
FusedInf: Efficient Swapping of DNN Models for
On-Demand Serverless Inference Services on the

Edge
Sifat Ut Taki

University of Notre Dame
staki@nd.edu

Arthi Padmanabhan
Harvey Mudd College

arpadmanabhan@g.hmc.edu

Spyridon Mastorakis
University of Notre Dame

mastorakis@nd.edu

Abstract—Edge AI computing boxes are a new class of com-
puting devices that are aimed to revolutionize the AI industry.
These compact and robust hardware units bring the power of
AI processing directly to the source of data–on the edge of the
network. On the other hand, on-demand serverless inference
services are becoming more and more popular as they minimize
the infrastructural cost associated with hosting and running DNN
models for small to medium-sized businesses. However, these
computing devices are still constrained in terms of resource
availability. As such, the service providers need to load and
unload models efficiently in order to meet the growing demand. In
this paper, we introduce FusedInf to efficiently swap DNN models
for on-demand serverless inference services on the edge. FusedInf
combines multiple models into a single Direct Acyclic Graph
(DAG) to efficiently load the models into the GPU memory and
make execution faster. Our evaluation of popular DNN models
showed that creating a single DAG can make the execution of the
models up to 14% faster while reducing the memory requirement
by up to 17%. The prototype implementation is available at
https://github.com/SifatTaj/FusedInf.

Index Terms—deep neural networks, optimization, serverless
inference, edge computing

I. INTRODUCTION

Efficient DNN inference is crucial for making deep learning
models practical in real-world applications on the edge [1],
[2]. While DNNs are extremely capable of tasks like image
recognition and speech translation, running them often requires
significant computing power. This can be a bottleneck for de-
ploying them on resource-constrained devices or in situations
demanding fast response times. By optimizing DNN inference
to use less power and run efficiently, we can unlock the
potential of deep learning for a wider range of applications–
from medical diagnosis on mobile devices to real-time obstacle
detection in autonomous vehicles on edge.

Various cloud service providers are allowing users to deploy
and run their models on the cloud and edge. However, owning
and managing a virtual machine on the cloud for inference
is very expensive–especially for small businesses, which do
not always require the inference service. Hence, it is not
economically viable for them to keep an inference service
running idle. As a solution, cloud providers have developed
serverless inference services for on-demand inference [3], [4].
This makes it easier to deploy and run DNN models; however,
it severely complicates the process on the service provider’s

No. of Models

M
em

or
y 

(M
iB

)
0

500

1000

1500

2000

2 3 4

Without FusedInf With FusedInf

Fig. 1. Effectiveness of FusedInf when concurrently executing multiple DNN
models for inference on the edge.

end–especially on the edge where resources are limited. The
service providers need to constantly swap models on the
limited resources of the edge boxes. Swapping models comes
at the cost of an overhead of loading and unloading them every
time a new model is queried by a user.

in order to address the aforementioned problem, we need
to come up with a system that efficiently swaps models on
edge devices. However, we should address a few challenges
to ensure the security and correctness of each user and model.
(C1) Can we ensure model correctness while retaining the
accuracy of the models? (C2) Will the system efficiently work
for a wide variety of models? (C3) How much overhead will
there be? (C4) Can it be achieved while ensuring the privacy
of the users?

FusedInf introduces a novel approach to efficiently swap
models on the edge with very limited overhead while ad-
dressing the challenges mentioned above. FusedInf compiles
a unified directed acyclic graph (DAG) of multiple models
before loading them on the GPU memory. This facilitates
the process of loading and querying multiple models at the
same time. Figure 1 presents an overview of peak GPU
memory usage when executing VGG16 [5], MobileNetv3 [6],
DenseNet161 [7], and EfficientNetv2Large [8] for inference
with and without FusedInf. The following are the major
contributions of this paper:

This paper has been accepted for publication by the 9th ACM/IEEE Symposium on Edge Computing (SEC). © 2024 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

ar
X

iv
:2

41
0.

21
12

0v
1 

 [
cs

.L
G

] 
 2

8 
O

ct
 2

02
4



TABLE I
EXAMPLES OF COMMERCIAL AI EDGE COMPUTING BOXES.

