 or 12 hours. Periodicity is especially signif-
icant for more highly requested functions, as well as
the aggregate number of requests on our platforms.

4.2 Function popularity over time
An important aspect to consider is function popularity as
the most popular functions constitute a large portion of the
traffic on our platforms. Hence, it is important to understand
how the ranking of the top functions changes over time.

The ranking of the top functions rarely remains the same
for long. To best visualize this dynamic behavior, we show
bump charts of function ranking for two weeks of each trace.
A bump chart shows the ranking on the vertical axis, and
how the ranks of these functions change from day to day.
Figure 12a shows the bump chart for Huawei Private and
Figure 12b shows the bump chart for Huawei Public. Our
first observation is that 25 unique functions appear in the
top 20 rankings over two weeks for Huawei Public, while 24
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Figure 12: Bump chart visualizing the functions that
occupy the top 20 places in the daily ranking of func-
tions by their median number of requests on that day.

appear in the same rankings for Huawei Private, suggesting
that there is little change in rankings in the top ranks. Some
of these functions appear only briefly.

To better understand the dynamics over the full duration of
the trace, we count the number of unique functions per rank,
i.e. number of unique functions per row in the bump chart
for the entire duration of the trace, and plot this against the
rank (ranked by median), as shown in Figure 13a for Huawei
Private and Figure 13b for Huawei Public. Figure 13a shows
that 2 functions occupy the top spot over the full duration
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(a) Huawei Private.

(b) Huawei Public.

Figure 13: Number of unique functions occupying a
given rank in Huawei Public and Huawei Private.

of the Huawei Private dataset. Also, note that the number
of unique functions per rank peaks at comparable points in
both datasets (around rank 100).

Higher ranks are occupied by a small number of
unique functions. Similarly, low-ranking functions
also tend to only have very few variations, with most
ranking changes happening in the middle ranks. A
scheduler could possibly make use of this fact in
deciding which functions can be colocated on the
same machines.

4.3 Feature level correlations
TheHuawei Private dataset has ninemetrics (fields) as shown
in Table 1. We have added two additional measures of CPU
and memory usage: absolute usage (percentage usage multi-
plied by the limit, so the result is in MB or cores), and total
usage (absolute usage multiplied by the number of pods, rep-
resenting the total memory or CPU used by all pods running
this function). Figure 14 shows a heatmap of the correlations
between the features for all the Huawei Private functions.
The heatmap shows some interesting insights. First of all,
both the function and platform delays are only very weakly
correlated with any of the other metrics. In addition, the
number of requests is only very weakly correlated with any
of the other metrics, if at all. There is, however, a correlation
between the memory and CPU metrics.
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total CPU usage

total memory usage
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Figure 14: Correlation of all metrics averaged over all
functions in Huawei Private.

4.4 Resource Usage
Investigating feature-level correlations for individual func-
tions, Figure 15 shows the Spearman correlation heatmap
between all features of three example functions from the top
10 most invoked from Huawei Private. Starting with func-
tion 72 in Figure 15b, we see that for some metrics, there
seem to be slightly stronger correlations compared to the
averages in Figure 14 such as between platform delay and
memory limit, or between number of requests and resource
consumption. These correlations are very strong in function
75 in Figure 15c, with high correlations between function
and platform delay and most other metrics. Additionally,
for function 66 in Figure 15a we see negative correlation
between function delay and a number of other metrics.

4.5 Inter-function correlations
Since a data center hosts a variety of workloads, it is impor-
tant for operators to know if there are strong correlations
between running workloads. For example, knowing if dif-
ferent function invocations have aligned peaks may inform
scheduling. Functions can have correlated bursts because of
invocation chaining, or the diurnal pattern of users.

Figures 16a and 16b show the correlation heatmap of the
top ten functions by invocations for both traces respectively.
Each element in the correlation matrix is labeled with its
Spearman correlation value, with an asterisk next to values
where 𝑝 < 0.05. For both datasets, we see very strong corre-
lations between many of the top ten functions, with some
functions almost perfectly correlating with each other, sug-
gesting that they burst together. Since the top ten functions
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(a) Function 66.
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(b) Function 72.
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(c) Function 75.

Figure 15: Correlations for three sample functions in Huawei Private.
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(b) Huawei Public.
Figure 16: Correlation of requests of top 10 functions
and all requests using Spearman correlation.

by invocations can have billions of invocations per day, this
means that from a resource management point of view, it
is important to understand which functions burst together
to be able to allocate enough (warm) resources to reduce or
alleviate altogether the cold start-problem.

Correlated bursts are common within serverless
workloads. Understanding these correlations is im-
portant to build scalable serverless resource manage-
ment systems.

