
1

Histrio: a Serverless Actor System
Giorgio Natale Buttiglieri, Luca De Martini, Alessandro Margara

Abstract—In recent years, the serverless paradigm has been
widely adopted to develop cloud applications, as it enables
building scalable solutions while delegating operational concerns
such as infrastructure management and resource provisioning to
the serverless provider. Despite bringing undisputed advantages,
the serverless model requires a change in programming paradigm
that may add complexity in software development. In partic-
ular, in the Function-as-a-Service (FaaS) paradigm, functions
are inherently stateless: they perform actions without retaining
any state. As a consequence, developers carry the burden of
directly interacting with external storage services and handling
concurrency and state consistency across function invocations.
This results in less time spent on solving the actual business
problems they face.

Moving from these premises, this paper proposes Histrio, a
programming model and execution environment that simplifies
the development of complex stateful applications in the FaaS
paradigm. Histrio grounds on the actor programming model, and
lifts concerns such as state management, database interaction,
and concurrency handling from developers. It enriches the actor
model with features that simplify and optimize the interaction
with external storage. It guarantees exactly-once-processing con-
sistency, meaning that the application always behaves as if any
interaction with external clients was processed once and only
once, masking failures.

Histrio has been compared with a classical FaaS implemen-
tation to evaluate both the development time saved due to the
guarantees the system offers and the applicability of Histrio in
typical applications. In the evaluated scenarios, Histrio simplified
the implementation by significantly removing the amount of code
needed to handle operational concerns. It proves to be scalable
and it provides configuration mechanisms to trade performance
and execution costs.

Index Terms—Serverless, Cloud Computing, Actor Model,
Web Development

I. INTRODUCTION

In recent times, there has been an increasing interest in
the serverless computing model. Indeed, this model brings
advantages in terms of development experience, management,
and pricing. When developing for serverless, developers only
need to write the application logic, without worrying about
its deployment, which is handled by the service provider,
with automatic scaling and pay-as-you-go price models. In
the context of serverless computing, the function-as-a-service
paradigm (FaaS) implements applications as a composition
of functions, delegating their scheduling and execution to the
serverless environment.

Despite bringing undisputed advantages, the serverless
model requires a change in programming paradigm that may
add complexity in software development. In particular, in the

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano
mail: {luca.demartini, alessandro.margara}@polimi.it,
{giorgionatale.buttiglieri}@mail.polimi.it

Manuscript received October 25, 2024.

FaaS paradigm, functions are inherently stateless: they perform
actions without retaining any state. This is very different with
respect to the traditional imperative programming style and
requires developers to adapt to this new environment: instead
of directly manipulating state through variables, developers
must now explicitly encode interactions with external storage
systems — typically a managed database — to persist the state
of their applications.

So far, little effort has been put to provide abstractions and
paradigms that aid developers in modeling and implement-
ing solutions that deal with the inconveniences of serverless
paradigms. Moving from these premises, this work proposes
Histrio, a programming model and execution environment that
simplifies the development of complex stateful applications in
the FaaS paradigm.

Histrio grounds on the already established actor model [1].
It lifts concerns such as state management, database interac-
tion, and concurrency handling from developers. Developers
model the domain problem using actors, which are indepen-
dent stateful entities that interact with each other only through
the exchange of messages. Histrio automatically and implicitly
generates the code to execute the application in a serverless
environment. It runs the code that implements the behavior
of actors with the FaaS model, it manages the communication
between actors, it persists the state of actors within an external
storage service, automating and hiding state access. Histrio
enriches the actor model with query-like features that facilitate
and optimize the most frequent state access patterns without
losing the simplicity of its interface. Overall, these features
enable developers to focus on the business problem they face
and forget about low-level concerns.

Furthermore, Histrio also addresses another of the common
problems of serverless; as functions may be randomly ter-
minated and resumed by the service provider, there are no
guarantees that an application handles requests from external
clients as expected. Histrio overcomes this problem by imple-
menting a failure handling mechanism that guarantees exactly-
once-processing consistency system-wide, meaning that the
application is guaranteed to behave as if any interaction from
external clients was processed once and only once, even in the
case of failures.

We implemented the Histrio environment using the AWS
Lambda as a FaaS environment and DynamoDB as a storage
service to persist state. The paper discusses in detail the
programming model of Histrio and its implementation as a
serverless platform. It describes the protocols that govern the
interaction with the storage service and provide exactly-once-
processing guarantees. To evaluate Histrio, we implemented
two real-world applications using Histrio and using a baseline
approach that relies on classic serverless abstractions. We
show that Histrio significantly simplifies the development of

ar
X

iv
:2

41
0.

21
79

3v
1 

 [
cs

.D
C

] 
 2

9 
O

ct
 2

02
4



2

applications by rising the level of abstractions for developers.
It introduces a latency overhead that is configurable based
on the specific needs of applications: developers can trade
response time for reduced costs, always keeping the budget
for executing their applications under control.

The paper is structured as follows: Section II introduces
background concepts and motivations to the work. Section III
explores the programming paradigm offered by Histrio. Sec-
tion IV presents an overview of the system and Section V
shows implementation details of its components. Section VI
contains an evaluation in terms of performance and code
complexity with a discussion of the results. Section VII
discusses related work, and Section VIII provides conclusive
remarks.

II. BACKGROUND AND MOTIVATIONS

This section explores the technological landscape around
Histrio and the actor model it is inspired by. In the end, it
summarizes the motivations that lead us to develop Histrio.

A. Serverless

Serverless is a cloud-native development model that allows
developers to build and run applications without having to
manage servers [2]. This model encompasses different ser-
vices that can be accessed without directly worrying about
provisioning, maintenance, or scaling. These services usually
adhere to a pay-as-you-go paradigm, so the upfront investment
is lower compared to an on-premise infrastructure.

FaaS. Function-as-a-Service, or FaaS, is a kind of cloud
computing service that allows developers to build, compute,
run, and manage application packages as functions without
having to maintain their own infrastructure [3], [4].

Histrio builds on AWS Lambda [5] as a provider for the
execution of functions. AWS Lambda is one of the most
common FaaS solutions, supporting packages written in many
languages. When a function is invoked, the Lambda service
forwards the request to a suitable function instance, which is a
container running the package uploaded for that function. If no
function instance suitable for the processing of the request is
available, Lambda allocates a new one to handle the request.
A function instance can handle only one request at a time,
hence Lambda scales its processing capabilities by creating
new instances upon receiving a growing request traffic. The
cost of using Lambda depends on the number of invocations
for each function, the RAM/cores allocated for containers and
the duration of the invocations.

While the current implementation of Histrio builds on
AWS Lambda, all main public cloud vendors offer equivalent
solutions that expose the same programming model. Examples
include Microsoft Azure Functions [6], Google Cloud Func-
tions [7], and Cloudflare Workers [8]

Serverless databases. A serverless database is managed by a
third-party cloud provider [9]. Histrio adopts DynamoDB [10]
as its storage layer. DynamoDB is a NoSQL serverless
database offered by AWS, frequently used in combination
with AWS Lambda functions. It was chosen due to its low

latency [11] and the consistency guarantees it provides, which
match the requirements of Histrio without introducing a sig-
nificant performance overhead.

In a nutshell, DynamoDB is a distributed storage service
consisting of multiple storage nodes. It offers a key-value
model, where data is partitioned across storage nodes using
a partition key and sorted within each node according to a
sort key. Routers dispatch client requests to the storage nodes.
Each data item has a leader storage node that handles all write
operations, and a configurable number of replica nodes that
are updated after a write has been performed on the leader.
Read operations are eventually consistent by default, but can
be configured to be strongly consistent on a per-request basis.
One key feature of DynamoDB is that it offers the possibility
to perform conditional update operations. This feature can
be used akin to compare-and-swap operations to implement
external synchronization patterns to be used by applications.
Lastly, the write transactions allow bundling multiple write
operations in a single request, which guarantees that either all
or none of the changes are atomically applied to the database.
Histrio uses conditional updates and write transactions as the
main tools to guarantee exactly-once processing semantics.