Vendor Model CPU GPU Memory

VVDN Xavier NX 6-core NVIDIA
Carmel ARM v8.2

NVIDIA Volta architecture
with 384 NVIDIA CUDA cores

and 48 Tensor cores
8GB

Advantech EPC-R7300IJ 8-core ARM Cortex
NVIDIA Ampere GPU
with 1024 CUDA cores

and 32 Tensor Cores
16GB

FORLINX FCU3001 6-core NVIDIA
Carmel ARM v8.2

NVIDIA Volta architecture
with 384 NVIDIA CUDA cores

and 48 Tensor cores
16GB

EdgeMatrix Advance Mk2 9th/8th Gen
Intel Core i7

NVIDIA Tesla T4
with 2560 CUDA core
and 320 Tensor cores

16GB

Azure Edge Stack Pro 2 Intel Xeon
Gold 6209U

NVIDIA A2 with
1280 CUDA cores and

40 Tensor cores
32GB

• We discuss the challenges and opportunities of optimizing
CUDA operations for DNN model executions on edge.

• We introduce a multi-model DAG compilation technique
to compile graphs for efficient loading of multiple models
into the GPU memory.

• We demonstrate the effectiveness of this technique
through a comprehensive evaluation of multiple DNN
models.

II. BACKGROUND

The convergence of machine learning (ML) and edge com-
puting is driving the development of new, powerful tech-
nologies specifically designed for edge boxes [9]–[11]. These
compact computing devices process data locally–at the source
of generation much closer to the users–rather than relying
on communication with the cloud. This trend necessitates a
paradigm shift from traditional cloud-optimized DNN mod-
els to lightweight and resource-efficient models tailored for
resource-constrained edge devices [12]. One promising area
of research is in the development of optimized AI mod-
els, which achieve acceptable accuracy with minimal com-
putational power [13]. Additionally, the field is witnessing
the emergence of frameworks specifically designed for edge
deployment, focusing on optimizing AI workloads for edge
hardware and enabling real-time, on-device inferencing. This
synergy between AI and edge computing holds immense po-
tential for applications across various sectors, from industrial
automation and predictive maintenance to intelligent traffic
management and personalized healthcare.

DNNs are revolutionizing various fields due to their abil-
ity to solve complex problems. However, training and run-
ning these computationally intensive models requires signif-
icant processing power. Compute Unified Device Architec-
ture (CUDA) [14] plays a vital role in accelerating DNN
models by leveraging the parallel processing capabilities of
Graphics Processing Units (GPUs). CUDA provides a pro-
gramming model and a set of development tools that allow
developers to write DNN algorithms in languages like C++,
exploiting the massive core count of GPUs for tasks like

matrix multiplication and convolution, which are fundamental
operations in DNNs. Furthermore, libraries like CUDA Deep
Neural Network library (cuDNN [15]) offer highly optimized
implementations of commonly used DNN primitives, which
further accelerate training and inference processes. The use
of CUDA in DNN model training has significantly reduced
training times and enabled the development of ever-more
complex and powerful neural networks.

Within the NVIDIA ecosystem, cuDNN and CUDA APIs
play significant roles in developing and deploying complex
models. Their significance lies in two primary areas: perfor-
mance optimization and developer efficiency. cuDNN lever-
ages the parallel processing capabilities of NVIDIA GPUs,
providing highly optimized implementations for fundamen-
tal deep learning operations like convolution, pooling, and
activation functions. This offloading of computationally in-
tensive tasks from CPUs to GPUs translates to significant
speedups in training and inference times compared to CPU-
only implementations. This performance boost is essential for
training large-scale models with billions of parameters within
reasonable timeframes. Furthermore, cuDNN simplifies the
development process by offering pre-optimized kernels that
integrate seamlessly with popular deep-learning frameworks
like TensorFlow and PyTorch. This abstraction layer allows
researchers and engineers to focus on model design and
experimentation without going into low-level GPU program-
ming, accelerating innovation in the field. As such, cuDNN’s
performance optimizations and developer-friendly interface
make it an indispensable tool for researchers and engineers
pushing the boundaries of deep learning.

A. CUDA API Operations

One critical aspect to consider is the distinction between
host (CPU) and device (GPU) memory. DNN models consist
of weights, biases, and activation layers, all requiring memory
storage. CUDA provides mechanisms for allocating memory
on the GPU using functions like cudaMalloc() and cudaMem-
cpy(). However, simply allocating sufficient memory isn’t
enough as Fragmentation (where allocated memory becomes



TABLE II
COMPARISON OF DIFFERENT MEMORY/LATENCY SAVING FRAMEWORKS.