4.6 Workload Granularity and Burstiness
One important aspect that needs to be taken into account
when building serverless, and cloud management systems in
general, is the granularity of data logging. On the one hand,
very fine-grained logging increases logging costs. On the
other hand, coarse-grained loggingmay introduce significant
changes to some statistical aspects of the data. In this Section,
we chose burstiness as a measure of statistical variation due
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Figure 17: Sample entropy box plot for top 10 functions
in Huawei Private for different time granularities.

to data logging granularity and demonstrate its effects on
arrival requests prediction as a use case.
Measuring burstiness. To measure how bursty a work-

load is, several measures and approaches have been pro-
posed in the literature [2]. For our analysis, we chose sample
entropy [27] which is a robust burstiness measure, first de-
veloped to classify abnormal (bursty) physiological signals,
but has since been used to quantify complexity in network
traffic [2, 25, 28]. Sample entropy is defined as “the negative
natural logarithm of the (empirical) conditional probabil-
ity that sequences of length𝑚 similar point-wise within a
tolerance 𝑟 are also similar at the next point” [27]. For our
workloads, calculating sample entropy effectively compares
sliding windows of length𝑚 of the workloads checking if
they have any deviations in the number of invocations larger
than 𝑟 . We use Python’s Antropy library [34] for our bursti-
ness experiments.
Figure 17 shows a box plot of the average per-day sam-

ple entropy for the top 10 functions in our Huawei Private
dataset when using per-second versus per-minute granular-
ity. For the per-minute data, we use the sum of invocations
for a function over a minute and do not average it. The plot
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shows that for Functions 65, 66, and 164, the per-second
granularity shows increased burstiness compared to the per-
minute granularity trace. For other functions, the difference
is insignificant, or much smaller, suggesting that the aggre-
gation did not affect that function’s burstiness significantly.
For three functions, namely 75, 160, and 161, the burstiness
increases slightly due to aggregation. This is a side-effect of
using the sum over a minute rather than the mean over a
minute since small anomalies can add up during the minute
to magnify into a larger burst.

Our analysis confirms that per-second aggregation
reveals more trends compared to per-minute aggrega-
tion. Generally, it is important to accurately predict
per-second dynamics to be able to adapt apriori to
bursts. Per-minute aggregation can lead to sub-par
or inaccurate resource management decisions.

5 FORECASTING CHALLENGES
Function request arrival forecasting can be used in combina-
tion with an estimate of function execution time to estimate
in advance the amount of resources allocated for serving
a particular function at a given time. This can mitigate the
cold start issue, where demand exceeds allocated resources
at that time. Ideally, such predictions should be fine-grained
to exploit fine-grained patterns, especially in functions with
short execution times. Fine-grained forecasting is important
for multiple internal resource management use-cases. For
example, per-second forecasting can be used for resource
over-allocation for the majority of functions as they have
runtimes of a few milliseconds, as shown in Figure 5a.

In this Section, we study and evaluate several time series
forecasting models on the fine-grained long-term (FGLT)
data described in this paper. We focus on the top 10 functions.
Our objective is to demonstrate the challenges of forecasting
FGLT data rather than provide a comprehensive solution.
Forecasting is important to cloud performance optimiza-

tion (e.g. for minimizing cold starts in FaaS). We focus on
forecasting function request arrivals as it is a common use-
case in cloud systems. The concept of ‘fine-grained’ data
is relative; in our case, we consider ‘fine-grained’ to be
forecasting tasks where the data sampling rate is much
higher than the strongest periodicity. For example, Fig-
ure 10 shows that the strongest periodicity in our data is
every 24 hours, while the sampling rate is 86400 samples per
day (the number of seconds in a day). Our study illustrates
challenges common to all FGLT cloud data as listed below.

(1) Fine-grained data is expensive for powerful mod-
els to ingest and utilize. For a model to ingest one
week of per-second data, it needs to ingest and learn

long and short term patterns from 86400× 7 = 604, 800
data points. However, ingesting this amount of data
is infeasible in most practical cases for most models
because of the difficulty of learning such large fea-
ture spaces. That is, models have to learn fine-grained
minute or second level patterns while also accounting
for long-term trends over days or weeks, as shown in
Figure 18. As of yet, no models are designed for this
paradigm. See Section 5.3 for more information.

(2) Standard univariate or multivariate models are
poorly suited to function request forecasting since
for each new function we want to predict, the model
needs to be either retrained or tuned, which is too
expensive. This is discussed further in Section 5.1.

(3) Long-term forecasting Our system runs tens to hun-
dreds of thousands of functions. Running a prediction
for each of these functions frequently is very expensive
and the overhead of forecasting can quickly outweigh
the utility of predictions. Therefore, we expect a fore-
cast to be relevant for at least one day, such that the
model is only queried once per day.