B. Actor model

The actor model is a mathematical model of concurrent
computation that treats an actor as the basic building block
of concurrent computation [1]. An actor is an entity that
encapsulates some private state and interacts with other actors
by sending and receiving messages.

When processing a message, an actor can: (i) modify the
private state owned by the actor; (ii) spawn some new actors;
(iii) send messages to other actors. Each actor processes one
message at a time, ensuring that no race conditions are possible
on its state. Concurrency emerges by letting multiple actors
execute simultaneously. This leads to scalable concurrent
systems, where the unit of concurrent computation is the actor
itself. When needed, new actors can be spawned allowing the
system to withstand a growing workload

C. Motivations and executive summary

Although FaaS and serverless databases help developers
to build applications without the burden of direct resource
management, they lack some guarantees frequently needed
when developing distributed applications, and in particular
Web applications.

In this context, it is common that multiple serverless
function instances need to access and modify a shared state
concurrently. As for AWS Lambda, the only way to control
concurrency is to limit the maximum number of instances a
function can have at any time. Other than that, no other mech-
anism is provided to handle coordination between instances of
a function. Lambda does not offer any synchronization API, so
developers need to address this concern by themselves, usually
relying on features offered by the data store they use.

Fault tolerance is another concern that is not directly ad-
dressed by typical FaaS environments. Appropriate fault toler-
ance guarantees are useful because, if not present, developers



3

need to write code to ensure correctness despite failures. AWS
Lambda offers a retry mechanism for faults and application
errors. This approach however does not ensure the complete
execution of the function code, and it assumes the function to
be idempotent, which is another concern developers need to
ensure.

In summary, to provide its advantages, the serverless shifts
many responsibilities on the developer. Histrio aims to solve
these problems by:

1) grounding on the actor model as a solid foundation to
build concurrent applications;

2) using source-to-source compilation to abstract the man-
agement of state and hide the interaction with external
storage services;

3) providing end-to-end exactly-once semantics for message
processing, ensuring that, even in the presence of failures,
the application behaves as if each message was processed
and produced any side effects involving the state of actors
once and only once.

III. PROGRAMMING INTERFACE

This section describes the programming interface of Histrio.
We outline the main features offered by Histrio, starting from
the definition of an actor, its state, and its behavior.

A. Actors: definition and communication
Histrio is implemented in the Go programming language, a

common choice to build distributed applications1. In Histrio
an actor is any object that implements the following interface:
type Actor interface {
ReceiveMessage(message Message) error
GetId() ActorId
SetId(ActorId)

}

The ReceiveMessage method defines the behavior of an
actor when it receives a message. ActorId is the identifier
of the actor, and it is composed of three parts:

1) PartitionName: partitions are logical groups in which
actors are organized. For example, when modeling a
travel booking application, the partition for the ’Trave-
lAgency’ actors might be the city in which they operate.
Users need to explicitly define the name of the partition
to which the actor belongs.

2) ShardId: generated part of the identifier that represents
the physical shard the actor is assigned to.

3) InstanceId: part of the identifier of the actor chosen
by the user that needs to be unique inside the same
partition.

The code snippet below exemplifies the definition of an
actor type TravelAgency. The first three lines define the
attributes (state) of TravelAgency actors. Since the state
needs to be persisted, the only restriction on the data that
constitutes the state of the actor is that it needs to be serial-
izable. In the example, the state of TravelAgency consists
of two attributes: an identifier Id, which will be generated by
the Spawn method, and an Address as an example of object
data.

1Current implementation available at https://github.com/deib-polimi/histrio

type TravelAgency struct {
Id ActorId
Address string

}

func (ta *TravelAgency) GetId() ActorId {
return ta.Id

}

func (ta *TravelAgency) SetId(actorId ActorId) {
ta.Id = actorId

}
...

The following code snippet completes the definition of
the TravelAgency actor by introducing a new type of
messages (AddressUpdateRequest) and by implement-
ing the ReceiveMessage method to update the address
of an actor in response to an AddressUpdateRequest
messages.
type AddressUpdateRequest struct {
NewAddress string

}

func (ta *TravelAgency) ReceiveMessage(message Message)
↪→ error {

if addressUpdateRequest, ok := message.(*
↪→ AddressUpdateRequest); ok {

return ta.updateAddress(*addressUpdateRequest)
} else {
return errors.New("unable to process message")

}
}

func (ta *TravelAgency) updateAddress(addressUpdateRequest
↪→ AddressUpdateRequest) error {

ta.Address = addressUpdateRequest.NewAddress
return nil

}

An important thing to notice is that updating the state does
not require special code to interact with the database. Indeed,
relieving the burden of state management from the developer,
is one of the intended goals of Histrio.

Actors interact with each other by exchanging messages. To
do so, they use a MessageSender that has the following
interface:
Tell(payload Message, receiver ActorId)
TellExternal(payload Message, externalId string)

The Tell method accepts a message and a receiver and
ensures that eventually the message will be placed in the
receiver mailbox. The TellExternal allows actors to com-
municate with the external world by placing a message in
an output table with an application-chosen identifier. External
components can include an Id in their request and look for the
response with the same Id in the output table. Note that there
are no guarantees about the moment in which the message
will be delivered, and it is not necessarily true that immediately
after the completion of the Tell method the message is inside
the receiver mailbox. This decouples the execution of the
actor code and the message-sending process. Histrio delays
the sending of messages to other actors up to the end of
the processing to comply with the exactly-once-processing
consistency model.
type TravelBookingRequest struct {
TravelerId ActorId
JourneyId string

}

type TravelBookingReply struct {

https://github.com/deib-polimi/histrio


4

AgencyId ActorId
JourneyId string
IsJourneyBooked bool
FailureReason string

}

// TravelAgency Actor
type TravelAgency struct {
Id ActorId
Address string
MessageSender MessageSender

}

func (ta *TravelAgency) processTravelBookingRequest(
↪→ travelBooking TravelBookingRequest) error {

ta.MessageSender.Tell(TravelBookingReply{
AgencyId: ta.Id,
JourneyId: travelBooking.JourneyId,
IsJourneyBooked: false,
FailureReason: "This agency does not have any journey

↪→ yet",
}, travelBooking.TravelerId)
return nil

}

The code snippet above exemplifies the use of the
Tell method. The TravelBookingRequest and
TravelBookingReply are messages that represent the
request from a user (Traveler) to book a journey and the
response to that request, respectively. As the example shows,
an actor can access a MessageSender just by declaring it
as part of its state. The Histrio execution environment takes
care of injecting a valid MessageSender when the actor
begins processing. The content of the message to be sent can
be any serializable data.

An important property of the Tell method is that it ensures
that the message will be delivered exactly once. This means
that the receiver actor does not need to handle possible lost or
duplicate messages, allowing the developers to focus on the
domain problem and not on the infrastructure. As a matter
of fact, in the example above, every line of code defines
either data structures of behaviors that belong to the specific
application logic, and all concerns related to exchange of
information between actors are delegated to the Tell method.

B. Queryable collections

When modeling a problem it is common to organize ho-
mogeneous entities in collections, so that they can be handled
and accessed together. As an example, a travel agency might
have different journeys it offers. One possible solution to this
requirement is to include the list of journeys in the state of
the TravelAgency actor. This idea is consistent with the
model discussed so far, but it has some drawbacks: (i) The list
of journeys might be large. Recall that Histrio automatically
persists the state of actors within an external storage service.
As a consequence, including large collections of data within
the state of an actor forces the system to load them when the
actor state is loaded. (ii) Queries against the journeys need
to be coded explicitly. For example, to find all journeys that
satisfy a certain property, the developer will need to manually
check every element of the list.