Framework Application
Requires
model
similarity

Impacts
accuracy

Gemel [18] Video
analytics Partial Yes

HiveMind [19] Concurrent
training Full Yes

Mainstream [20] Video
analytics Partial Yes

AdaShare [21] Multi-task
learning Partial Yes

FusedInf Serverless
inference No No

scattered across the GPU memory space) can occur, which
may hinder performance. Frameworks often employ memory
pools to mitigate this issue, allocating contiguous memory
blocks for better utilization [16].

Another key factor influencing memory usage is the data
flow during DNN execution. Forward and backward passes
in training involve numerous intermediate tensors representing
activations and gradients. While some frameworks like cuDNN
offer optimizations to reduce memory footprint, these interme-
diate tensors still consume significant resources. Techniques
like checkpointing, where intermediate states are periodically
saved to host memory, can be employed to free up GPU
memory.

Furthermore, the choice of data type for model parameters
significantly impacts memory requirements. While single-
precision floating-point numbers (FP32) offer high accuracy,
they can be memory-intensive for large models. Techniques
like mixed-precision training, where computations are per-
formed using lower precision formats like FP16, can signif-
icantly reduce memory usage without sacrificing substantial
accuracy [17].

Beyond model parameters and intermediate tensors, other
factors contribute to GPU memory consumption. Frameworks
themselves allocate memory for internal data structures and
workspace for cuDNN operations (such as CUDA CON-
TEXT). Moreover, depending on the complexity of the DNN
architecture, additional memory might be required for storing
activation functions and gradients.

Optimizing memory allocation for DNNs on GPUs requires
a holistic approach. Techniques like memory profiling tools
can help identify memory bottlenecks and guide optimiza-
tion efforts. Utilizing techniques like gradient accumulation,
where gradients for multiple mini-batches are accumulated
before updating weights, can reduce memory requirements
for backpropagation. Additionally, exploring alternative DNN
architectures with lower memory footprints might be necessary
for resource-constrained GPUs.

B. Recent Advancements

Model merging and operator fusion can optimize the con-
current execution of multiple DNN models on the edge. Gemel
introduces a technique called model merging to improve

memory usage on edge devices for real-time video analytics
on the edge. It merges similar layers from different models to
reduce the overall memory footprint and the time it takes to
swap data between host and GPU memory.

HiveMind, on the other hand, takes a similar approach
to Gemel. HiveMind is a system designed to speed up the
concurrent execution of multiple DNN models. It achieves this
by grouping models into batches, then performing operator
fusion across these models and sharing data efficiently. It
utilizes a parallel processing system to execute this optimized
group of models for faster performance. However, HiveMind
requires manual model grouping. Similar to Gemel, HiveMind
performs cross-model layer fusion when stateful operators in
different models share the same underlying weights or when
stateful operators have the same input and output shapes. This
is an unlikely scenario in a serverless inference service where
different users will query different models at a time.

Table II presents a comparison between our proposed ap-
proach and other DNN memory/latency saving frameworks.
The aforementioned approaches save memory or time by
sharing or reusing model layers and operators across multiple
DNN models. This requires architectural similarity among
those models. However, an on-demand serverless inference
service on the edge may need to run a wide variety of models
from different users that may contain little to no architectural
similarity. Additionally, model similarity search introduces
a significant overhead, which is not tolerable for fast and
efficient model swapping on an edge device. Moreover, sharing
layers across multiple models comes at a cost of reduced
accuracy. As a service provider, it is important to ensure model
correctness for serverless inference services as users expect no
accuracy degradation during inference.

III. CHALLENGES & MOTIVATION

With the emergence of on-demand serverless inference ser-
vices on the edge, service providers are expected to face a mas-
sive amount of traffic querying different models throughout
the day [22]. However, commercial edge boxes are extremely
resource-contained compared to cloud servers. Table I presents
some of the commercially available edge AI computing boxes
today. These edge boxes rely on NVIDIA CUDA technology
for DNN computations.