5.1 Experimental setup
Models. We trained eight models on the top 10 functions
for both platforms: linear regression, TimesNet [39], N-HiTS
[8], FFT extrapolation, NeuralProphet [33], PatchTST [23],
TiDE[11], and N-Linear [42]. We describe these models later
in detail. Where possible, we trained global univariate mod-
els [15]when the originalmodel supports this training regime.
Global univariate models are models trained on samples from
multiple time series. This training regime produces improve-
ments for some scenarios [6, 15, 16] over models that are only
trained on samples from the same time series they are trying
to predict (local models). Another advantage is that training
a global model allows us to predict other single univariate
time series that it was not necessarily trained on.

Global univariate models are well-suited to data in cloud
infrastructure because:
(1) Global univariate models are typically used where

time series are similar or related. Functions often ex-
hibit similar patterns, meaning that a function-specific
model is not necessary.

(2) Thousands of functions may require forecasting, so
function-specific models are too costly for both train-
ing and inference.

(3) Multivariate models (where inputs are variables from
multiple functions) are not feasible for thousands of
functions. One may consider narrowing down the
input to the top-𝑘 functions, but the top-𝑘 ranking
changes over time (see Figure 12) and entirely unseen
functions may appear.
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Figure 18: A 33 day chunk of an example function in Huawei Private. The different color lines show different scale
trends computed as windowed means of the data with various window sizes (from 14 days to 3 hours).

In our work, only two models do not support global uni-
variate training; NeuralProphet and FFT. These local models
are instead fitted to each function individually. We include
these two models as they are simple and lightweight mod-
els that are widely used. However, they suffer from all the
downsides of local models mentioned before.

We now describe the eight models we train in more detail:

(1) FFT Extrapolation computes the FFT of the input
and extrapolates future values. In our implementation,
data is de-trended with a third-degree polynomial and
the top 100 frequencies are kept for extrapolation.

(2) Linear regression is a simple forecasting model that
assumes a linear relationship between output forecasts
over the forecast horizon and input features taken from
previous values in the sequence.

(3) N-Linear is a simple linear model with an additional
preprocessing step to account for distributional shift
in the data.

(4) NeuralProphet combines classical forecasting and
deep learning, consisting of trend, seasonality, and
residual components. The autoregressive component
is disabled because it would require many invocations
per day, which is not permitted in our use case.

(5) N-HiTS uses multi-rate signal sampling and hierarchi-
cal interpolation to learn patterns at different scales,
and then recombine these components into an overall
forecast. We use 3 stacks, 1 block per stack and 2 fully
connected layers preceding the final forking layers in
each block of every stack. Each layer has width 512.

(6) TimesNet uses a multi-scale approach that converts
1D series to 2D and then uses convolutional kernels.
In experiments, we use 2 encoding layers, 1 decoding
layer, model dimension of 64.

(7) PatchTST is an encoder-only transformer architec-
ture that uses patching, where a series in split into
subsequences before passing through the model, and
channel independence, where different channels are
predicted independently from each other, but sharing

model weights while training. We use a patch length
of 16, 2 encoding layers and model dimension of 64.

(8) TiDE is a multi-layer perceptron (MLP) based encoder-
decoder model specifically designed for long-term time
series forecasting.

Data Description. For training, we selected the top 10 func-
tions by median requests. For Huawei Private, we train mod-
els on 38 days consisting of two chunkswith a gap in between.
We use the following 7 days for validation to implement early
stopping (to mitigate overfitting) and test on the next 7 days.
For Huawei Public, we train on the first 20 days, use the
following 3 days for validation, and test on the next 3 days.
We study the performance of the eight models on per-

minute and per-second data. We aggregate Huawei Private
data per minute. For training a global model for per-minute
forecasting, we use an input length of two days for Huawei
Private and one day for Huawei Public. We set the forecast
horizon to one day, i.e., we predict an entire day in advance.
This is closest to how the model would be used in production.
For training a global model for per-second forecasting (N-
HiTS only) we use a 6-hour input length and a one-hour
forecast horizon as most models fail with longer inputs.

5.2 Forecasting results
Table 1 shows the results of our forecastingmodels onHuawei
Public, and Huawei Private at per-minute and per-second res-
olutions. We show root-mean-squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE). We give results on the top 5 functions due to space
constraints. In the table, we highlight the best performing
model for each function’s workload in boldface. In many
cases, an FFT extrapolation performs better than more com-
plex methods. Per-second data disables the use of many mod-
els since they cannot ingest enough data to meet our long-
term requirement (i.e., forecast for a full day).
Figure 19 visualizes the results from Table 1. Figure 19a

shows predictions for per-minute data, where most models
make reasonable predictions of large-scale trends. However,
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the zoomed-in view shows that models fail to accurately pre-
dict finer-grained patterns. Figure 19b shows predictions for
per-second data. Again, models struggle with finer-grained
patterns. For both per-minute and per-second forecasting,
the zoomed-in plots in Figures 19a and 19b show that predic-
tions deviate significantly from ground truth data for several
hours. For per-second forecasting, many models run out of
memory or require prohibitively long training, so only FFT
and N-HiTS could be evaluated.