Histrio addresses the above problems by introducing the
concept of QueryableCollection, which is a collection
of QueryableItems that can be queried against some of
their attributes. QueryableCollections bring two advan-
tages: (i) they enable inspecting the list of items with a query-

like methodology; (ii) they delegate query execution to the
database, which is optimized for this task.

In Histrio, a QueryableItem is any type that implements
the following interface:
type QueryableItem interface {
GetId() string
GetQueryableAttributes() map[string]string

}

The GetId method returns the identifier of the item. Each
item needs to have a unique identifier inside the collection.
This identifier is used to efficiently find the item in the
collection given its Id. The GetQueryableAttributes
method returns the attributes of the item that can be subject
to queries. It returns a map that associates the name of
each attribute in the item to the value of that attribute. A
requirement for queryable attributes is to be convertible to
string. Other than that, a QueryableItem can contain any
data as long as it is serializable.

The following code snippet shows an example of a
QueryableItem that represents a journey in the travel
agency scenario:
type Journey struct {
Id string
Destination string
Cost float64
AvailableBookings int

}

func (t *Journey) GetId() string {
return t.Id

}

func (t *Journey) GetQueryableAttributes() map[string]
↪→ string {

return map[string]string{
"Destination": t.Destination,

}
}

Collections of Journeys support the following access
pattern:

• Get one journey given its Id;
• Find the journeys that satisfy some condition on the

destination attribute.

Get. The following code snippet complements the previous
example adding a QueryableCollection of Journeys
to the TravelAgency actor and completing the interaction
of a booking request from a traveler.
type TravelAgency struct {
Id ActorId
Address string
Catalog QueryableCollection[*Journey]

MessageSender MessageSender
}

func (ta *TravelAgency) processTravelBookingRequest(
travelBooking TravelBookingRequest,
) error {
journey, err := ta.Catalog.Get(travelBooking.JourneyId)
if err != nil {
return err

}
response := &TravelBookingReply {
AgencyId: ta.Id,
JourneyId: travelBooking.JourneyId,

}
if journey.AvailableBookings == 0 {
response.IsJourneyBooked = false
response.FailureReason = "Full"



5

} else {
response.IsJourneyBooked = true
journey.AvailableBookings -= 1

}

ta.MessageSender.Tell(*response, travelBooking.TravelerId
↪→ )

return nil
}

TravelAgency declares a new collection of travels just
by adding a QueryableCollection[*Journey] field.
Histrio execution engine takes care of injecting the necessary
component that is responsible for querying the collection of
travels. When the actor state is loaded, only the Id and
Address fields are fetched from the database: no journey
is loaded. The QueryableCollection component oper-
ates lazily, fetching journeys only when requested. The Get
operation fetches the state of the journey from the database
and keeps a cached value of its state.

The state held by each actor is private, so no other actor
can modify it. This property ensures that the cache of items
kept by the QueryableCollection is never stale: every
change to its elements is done by the same actor, so it
is not possible to lose any update. Since the cache always
contains the latest version of an item, the Get method of the
QueryableCollection can avoid hitting the database if
the requested item is in the cache.

Find. The Find API allows to efficiently query a collection
for all items satisfying some property, as exemplified in the
following code snippet.
type DiscountRequest struct {
Destination string
Discount float64

}

func (ta *TravelAgency) ReceiveMessage(
message Message

) error {
// ...
else if discountRequest, ok := message.(*DiscountRequest)

↪→ ; ok {
return ta.applyDiscount(*discountRequest)

}
// ...

}

func (ta *TravelAgency) applyDiscount(
discountRequest DiscountRequest

) error {
journeysToUpdate, err := ta.Catalog.Find(
"Destination", discountRequest.Destination

)
if err != nil {
return err

}

for _, journey := range journeysToUpdate {
journey.Cost -= journey.Cost * discountRequest.Discount

}

return nil
}

The Journey QueryableItem ex-
ports attribute Destination through the
GetQueryableAttributes() method, so it can be
used within queries, as exemplified within the invocation of
Find. The query on the destination is done directly on the
database using a specific index for that attribute, so that the
database can immediately locate the interested items. As for

the Get method, all retrieved items reflect their latest version
and the actor code can directly modify the state of the items
without worrying about state management.

C. Actor spawner
Actors can spawn other actors as part of their processing.

To do so, they need to declare as part of their state a special
component: the ActorSpawner, which exposes a Spawn
method, defined as follows.
Spawn(newActor Actor, partitionName string, instanceId

↪→ string) (ActorId, error)

The Spawn method requires a new instance of the type
Actor, the name of the partition, and the instance Id to
assign to the new actor and returns the ActorId of the
newly created actor. The following code snippet shows how
to extend the TravelAgency actor so that it can spawn a
new TravelAgent actor that might be used by a traveler
for further interactions after a booking has been made.
type TravelAgency struct {
Id ActorId
Address string
Catalog QueryableCollection[*Journey]

MessageSender MessageSender
ActorSpawner ActorSpawner

}

func (ta *TravelAgency) processTravelBookingRequest(
travelBooking TravelBookingRequest
) error {
journey, err := ta.Catalog.Get(travelBooking.JourneyId)
if err != nil {
return err

}
response := &TravelBookingReply{
AgencyId: ta.Id,
JourneyId: travelBooking.JourneyId,

}
if journey.AvailableBookings == 0 {
response.IsJourneyBooked = false
response.FailureReason = "Full"

} else {
response.IsJourneyBooked = true
travelAgentId, err := ta.ActorSpawner.Spawn(&

↪→ TravelAgent{},
ta.Id.PhyPartitionId.PartitionName, uuid.NewString())

if err != nil {
return err

}
response.TravelAgentId = travelAgentId
journey.AvailableBookings -= 1

}

ta.MessageSender.Tell(response, travelBooking.TravelerId)
return nil

}

Method processTravelBookingRequest spawns a
new TravelAgent if the journey has been correctly created,
and includes the identifier of the newly created actor in the
response. The Traveler actor can store the newly created
identifier and use it to communicate with the agent in case
of need. An important property of ActorId is that once an
identifier is assigned to an actor, it will never change, and it
is the only piece of information needed to communicate with
the actor itself.

IV. SYSTEM OVERVIEW

This section explores the high-level system design of
Histrio, presenting its main architectural components, the data
model it adopts, and the lifecycle of actors.



6

A. High-level view of the system

Fetch actor state

Data Layer

ActorTask

Shard1

Shard2

...

CollectionX

Item1

Item2

...

ActorState

Actor1

Actor2

...

DynamoDB

Outbox

m3

m4

...

ActorInbox

m1

m2

...

Computation Layer

Lambda

Worker

Worker

Worker

Worker

Claim actor

Fetch mailbox

Passivate actor

Persist side effects

Fig. 1: Overview of Histrio.

Fig. 1 presents an overview of Histrio. At a high level,
Histrio consists of a computation layer and a data layer.

The computation layer consists of workers, which are im-
plemented as instances of Worker Lambda functions. Work-
ers are responsible for handling the lifecycle of actors, as
well as providing them with all the functionalities they
expect from the execution environment (MessageSender,
QueryableCollection, . . . ). Each worker looks for ac-
tors that need to be executed, loads them, and then starts
executing their logic.

Workers are executed in Lambda functions, and are designed
to run continuously on invocation. This is different from the
most common way to use FaaS, in which each invocation
handles one request and then stops. Workers continue pro-
cessing requests until they are terminated. They are tolerant
to sudden shutdowns thanks to our implementation of exactly-
once consistency. This allows external systems to dynamically
spawn and stop workers depending on load conditions without
worrying about correctness.