A. CUDA Optimization Challenges

Optimizing the CUDA operations for serverless inference
services is challenging as it is important to make sure the users
are served correctly on time. In order to make a robust and
efficient serverless inference system on edge, the following
challenges need to be addressed:
C1: Retaining model correctness: As a service provider, it
is important to ensure that the user-provided DNN models
perform exactly the way it is meant to be. As a result,
DNN model architecture-level optimizations are limited as
techniques like layer merging and mixed precision execution
are not feasible because they will impact the correctness of
the individual DNN models.



cudaMemcpyAsync

cuDNN Create cuDNN Forward Pass

Kernel LauncherCUDA API

cuDNN

cudaMemcpyAsync

cuDNN Create cuDNN Forward Pass

Kernel LauncherCUDA API

cuDNN
Time

Saved

Without
FusedInf

With
FusedInf

Fig. 2. DNN model execution timeline on a GPU.

get_device_name()

get_device_capability()

get_device_properties()

Model 1: Initialization

cuDNN Operation 1

Model 1: Forward()

cuDNN Operation 2

cuDNN Operation 3

Model 1

get_device_name()

get_device_capability()

get_device_properties()

Model 2: Initialization

cuDNN Operation 1

Model 2: Forward()

cuDNN Operation 2

cuDNN Operation 3

Model 2

get_device_name()

get_device_capability()

get_device_properties()

Model 3: Initialization

cuDNN Operation 1

Model 3: Forward()

cuDNN Operation 2

cuDNN Operation 3

Model3

get_device_name()

get_device_capability()

get_device_properties()

Initialization

Fused Model

cuDNN Operation 1

Model 1: Forward()

cuDNN Operation 2

cuDNN Operation 3

cuDNN Operation 1

Model 2: Forward()

cuDNN Operation 2

cuDNN Operation 3

cuDNN Operation 1

Model 3: Forward()

cuDNN Operation 2

cuDNN Operation 3

Fig. 3. Efficiency in function invocation when compiling a single DAG of
multiple models.

C2: Compatibility with model variations: It is expected
that a service provider will be receiving requests from a wide
variety of users–each querying different DNN models with
different weights. As such, optimizations like operator fusion
among different models will not be possible as it requires the
DNN models to have the same layer architecture, weights, and
input shape.
C3: Minimal overhead: A serverless inference system per-
forms queries on a DNN model for a limited amount of time
before the models need to be swapped to serve another set of
users. This swapping operation might need to be performed
100-1000 times a day depending on the users’ demand and
traffic load for a specific edge box. As such, any optimization
that incurs a significant overhead cannot be employed in a
serverless inference service on edge.
C4: Ensuring privacy: When performing inference on a DNN
model using user input data, ensuring privacy is essential.
Optimizations like operator fusion and layer merging can leak
data from one model to another–violating user privacy and
leaving a massive security vulnerability in the system.

B. Motivation

In order to build an effective system that can swap models
efficiently on edge devices, we need to address the challenges
discussed in the previous section. When executing multiple

DNN models, the number of core DNN operations (operations
on each layer) should remain the same to ensure that each
model produces the expected output. For example, the number
of convolution operations and linear operations should remain
the same when executing different computer vision DNN
models. However, there are other function calls being made
when loading the models into the GPU memory. Functions
that are responsible for loading the libraries, initiating the
models, configuring the devices, etc. As such, optimizations
can be done when loading the models by eliminating a few of
the redundant function calls. Subsequently, these optimizations
can be generalized to all types DNN models since every
DNN model initialization follows a similar set of function
calls. As a result, there is no need for the models to be
similar in order to optimize the model execution. Figure 3
presents an overview of the function calls when initializing
multiple DNN models. If a single DAG is compiled with
multiple model architectures, the functions needed to initialize
the model will be called only once. This should make the
model initialization process more efficient, which is crucial
as the DNN models need to be initialized every time when
swapping models. Moreover, segmented memory allocation
could be inefficient when initializing models separately. This
process can also be facilitated if a single DAG is compiled
and initialized. So, faster memory allocations should also be
possible by compiling the graphs efficiently. Finally, these
should result in higher throughput–allowing more data to be
moved in a given time. All of these optimizations should make
model swapping more efficient on an edge device.

IV. SYSTEM DESIGN

In this section, we first discuss the overall design of
FusedInf and how it operates on an edge node for serverless
inference. Next, we discuss how FusedInf optimizes the CUDA
operations while addressing the optimization challenges for
efficient swapping of models on edge devices.