To better understand the scalability problems of complex
prediction models, Figure 20 shows allocated memory of se-
lected models with the number of input days during training.
Note that N-HiTS scales best, while linear scales worst.
While it was not possible to train N-HiTS with the stan-

dard one-day-in-one-day-out setup due to memory and train-
ing time constraints, we train N-HiTS with a six-hour input
length and one-hour output length as shown in Figure 19b.
However, this increases the cost of predicting all functions
in our data centers as we now invoke the model 24 times
more often. The other model that works with our data is
FFT. FFT fits large-scale trends, but does not predict finer-
grained patterns. Importantly, Figure 19 shows all models are
poorly suited to predicting peaks, especially for per-second
data. More work is required to accurately predict peaks of
bursty time series, given the importance of bursts in cloud
platforms.

It is worth noting that many simple, non-neural network
models perform comparably or sometimes better than state of
the art neural networks. It appears that for FGLT forecasting,
neural networks give marginal improvements over simpler
methods. This is especially noteworthy given the overhead
of training and inference of neural networks. We found N-
HiTS to be one of the more robust and performant models.
This may be because its architecture is specifically designed
for learning patterns at different scales.

5.3 Per-second challenges
Fine-grained long-term forecasting is under-explored in lit-
erature. Even if a model could ingest such amounts of data
with trends at multiple scales as shown in Figure 18, it would
not necessarily learn the underlying trends. The memory
overhead of consuming this much data means that even effi-
cient models such as N-HiTS can only ingest approximately
18 days (see Figure 20).

The per-second results in Table 2 and Figure 19b further
show the challenge with more fine-grained data. Therefore,
we see the following challenges in fine-grained long-term
time series forecasting model capabilities; (1) Ingesting long-
term per-second data, where long-term means at least 1
week; (2) Generalizing well under the above requirement,

(a) Per-minute experiments.

(b) Per-second experiments.

Figure 19: Example function request predictions for
different machine learning models.

Figure 20: Memory consumption of selected models.

without severe overfitting; and (3) Forecasting (directly or
autoregressively) long-term without severe degradation.

6 RELATEDWORK
Workload characterization of server systems has been a pop-
ular research topic for decades [4, 10, 13]. Recently, there
have been a few studies on characterization and analysis
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Table 2: Results for forecasting experiments. For Huawei Public (Pub) results are computed in a rolling manner
over 2 days with input of 1 day. For Huawei Private per-minute – Pvt(m) – results are computed in a rolling manner
over 5 days with an input of 2 days. For Huawei Private per-second – Pvt(s) – results are computed using a rolling
forecast over 1 hour. The best results are highlighted in bold. All metrics are computed on normalized data. *For
per-second forecasting, N-HiTS uses a six-hour input window one-hour output window as explained in the text.

of cloud system production workloads, e.g., from Google’s
Borg clusters [32], Azure’s VM workloads [9], Alibaba ML
workloads [38], and Azure Serverless workloads [21, 29, 43],
among many others. The main goal of these studies is to
design better systems, where the system management is
data-driven. With the exception of the workloads analyzed
from Azure on serverless systems [21, 29, 43], existing work
on data center workload analysis focuses on CPU and mem-
ory utilization, VM types, and other machine and VM level
metrics. To the best of our knowledge, the only large-scale
publicly available FaaS dataset are the two available from
Microsoft Azure [21, 29], which includes two weeks of func-
tion request data for tens of thousands of functions. Another
dataset is also to be released fromAzure that shows the graph
structures of FaaS functions [43].

7 CONCLUSION
This paper describes two Huawei serverless traces from pub-
lic and private infrastructure containing 1.4 trillion function
invocations, which we open-source to the research commu-
nity. It provides a comprehensive analysis covering statistical
features of our workloads, followed by a longitudinal analy-
sis of periodicity and ranking of functions across our traces.

Our analysis uncovered several interesting insights which
can inform the engineering of future resource schedulers: re-
quests vary by up to 9 orders of magnitude across functions,
with some functions being executed over one billion times
per day; scheduling time, execution time and cold-start distri-
butions vary across 2 to 4 orders of magnitude and have very
long tails; many functions demonstrate strong periodicity;
and the highly ranked functions are occupied by only a small
number of unique functions. Our analysis also highlights
the need for further research and development in estimating
resource reservations and time series prediction to account
for the huge diversity in how serverless functions behave.
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