The data layer is implemented with DynamoDB. It stores
the state of actors as well as inbox and outbox data struc-
tures to temporarily store the messages exchanged between
actors. Workers interact with the data layer during their
execution to perform the following actions: (i) claiming
actors for processing; (ii) fetching the state of the ac-
tors and their mailboxes; (iii) fetching the state of associ-
ated QueryableCollections; (iv) persisting side effects;
(v) passivating actors.

The synchronization between workers is mediated by the
data layer: workers compete when they claim actors for pro-
cessing, but once an actor has been claimed, there is no further
need for synchronization because an actor can be processed
by at most one worker, and different actors are independent of
each other. The design of Histrio ensures that workers perform
writes and reads on different partitions of DynamoDB, making
the system scalable regarding the number of workers.

B. Actors organization

DynamoDB exploits partitioning to improve performance
and to scale. Histrio tries to minimize the impedance be-
tween the application and the database models by introducing
partitioning at the application layer. In particular, actors are
organized in partitions and shards. A partition is a logical
group of actors. The choice of partitions is domain-specific,
and it should be made so that actors that often communicate
with each other end up in the same partition. A shard is a group
of actors within the same partition that are handled together to
reduce the management overhead: actors in the same shard get
claimed together and share the same physical inbox. While the
partitions need to be chosen explicitly by the developer, shards
are automatically handled by Histrio and hence are opaque to
the developer.

C. Data model

Histrio uses the following DynamoDB tables to manage
the state of the system: ActorTask, ActorInbox,
ActorState, multiple QueriableCollections,
Outbox.

Before presenting them in details, let us summarize the
data model of DynamoDB. DynamoDB tables consist of items
having a primary key, which must be unique, and a set
of attributes. Different items are allowed to have different
attributes.

The primary key may consist of a single partition key
attribute, or a pair of partition keys and sort key attributes.
In both cases, the partition key is used to distribute items
across multiple hosts: items with the same partition key are
guaranteed to be stored on the same host. In presence of a sort
key, items with the same partition key are stored ordered by
sort key.

ActorTask. The ActorTask table orchestrates the processing
of actor shards. Each item represents a shard of actors, and
uses the shard_id as primary key. Its attributes include:
worker_id, which identifies the worker that claimed the
shard, insertion_time, to prioritize older tasks, and
is_sealed, a boolean flag used during shard passivation.
An additional ActorTaskByWorker index enables efficient
retrieval of tasks claimed by specific workers, facilitating task
acquisition and recovery after crashes.

ActorInbox. Message passing between actors is managed
through the ActorInbox table, which stores incoming messages
for each shard. It uses the shard_id as its partition key
and timestamp as its sort key. By collapsing mailboxes
of actors within the same shard, the system can retrieve
messages for all actors part of a shard with a single query,
significantly reducing the number of database operations. Each
item in this table includes the message type, sender_id,
receiver_id, and the serialized content of the message.
The timestamp attributes ensures message ordering, pre-
serving FIFO guarantees within each actor’s communication.

ActorState. The ActorState table manages the persistency
of actors’ state. It uses the actor_id as its primary key, and
it stores the actor type and the serialized current_state



7

of each actor, reflecting the latest committed version of the
actor’s state. This structure allows for quick retrieval and
updates of actor states during processing cycles.

QueryableCollection tables. To support efficient
querying of actor-held collections, Histrio implements
QueryableCollection tables. These tables use
collection_id (a combination of ActorId and field name)
as their partition key and item_id as their sort key. They
store the state of QueryableItems and include indexes on
attributes specified by the GetQueryableAttributes()
method, enabling fast lookups over the attributes indicated by
the developers.

Outbox. The Outbox table manages the interaction with
external clients. When submitting requests, clients are respon-
sible for labeling them with a unique correlation_id.
The Outbox table stores responses to clients, using the
correlation_id as its primary key. Its attributes include
the response type, serialized content, sender_id, and
timestamp. This table acts as an intermediate buffer, al-
lowing actors to append results that are sent back to clients
asynchronously.

Discussion. The data model design discussed above optimizes
the scalability and performance of the distributed actor system,
balancing the need for efficient state management, message
passing, and query operations. By leveraging DynamoDB’s
partitioning and indexing capabilities, Histrio achieves a ro-
bust and flexible architecture capable of handling complex
actor interactions and state management at scale. The design
choices, such as shard-based inboxes and queryable collec-
tions, demonstrate a focus on minimizing database operations
while maintaining system consistency and responsiveness.

D. Actors lifecycle

Active

Claimed

Passive Free Running

PassivatingParked

Fig. 2: State diagram of a shard

We now present the lifecycle of actors in Histrio. To reduce
the overhead of lifecycle management, actors are organized
into shards: all actors within a shard are treated as an atomic
unit and undergo the same states, as illustrated in Fig. 2.

Shards may be in two macro-states: active and passive.
Active shards are either being actively processed by a worker
(denoted claimed), or they are waiting for a worker to claim
them and start the execution (denoted free). Claimed shards
can be in one of three states: running, parked, or passivating.
Running shards are actively processing messages, parked
shards have empty inboxes and are checked infrequently, and

passivating shards are in the process of being marked as
passive. We distinguish between running and parked shards
to optimize resource usage: the worker can claim more shards
than it can actively process and park the excess to reduce the
number of shard assignment operations.

The transition from one state to another must take care to
ensure the liveness of the application: it is crucial that any
shard with messages in its inbox eventually becomes active,
otherwise messages may be lost. The most critical transition
is that from the passivating state to the passive state. A naive
approach to this transition can lead to race conditions and
potential message loss. To address this, the system employs a
sealing strategy during the passivation process. This strategy
ensures that concurrent message additions to a shard’s inbox
do not result in the shard being passive with unprocessed mes-
sages. As the first step of passivation, the shard is atomically
marked as sealed with a flag, from this point onward, any other
worker that may try to add a new message to the inbox of the
shard during the passivation procedure will know that it has
to schedule a delayed activation of the shard. In this way, the
passivation procedure can complete, and the message will not
be lost as the sender will ensure to wake up the shard after it
has gone passive.

V. SYSTEM IMPLEMENTATION

We now discuss the implementation details of the Histrio
execution environment. Section V-A presents the internal
architecture of a worker, Section V-B describes its execution
model, and Section V-C explains how Histrio provides exactly-
once processing consistency system-wide.

A. Architecture of workers

Workers are the core components that execute the function-
alities of Histrio. Each worker manages the lifecycle of multi-
ple actors at the same time. To best utilize available resources,
we choose a concurrent, parallel execution model. Our design
originates from a careful analysis of the typical workload of
workers: as workers need to frequently interact with the data
layer for communication and synchronization, they are likely
to spend a significant amount of time waiting for responses
from the data layer. To amortize the time spent waiting for
the data layer, we organized the worker functionalities into
concurrent units (called stations) that interleave in computation
and yield resources while waiting (see Fig. 3). Each station is
responsible for a set of tasks in the lifecycle of shards (Fig. 2).

The ShardStation is central in the architecture and manages
the core logic of the worker. It asks the PullingStation for new
actors, it sends them to the ProcessingStation for execution,
and queues inactive ones to the ParkingStation for passivation.
Each station runs in a goroutine and may delegate sub-tasks
to separate goroutines. Stations communicate exclusively using
Go channels [12].

B. Execution model

The ShardStation runs the main control loop that tries to
keep a configured amount of work active on the worker. If



8

PullingStation

ParkingStation

!

?
ShardStation

?
ProcessingStation

!!Actors

Fig. 3: Internal architecture of a worker.

it has lower load than it can handle it sends a request to
the PullingStation to fetch new shards for processing (if any
is available). The PullingStation looks for actors that need
processing but are not assigned to any active worker. When
it finds some, it assigns their shard to the ShardStation. The
ShardStation then polls the database for messages received by
the actors that are part of the assigned shard.