A. System Architecture

We developed a prototype of FusedInf, which can be
deployed on commercial edge AI boxes. This framework is
expected to be deployed on edge boxes handling thousands of
requests a day querying a wide variety of DNN models. The
framework has the following components:
DNN model repository: The DNN model repository stores
the model architectures and the trained weights for all the
DNN models on that particular edge AI computing box. User-
registered DNN models are offloaded to the closest edge AI
box and stored in the DNN model repository for performing



R
eq

ue
st

 A
gg

ra
ge

to
r

DNN Model Repository

Manager

DAG Compiler

Inference EngineUser 1

User 2

User n

FusedInf

Scheduler

Fig. 4. FusedInf system architecture.

inference in the future. Since the framework is for serverless
inference services on edge, DNN model architectures and the
associated parameters need to be loaded on the GPU memory
whenever there’s a request from the user of that particular
model. Along with the DNN model architectures and weights,
the model repository also stores the GPU memory requirement
and the inference latency for each DNN model.
Request aggregator: The request aggregator validates and
aggregates all the upcoming valid queries from different users
and forwards them to the manager. Considering it is deployed
in a highly demanding scenario, the request aggregator keeps
aggregating the upcoming requests while the system is occu-
pied processing current requests.
Manager: Manager is the core of the framework. It is re-
sponsible for controlling the entire system. It has three sub-
components: a DAG compiler, an inference engine, and a
scheduler. Depending on the aggregated requests, the manager
determines how many models the DAG compiler can compile
into a DAG. Since the DNN model repository stores the
memory requirement information for each DNN model, the
manager can estimate the number of DNN models to compile
depending on the available GPU memory on the system. Once
it is determined, the DAG compiler retrieves the DNN model
architectures and weights from the DNN model repository and
compiles the graph as demonstrated in Figure 5. Subsequently,
the compiled DAG is forwarded to the inference engine
where it utilizes the GPU for running the inferences using
Algorithm 1.

FusedInf is vertically scalable with multiple GPUs. The
Manager is capable of compiling and scheduling multiple
DAGs at a time, keeping the resources occupied. When
scheduling, FusedInf takes the model uptime into account
and groups the models with short-term requests together.
For example, models that require a single inference will be
grouped together while models that require longer runtime
will be grouped separately when compiling multiple DAGs.
FusedInf is also capable of dynamically alerting a compiled
DAG to swap a sub-graph if needed. When a sub-graph within
the DAG requires swapping, it can be recompiled efficiently

Layer 1

Layer 2

Layer n

Input

Output

Model 1

Layer 1

Layer 2

Layer n

Input

Output

Model 2

Layer 1

Layer 2

Layer n

Input

Output

Model n

Layer 1

Layer 2

Layer n

Output 1

Layer 1

Layer 2

Layer n

Input [1]
Input [0] Input [n-1]

Unified Input

Output 2

Compiled Graph

Layer 1

Layer 2

Layer n

Output n

Fig. 5. Graph compilation process of FusedInf with multiple DNN models.

with the remaining sub-graphs.
The framework facilitates the swapping of DNN models

on an edge device. Subsequently, FusedInf is suitable for
scheduling on resource-constrained edge devices. For example,
when an edge box is required to run more DNN models than
it can fit in its GPU memory for a long period of time,
FusedInf can batch the DNN models and efficiently swap
the DAGs periodically. For long-term executions of multiple
DNN models, the models are grouped into batches such that
each batch can fit into the GPU memory. Subsequently, each
batch of models is compiled into a corresponding DAG. The
scheduler runs a fixed number of iterations (set by the service
provider) and swaps it with the next DAG–following a round-
robin scheduling algorithm.

Algorithm 1 FusedInf Manager
Input: DNN models {m1,m2, . . . ,mn} ∈ M, inputs
{x1, x2, . . . , xn} ∈ X

Output: Predictions Y
Initialization : G ← ∅, Y ← ∅

1: for ∀m ∈M do
2: for ui, uj ∈ m do
3: G ← {um

i }ni=1, {um
i , um

j }, {ϕm
i }ni=1

4: for ∀xm ∈ X do
5: for ∀u ∈ G do
6: Y ← ϕm

i (
∑Li

j=1 u
m
i,jx

m
i,j)

return Y

B. FusedInf Optimization Techniques

FusedInf addresses the aforementioned challenges to
achieve efficiency when swapping DNN models on an edge
AI computing device using the following techniques.
Single process execution: When executing multiple DNN
models at a time, creating separate processes is inefficient.
When separate processes are invoked for each DNN model,
they all require individual loading of essential libraries to
execute the model in a GPU. As a result, it creates a significant
overhead when loading a DNN model into GPU memory in
terms of execution time and memory consumption. CUDA
Multi-Process Service (MPS) is supposed to help with the
process; however, it is still inefficient and unreliable [19].
FusedInf tackles this problem by creating a single process
for all the models–eliminating the redundancy of loading the
necessary libraries separately for each process.