When messages arrive, the ShardStation queues the cor-
responding actors to be executed by the ProcessingStation,
which runs the actor specific logic by processing the messages,
updating the actor state, and generating output messages. All
these side effects are written in the data layer with an atomic
transaction. If this transaction fails, no change is applied and
the ProcessingStation rolls back the actor state to what it was
before the execution without consuming the message.

When there are no more messages to be processed for a
given actor, the ProcessingStation notifies the ShardStation. If
a shard has no pending messages for any of its actors, the
ShardStation can decide to park the shard by sending it to
the ParkingStation. Here it will wait, polling for any message
that would wake up any of its actors, for a configured time.
After a time threshold, the ParkingStation starts a passivation
procedure for the shard. This procedure involves the proper
disposal of unused computing resources, while guaranteeing
liveness, meaning that actors with pending messages should
not be left in the passive state. A shard that has no active
actors is marked as sealed with an atomic database operation.
In this state, any other worker adding messages to the inbox
of an actor in a sealed shard will know that it will need to
wake the actor after the passivation process is complete.

A worker’s ProcessingStation can be configured to have a
variable amount of processing slots (that are mapped to Go’s
gorutines). This allows the processing station to work as a
configurable thread pool that can optimize the utilization of
the available resources.

Another key feature that optimizes the utilization of avail-
able resources is the possibility of releasing a shard. When
a worker is overloaded and the queuing time for messages
becomes too high, it can release some of its shards. The
released shards will then be acquired by other workers that
have available processing resources, spreading the load and
allowing for dynamic scalability of the system based on
demand.

C. Exactly-once consistency

Histrio provides exactly-once consistency for messages and
side effects: even in the presence of failures, the system
generates the same output and changes the internal state of

actors as if each input request was processed once and only
once with no failures.

At a high level, Histrio provides exactly-once consistency
system-wide by ensuring that each actor processes messages
and produces side effects exactly once. Specifically, upon
processing an input message m, an actor can produce side
effects by: (1) consuming the message m from the actor’s
inbox; (2) sending messages to other actors or to the output
table; (3) spawning other actors; (4) updating their internal
state, including queryable collections.

Histrio guarantees that the above side effects are executed
exactly once by grouping them together in a single atomic
transaction that is committed at the end of the processing of
m. This way either all changes are applied, or no change is
visible, and we can restart the processing without producing
duplicate effects. To do so, if during the processing of message
m, an actor wants to send a set of other messages m1 . . .mn,
we do not send them immediately, but we put them in a
temporary buffer, moving them to the inbox of recipients
actors within the transaction executed at the end of the input
message processing.

Crucial to ensure exactly-once consistency is liveness,
meaning that any pending message in the inbox of an actor is
eventually consumed and processed. Histrio guarantees live-
ness by marking all shards containing actors that are recipient
of a message as active (see Fig. 2). This information is stored
in the ActorTask table within the data layer (see Section IV-C).
The ActorTask table maps the assignment of shards to physical
workers: if a shard is in need of processing, it will have
an entry in the table, either with a null worker assignment
(signaling that it should be claimed by a worker) or with the
Id of the worker that has claimed it. Histrio includes the update
to the ActorTask table within the transaction executed at the
end of message processing, thus ensuring that all recipients of
outgoing messages are considered for execution.

To avoid duplication of work, all the modifications to the
ActorTask table are done using atomic conditional operations.
These operations check a condition and atomically apply the
result only if it was verified. They can be used to avoid the
conflicts when acquiring shards: if two workers were to try
and claim the same shard with no currently assigned workers,
only one of them would obtain the shard, since the conditional
check is atomic.

Concerning the spawning of actors, there are two operations
that need to be performed: (1) create an identifier for the actor;
(2) create a new shard that the actor will be part of, only
if needed. Histrio can immediately create a new shard, since
shards are not visible to the user-facing API and creating a
new one cannot affect the logic of the application. On the
other hand, it delays the creation of the actor identifier and
includes it in the same transaction that contains all other side
effects.

Concerning queryable collections, any write operation to
the collection must follow the same constraints as other side
effects. Histrio uses an actor-local cache of any element
an actor fetches from the collection. Whenever the actor
modifies an element, the cache entry corresponding to that
element will be marked as dirty with a flag. At the end of



9

message processing, we include the update of all dirty cache
items in the atomic transaction, preserving the exactly-once
consistency.

To implement these features without requiring effort from
the developer we make use of the reflection capabilities of Go.
We define special types, called feature types, that allow actors
to use the features. If an actor needs one of the features we
presented in this section, it just needs to include an attribute
with the corresponding feature type in its definition. When
the actor is loaded, Histrio uses reflection to detect these
types. Every feature type is first initialized with its default
value, then its initialization function is executed. These types
can interact with the execution environment and the database
to gather all the needed information and execute operations
transparently. The actor code can just assume that the feature
types will be automatically initialized and configured by the
system, hiding all operations required to preserve the exactly-
once consistency.

VI. EVALUATION

We evaluate Histrio to assess whether it fulfills the goals
we wanted to achieve. Specifically, we aim to answer the
following research questions:
Q1. Does Histrio simplify the development of Web applica-

tions with respect to classical serverless Web develop-
ment?

Q2. Does Histrio add significant runtime overhead with re-
spect to classical serverless Web solutions?

Q3. Does Histrio scale well when new workers are added to
the system?

In this context, we refer to classical serverless development
as the development of Web applications using FaaS and server-
less databases manually coding their interactions. To answer
these questions, we developed two application scenarios. Each
scenario has been implemented both using Histrio and a
classical serverless development methodology (which we will
refer to as baseline going forward).

Notice that the baseline implementation provides the typical
guarantees of the traditional serverless model. Specifically, it
does not offer the same exactly-once consistency guarantees
as Histrio: in the presence of failures, requests may be lost
or processed more than once, possibly leading to inconsistent
outputs.

To assess Q1, the metrics used are the total number of lines
of code and the percentage of lines of domain logic code with
respect to the total lines of code. To assess Q2, the metrics used
are request throughput and latency. To assess Q3, throughput
has been measured varying the number of workers used and
maintaining constant the workload.

A. Experiments setup

Application scenarios. To test Histrio, we selected two ap-
plication scenarios to include both simple tasks, where each
request is handled by a single actor, and more complex ones,
where each request involves the interaction of different actors.
Moreover, both scenarios include cases in which multiple

requests access the same state, to stress the problem of
concurrency control.

The first scenario is a banking application, where users
can execute financial transactions between two accounts. In
Histrio, we implemented banks as actors (of type Bank) and
accounts as QueryableItems of the bank. Banks receive
transaction requests from clients and execute them. The state
of each account must be protected against multiple transactions
that involve it.

The second scenario is a hotel reservation application,
where users can book rooms asking for a specific room type
and booking interval. In Histrio, we defined two types of
actors: User and Hotel. Users create booking requests and
send them to the hotel actors. Hotel actors check availability
for the requested interval and the room type, generate a
reservation, and send the reservation back to the users. After
inspecting the reservation, users terminate the interaction. The
availability of each hotel must be protected against multiple
booking requests for the same hotel.

Evaluation environment. We evaluated the solutions in the
AWS ecosystem, using AWS Lambda for FaaS and Dy-
namoDB as serverless database. We configured DynamoDB
in On-Demand mode, which offers a pay-per-request pricing
model, leading to predictable costs that are directly propor-
tional to the number of operations performed. A downside
of the On-Demand mode is that, while AWS states that
DynamoDB can scale up to sustain any workload, it can take as
long as 30 minutes of high activity before the scaling process
completes. To limit costs and ease reproducibility, we ran
each experiment for approximately 2 minutes, so the maxi-
mum throughput available was the default one provisioned by
DynamoDB, around 4000 single write operations per second
and 12000 read operations per second.2

In our evaluation, we spawn a static number of workers.
Workers are fault tolerant and automatically rebalance shards
to spread the load. Because of this, future work could easily
add an external dynamic scheduler to start and stops workers
depending on demand and resource utilization.

Evaluation metrics. We used the following metrics to measure
the performance of Histrio and the simplicity of its program-
ming model.

Lines of code. Lines of code can vary between two func-
tionally equivalent implementations of the same problem, so
this metric must be taken into consideration with care. To
mitigate possible bias between the Histrio implementation and
the baseline, the domain code of the two solutions has been
written as similarly as possible. The main differences come
from data access patterns and concurrency control, so we split
the lines of the implementations into two categories: domain
code and infrastructure interaction. We measure the percentage
of domain code over total code, giving an estimation of the
effort spent writing code for the problem at hand with respect
to handling infrastructure interaction.

2https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
on-demand-capacity-mode.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html


10

Throughput. To evaluate throughput, we feed a fixed number
of requests to the system and measure the time required
to process all of them and the time each request has been
completed. Using this data we can extrapolate the average
throughput and its trend over time. For the banking scenario,
the system has been fed with 60k requests spanning 30k bank
accounts. For the hotel reservation scenario, the system has
been fed with 10k requests involving 200 users and 100 hotels
resulting in a high resource contention.

Latency. To evaluate latency, we feed requests at a fixed
rate (below the maximum input rate the system can sustain),
and we measure the time required to fulfill each request.
We measure the latency as the interval between the point in
time when the request starts to be processed and the point
in time when the corresponding output is produced. For both
scenarios, we consider an input rate of 5 requests per second,
and we run each experiment for 2 minutes.

An important parameter of the Histrio implementation is
the polling interval. Histrio will check for new messages by
polling at a fixed time interval. To evaluate the effect of this
parameter on the final latency, the Histrio implementation
has been run with the same workload with different values
for polling interval: 100, 500 and 1000 ms. We make the
comparison fair by adding half of the polling interval to the
reported latency, this accounts for the mean waiting time for
the input message to be detected by the system.

Scalability. To study scalability, we measured the throughput
of Histrio under the same workload, while changing the
number of workers (strong scalability). We consider 1, 2, 4,
and 8 workers.

B. Results

We now present the results we measured for the two appli-
cations scenarios, considering the evaluation metrics discussed
in Section VI-A.

Banking scenario.
Lines of code. Table I shows the total lines of code and the
percentage of domain code for Histrio and the baseline. Histrio
reduces the total lines of code by a factor of two with respect
to the baseline. Most significantly, the entire application only
contains 17 lines of infrastructure code, meaning that over
80% of the lines are used to implement domain logic. In
comparison, the baseline requires 125 lines of infrastructure
code, which account for almost 65% of the total codebase for
the banking application.

System Infrastructure Total Domain code
Histrio 17 94 81.9%
Baseline 125 195 35.9%

TABLE I: Lines of code (infrastructure and total) for the
banking scenario.

This gap is due to the ability of Histrio to handle state
management and querying automatically and transparently.
Moreover, the actor model inherently avoids low-level race
conditions on the bank accounts, so there is no need to

explicitly lock the accounts involved in a transaction to
guarantee safety. Instead, part of the code of the baseline is
uniquely dedicated to setting up the queries to DynamoDB and
extracting results or ensuring the correctness of the transaction
by locking the accounts involved. This analysis is confirmed
by the breakdown of the infrastructure lines of code for both
implementations, as shown in Table II.

System Functionality LoC

Histrio
Declaration of infrastructure fields and methods 13
QueryableCollection API 2
Communication 2

Baseline DynamoDB API 97
Locking and retrying 28

TABLE II: Infrastructure code breakdown for the banking
scenario.

Throughput and scalability.
Fig. 4 shows the throughput we measured in the banking

scenario for Histrio and for the baseline. For Histrio, we use 4
different configurations, varying the number of workers used.
As Fig. 4 shows, the throughput of Histrio grows linearly
with respect to the number of workers, except from 4 workers
onward. With 4 or more workers, the system saturates the
throughput of the database and DynamoDB starts to throttle
requests. At that point, the database becomes the bottleneck
and further workers do not improve throughput as shown by
the similar traces of the 4 and 8 workers setup. DynamoDB
becomes the bottleneck for the baseline as well, and the
saturated throughput is around 400 and 600 transactions per
second.

0 50 100 150 200 250
Time (s)

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

)

Baseline
1 Worker
2 Workers
4 Workers
8 Workers

Fig. 4: Throughput for the banking scenario.

Latency.
Fig. 5 shows the latency we measured in the banking

scenario for Histrio and for the baseline. For Histrio, two
factors contribute to the total latency: (i) the time the request
waits before a worker starts to actively process it, and (ii) the
actual processing time. The first time depends on the polling
time, which is a configuration parameter developers can set
to trade response time for costs. Frequent polling reduces the
time requests wait before being processing, at the cost of more
interactions with the database. On average, messages wait for
half of the polling time. Processing time is lower for Histrio
than for the baseline (22.3ms vs 74ms, on average): this can be
attributed to the lack of low-level race conditions in the actor



11

model. As a result, the latency of Histrio is dominated by
waiting time in all the configurations we tested (with polling
time ranging between 100ms and 1000ms). With a polling time
of 100ms, the latency of Histrio and the baseline are almost
identical.

0 20 40 60 80 100 120
Time (s)

0

100

200

300

400

500

La
te

nc
y 

(m
s)

Baseline
100ms polling
500ms polling
1000ms polling

Fig. 5: Latency for the banking scenario.

Hotel reservation scenario.
Lines of code.

Table III shows the total number of lines of code and the
percentage of infrastructure code for Histrio and the baseline
in the hotel reservation scenario. The increased size of the
codebase with respect to the banking scenario indicate a
higher complexity. Also in this case, Histrio shows a tangible
improvement with respect to the baseline both in terms of total
number of lines of code (233 vs 356) and, most importantly,
in terms of infrastructure code (33 vs 169).

Implementation Infrastructure Total Domain code
Histrio 33 233 85.8%
Baseline 169 356 52.5%

TABLE III: Lines of code (infrastructure and total) for the
hotel reservation scenario.

Once again the reduction can be attributed to the pro-
gramming model of Histrio, which abstracts away most of
the concerns related to the infrastructure. Table IV shows
the breakdown of the infrastructure lines of code. For the
baseline, most of the lines (157 lines) involve interactions
with the database, and a small part (12 lines) involve locking
and retrying methods to implement concurrency control. For
Histrio, most of the lines (28 lines) involve declaring fields and
methods to handle the state of actors and the communication
between actors. A small part is used to encode the communi-
cation between actors (4 lines) and to access a collection (1
line).

Implementation Functionality LoC

Histrio Declaration of infrastructure fields and methods 28
QueryableCollection API 1
Communication 4

Baseline DynamoDB API calls 157
Locking and retrying mechanism 12

TABLE IV: Infrastructure code breakdown for the hotel reser-
vation scenario.

Throughput and scalability
Fig. 6 shows the throughput over time for Histrio and

the baseline in the hotel reservation scenario, and Table V
summarizes the average throughput for the two systems. For
Histrio, we considered 4 configurations with different number
of workers.

0 20 40 60 80 100
Time (s)

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (r

eq
/s

)

Baseline
1 Worker
2 Workers
4 Workers
8 Workers

Fig. 6: Throughput for the hotel reservation scenario.

Configuration Average throughput
req/s

1 Worker 92.6
2 Workers 133.3
4 Workers 212.7
8 Workers 250.0
Baseline 909.1

TABLE V: Average throughput for the hotel reservation sce-
nario.

Again, in this scenario we see the system scaling and
increasing the throughput as the number of workers increases.
However, when comparing with the baseline implementation,
we see lower measured throughput. Remember, however, that
Histrio provides higher guarantees with respect to the base-
line, which may not preserve exactly-once consistency in the
presence of failures.

When implementing this specific scenario in Histrio, each
input request involves the execution of multiple actors that
interact by exchanging messages. To preserve exactly-once
consistency (see Section V-C), each step of processing re-
quires executing an atomic transaction. As a consequence, the
data layer becomes a bottleneck and prevents linear scaling
of throughput with the number of workers. This overhead
may thus decrease by configuring DynamoDB with a higher
capacity.
Latency.

Fig. 7 shows the latency measured for Histrio and the
baseline in the hotel reservation scenario. To understand the
results, let us summarize the interactions between actors in
the hotel reservation scenario. When a client issues a booking
request r1, this is placed in the inbox of the user actor u. When
actor u processes the request, it sends a booking message r2
to the hotel actor h. After a certain amount of time ∆t1, actor
h reads r2 from its inbox and places the response r3 into the
inbox of u. After a certain amount of time ∆t2, actor u reads
from its inbox r3, processes it and terminates the request. The
latency of said request is:



12

0 20 40 60 80 100 120
Time (s)

0

1000

2000

3000

4000
La

te
nc

y 
(m

s)
Baseline
100ms polling
500ms polling
1000ms polling

Fig. 7: Latency for the hotel reservation scenario.

latency = p1 +∆t1 + p2 +∆t2 + p3

where p1, p2, and p3 are the processing time for each message.
We measured the processing times to be around 20ms, so
the main contributors to the latency are ∆t1 and ∆t2. These
time intervals depend on the polling frequency of the workers:
the smaller the polling interval, the faster a worker (and
consequently an actor) can read a new message from its inbox.
As Fig. 7 shows, smaller polling intervals bring Histrio closer
to the baseline solution. However, in this scenario, the presence
of multiple interactions between actors introduces a latency
that is higher than the baseline when considering the polling
intervals we adopted in our experiments.

C. Discussion

Based on the results, it is possible to address the initial
research questions.

Q1. Histrio significantly simplifies the development of Web
solutions with respect to classic serverless Web develop-
ment. It does so by offering developers a model suitable
for building concurrent applications and a set of features
to transparently handle state management and querying.

Q2. Histrio performance heavily depend on the polling in-
terval, which is a parameter that developers can use to
trade performance for costs. With smaller polling inter-
vals, it can provide comparable latency with respect to
classic serverless development. However, longer polling
time may introduce non-negligible overhead in terms of
latency in complex scenarios. It must be noted, however,
that the baseline implementation we compare to does
not provide the same exactly-once consistency guarantees
Histrio offers by default.

Q3. Histrio scales almost linearly when varying the number
of workers between 1 and 4, unless limited by the data
layer.

These results indicate that Histrio provides a good pro-
gramming abstraction for Web applications. The performance
overhead may be reduced by provisioning more resources to
the data layer, and it can be controlled through the polling
interval.

VII. RELATED WORK

The growing complexity and volume of Web applications
and the availability of new execution environments led re-
searchers and companies to investigate ways to simplify the
development process. One of the many directions of research
is related to the serverless ecosystem and how to offer ab-
stractions over serverless stateful functions (SSF), which are
serverless functions that can be used as stateful components
by accessing a database. Other lines of research related to our
work focus more specifically on actor systems. This section
explores some works in these fields.

A. Serverless and stateful functions

The following projects aim to offer guarantees or program-
ming abstractions over stateless serverless functions. Table VI
shows a comparison of the solutions presented in this section.
Each solution has been evaluated along three main dimensions.

• State management: does the system support integrated
state management, allowing components of the system to
persist and manage their state?

• Concurrency: does the system allow components to run
concurrently without compromising consistency guaran-
tees?

• Transparency: does the system hide the mechanisms
through which state management and/or concurrency are
offered?

Nubes [13] introduces an Object-Oriented Programming
(OOP) abstraction layer for stateful serverless functions, al-
lowing developers to define types with methods that are
transparently executed as cloud functions. While Nubes em-
ploys OOP concepts, our system leverages the actor model,
which inherently handles synchronization issues that would
require explicit management in an OOP paradigm. This choice
simplifies concurrent programming and reduces the likelihood
of race conditions.

Oparca [14] implements the Objects-as-a-Service (OaaS)
paradigm, managing object lifecycles and method invocations
through a dedicated Invoker component. It ensures consis-
tency between structured and unstructured states, and provides
exactly-once guarantees for asynchronous method invocations.
Our system shares Oparca’s commitment to consistency and
exactly-once semantics but achieves this within the more
flexible actor model framework.

Azure’s Durable Entities [15], part of the Durable Functions
service, implement actor-like components within the Azure
Functions ecosystem. These entities provide durability of
actor state and reliable messaging. However, they lack the
comprehensive query capabilities offered by our system. Our
approach not only ensures state durability but also enables
complex data aggregation and analysis directly on the actor
state, a crucial feature for many distributed applications.

Kalix [16] offers high-level abstractions such as entities,
views, actions, and workflows to model business domains,
managing state and concurrency transparently. While Kalix
provides a complete platform, our system gives flexible ab-
stractions that can be adapted to different technologies and
integrate with existing infrastructures.



13

State management Concurrency Transparency
Nubes External Synchronization is needed Fully transparent
Oparca Mixed (DHT and datastores) Localized locking Fully transparent
Durable Entities External Serial processing Fully transparent
Kalix External Serial processing Fully transparent
CloudBurst External Causal consistency Explicit API
Beldi External Synchronization primitives Explicit API
Boki Internal (storage nodes) Synchronization primitives Explicit API
Apache StateFun Internal Serial processing Fully transparent
Faasm Internal (two-tier) Locking mechanism Explicit API
Apiary Internal Transactional guarantees Explicit API
Crucial Internal (DSO layer) Linearizable objects Explicit API
Histrio Mixed (external and cache) Serial processing Fully transparent

TABLE VI: Comparison of programming abstractions for serverless stateful functions.

CloudBurst [17] enhances stateless functions with efficient
state transfer and point-to-point communication capabilities. It
leverages a combination of key-value stores and local caches
to achieve low latency. Our system goes beyond CloudBurst
by providing not just efficient state management but also a
complete actor-based programming model with built-in con-
sistency guarantees and querying capabilities.

Beldi [18] and Boki [19] focus on providing exactly-
once semantics for function invocations. Beldi introduces the
concept of Intent, while Boki improves upon this with a
shared log abstraction and optimized read caches. Our system
incorporates similar reliability guarantees within the actor
model framework, offering a more comprehensive solution that
includes not just exactly-once processing but also robust state
management and querying.

Apache Flink Stateful Functions [20] is an environment
that simplifies the development of distributed applications. It
offers exactly-once processing guarantees by pairing a Flink
cluster to a FaaS system. On the contrary, our system does not
require an external managed system to enact the exactly-once
semantics: all the key components run within the autoscaling
FaaS environment. Furthermore, Flink StateFun lacks built-in
querying capabilities and the programming facilities provided
by Histrio.

Faasm [21] is a FaaS environment that aims to provide effi-
cient stateful computing. It introduces a lightweight isolation
mechanism that allows different function instances to run on
the same host. Faasm adopts a two-tier state architecture: local
memory enables efficient shared memory within a single host,
and global memory is used to communicate between hosts. It
offers convenient API to implement Distributed Data Objects
(DDOs), an abstraction that hides the complexity of the two-
tier state architecture. The innovation brought by Faasm is
orthogonal with respect to Histrio, and we could exploit its
lightweight FaaS environment as a target for our programming
abstraction.

Apiary [22] co-locates compiled functions with storage
nodes to optimize computation-storage interaction. It enables
defining groups of functions that are executed with transac-
tional semantics. Crucial treats serverless functions as cloud
threads, allowing developers to write applications as standard
multithreaded programs. Our approach differs by providing a
higher-level actor-based abstraction that simplifies distributed
system development.

B. Actor Systems

Akka [23], a prominent implementation of the actor model
for JVM environments, offers a modular approach to build-
ing distributed systems. Its approach to state management
and querying differs from ours, offering optional persistence
through snapshots or event sourcing [24]. In contrast, our
system provides always-durable state storage and direct state
querying, ensuring strong consistency without the need for
additional modules or configurations.

Orleans [25] introduces the concept of Virtual Actors, which
are always conceptually present and instantiated on-demand.
It offers location transparency similar to our system but lacks
built-in query functionalities and provides weaker message
delivery guarantees. Our system enhances the virtual actor
concept with strong consistency guarantees and comprehensive
querying capabilities, addressing key limitations in Orleans’
approach.

Our system builds upon these foundations, combining the
strengths of actor-based models with serverless architectures.
It offers durable state management, powerful querying capabil-
ities, fault-tolerance, and concurrency control, addressing the
limitations of existing solutions in a unified framework.

VIII. CONCLUSIONS

With Histrio, we brought the actor programming paradigm
to serverless environments. Histrio relieves developers from
the burden of interacting with external storage systems, ensur-
ing state consistency and durability, and adopting concurrency
control mechanisms. Histrio abstracts away these concerns: the
actor model prevents data races by default and the messaging
protocol of Histrio makes sure that the system behaves as if
all requests were processed once and only once, even in the
presence of failures. Additionally, Histrio provides convenient
functionalities to easily and efficiently query state.

The effectiveness of Histrio has been measured in two
benchmark scenarios comparing it to baseline implementations
of the same scenarios. The results showed a significant reduc-
tion of coding overhead, with a high percentage of lines of
code used to model domain logic. This confirms the ability
of Histrio to simplify the process of web development. The
benchmarks confirmed the scalability of the system at least up
until the saturation of the available resources. The performance
overhead of the system can be controlled with a configuration
parameter that balances performance and costs.



14

Motivated by the effectiveness of our programming model
in serverless environments, we plan to investigate alternative
implementation strategies to further improve performance and
make Histrio even more beneficial for developers: for instance,
adopting services that enable a reactive interaction between
actors could factor out the overhead of polling.

REFERENCES

[1] G. Agha, Actors: a model of concurrent computation in distributed
systems. Cambridge, MA, USA: MIT Press, 1986.

[2] Red Hat, “What is serverless?” 2022, https://www.redhat.com/en/topics/
cloud-native-apps/what-is-serverless.

[3] ——, “What is function-as-a-service (faas)?” 2020, https://www.redhat.
com/en/topics/cloud-native-apps/what-is-faas.

[4] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proceedings of the International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: ACM, 2019, p. 1063–1075.

[5] Amazon, “Aws lambda,” 2024, https://aws.amazon.com/lambda/.
[6] Microsoft, “Azure functions,” 2024, https://azure.microsoft.com/

products/functions.
[7] Google, “Cloud functions,” 2024, https://cloud.google.com/functions.
[8] Cloudflare, “Cloudflare workers,” 2024, https://workers.cloudflare.com.
[9] Amazon Web Services, “What is a serverless database?” 2024, https:

//aws.amazon.com/what-is/serverless-database/.
[10] Amazon, “Aws dynamodb,” 2024, https://aws.amazon.com/dynamodb/.
[11] Sandip Gangdhar, “Understanding amazon dynamodb

latency,” 2023, https://aws.amazon.com/blogs/database/
understanding-amazon-dynamodb-latency/.

[12] Google, “Effective go - channels,” 2009, https://go.dev/doc/effective
go#channels.

[13] K. A. Marek, L. De Martini, and A. Margara, “Nubes: Object-oriented
programming for stateful serverless functions,” in Proceedings of the
International Workshop on Serverless Computing, ser. WoSC ’23. New
York, NY, USA: ACM, 2023, p. 30–35.

[14] P. Lertpongrujikorn and M. A. Salehi, “Object as a service: Simplifying
cloud-native development through serverless object abstraction,” 2024.
[Online]. Available: https://arxiv.org/abs/2408.04898

[15] Microsoft, “Entity functions,” 2023, https://learn.microsoft.com/en-us/
azure/azure-functions/durable/durable-functions-entities.

[16] Lightbend, “Kalix,” 2024, https://www.kalix.io/.
[17] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,

J. M. Hellerstein, and A. Tumanov, “Cloudburst: stateful functions-as-
a-service,” Proc. VLDB Endow., vol. 13, no. 12, p. 2438–2452, 2020.
[Online]. Available: https://doi.org/10.14778/3407790.3407836

[18] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu, “Fault-tolerant
and transactional stateful serverless workflows,” in USENIX Symposium
on Operating Systems Design and Implementation, ser. OSDI ’20.
USENIX Association, 2020, pp. 1187–1204.

[19] Z. Jia and E. Witchel, “Boki: Towards data consistency and fault
tolerance with shared logs in stateful serverless computing,” ACM
Transactions on Computer Systems, 2024.

[20] Apache Software Foundation, “Stateful Functions: A Platform-
Independent Stateful Serverless Stack,” 2024, https://nightlies.apache.
org/flink/flink-statefun-docs-stable/.

[21] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in USENIX Annual Technical Conference,
ser. USENIX ATC 20. USENIX Association, 2020, pp. 419–433.

[22] P. Kraft, Q. Li, K. Kaffes, A. Skiadopoulos, D. Kumar, D. Cho,
J. Li, R. Redmond, N. Weckwerth, B. Xia, P. Bailis, M. Cafarella,
G. Graefe, J. Kepner, C. Kozyrakis, M. Stonebraker, L. Suresh,
X. Yu, and M. Zaharia, “Apiary: A dbms-integrated transactional
function-as-a-service framework,” 2023. [Online]. Available: https:
//arxiv.org/abs/2208.13068

[23] Lightbend, “Akka documentation,” 2024, https://akka.io/docs/.
[24] M. Fowler, “Event sourcing,” 2005, https://martinfowler.com/eaaDev/

EventSourcing.html.
[25] Microsoft, “Microsoft Orleans,” 2024, https://learn.microsoft.com/en-us/

dotnet/orleans/overview.

https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://www.redhat.com/en/topics/cloud-native-apps/what-is-faas
https://www.redhat.com/en/topics/cloud-native-apps/what-is-faas
https://aws.amazon.com/lambda/
https://azure.microsoft.com/products/functions
https://azure.microsoft.com/products/functions
https://cloud.google.com/functions
https://workers.cloudflare.com
https://aws.amazon.com/what-is/serverless-database/
https://aws.amazon.com/what-is/serverless-database/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/blogs/database/understanding-amazon-dynamodb-latency/
https://aws.amazon.com/blogs/database/understanding-amazon-dynamodb-latency/
https://go.dev/doc/effective_go#channels
https://go.dev/doc/effective_go#channels
https://arxiv.org/abs/2408.04898
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities
https://www.kalix.io/
https://doi.org/10.14778/3407790.3407836
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://arxiv.org/abs/2208.13068
https://arxiv.org/abs/2208.13068
https://akka.io/docs/
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://learn.microsoft.com/en-us/dotnet/orleans/overview
https://learn.microsoft.com/en-us/dotnet/orleans/overview

	Introduction
	Background and Motivations
	Serverless
	Actor model
	Motivations and executive summary

	Programming Interface
	Actors: definition and communication
	Queryable collections
	Actor spawner

	System Overview
	High-level view of the system
	Actors organization
	Data model
	Actors lifecycle

	System implementation
	Architecture of workers
	Execution model
	Exactly-once consistency

	Evaluation
	Experiments setup
	Results
	Discussion

	Related work
	Serverless and stateful functions
	Actor Systems

	Conclusions
	References