TABLE III
BREAKDOWN OF DIFFERENT CUDA FUNCTIONS AND THEIR EXECUTION

TIME WHEN INITIALIZED 7 DNN MODELS.

CUDA Function
Time

without
FusedInf

Time
with

FusedInf
Decrease

cuDeviceGet 740 ns 500 ns 32.4%
cuDeviceGetCount 921 ns 701 ns 23.9%
cuDriverGetVersion 251 ns 100 ns 60.2%
cudaGetDevice 4.12 ms 4.01 ms 2.7%
cudaGetDeviceCount 440 ns 390 ns 11.4%
cudaMalloc 443.8 ms 40.1 ms 91.0%
cudaMemcpyAsync 2.964 s 2.759 s 6.9%
cudaSetDevice 2.54 ms 2.50 ms 1.6%
cudaStreamIsCapturing 75.40 ms 72.36 ms 4.0%

Faster model initialization: When initializing multiple DNN
models, some CUDA functions are redundantly called for
each model. For example, functions like cuDeviceGet() and
cudaGetDevice() are used to get device information and ar-
chitecture compatibility. Other functions like get schema()
are called to fetch the schema of the model being initiated,
cudaGetDeviceCount() is called to get the number of CUDA
devices, cuDriverGet() to fetch driver information, etc. Fused-
Inf eliminates the redundant calls by compiling and initializing
a single DAG, which results in faster model initialization.
Table III presents different function calls and their execution
time with 7 different DNN models.

Fewer memory calls: When a DNN model is executed on
a GPU, data needs to be moved from the host to the GPU.
cudaMemcpyAsync() is a function in the CUDA Runtime
API that allows transfers of data between host and device
memory asynchronously. This enables the program to continue
execution while the data transfer happens in the background,
potentially improving overall performance. The function can
be optionally linked to a specific CUDA stream, which helps
manage the order of data transfers on the GPU. FusedInf
optimizes this function call by compiling a single DAG of
multiple models–resulting in fewer calls of this function. As
a result, it facilitates the loading of models on edge devices.

Efficient memory allocation: cudaMalloc() is a function used
in CUDA programming to allocate memory on the GPU. This
function allows requests for a specific amount of space in
GPU memory and then provides a pointer to that memory
location. This pointer can then be used to transfer data to
the GPU memory and perform computations on that data.
By compiling a single DAG, FusedInf makes this memory
allocation significantly faster. Our experiment with 7 DNN
models suggests that FusedInf can make this operation 90%
quicker and makes 12% fewer calls that save memory.

Higher throughput: By compiling a single DAG, FusedInf
achieves higher throughput. Our experiment with 7 DNN mod-
els showed 1.44 GiB/s higher throughput. Figure 2 presents
the CUDA operation timeline of DNN model execution on a
GPU.

C. How FusedInf Addresses the Challenges

Adopting the aforementioned optimizations, FusedInf can
facilitate the DNN model swapping operation–allowing a ser-
vice provider to serve more users per day in highly demanding
scenarios.

• FusedInf addresses the challenge of retaining model
correctness (C1) by not altering the model architectures
when compiling the DAG. The compiled DAG consists
of sub-graphs of each model exactly the way a user had
provided containing the exact number of DNN operators.
As a result, the output of each model remains the same.

• The DAG compiler can compile any DNN model archi-
tecture, which ensures compatibility with model varia-
tions (C2). Section V presents the evaluation of FusedInf
with a wide variety of model architectures to show the
compatibility and adaptability of FusedInf in different
applications. Moreover, FusedInf works with all types of
DNNs since it does not depend on the individual model
architecture or architectural similarities across fused mod-
els. It is designed to optimize CUDA functionality when
initializing multiple models. Fundamentally, every DNN
model initialization follows a similar set of function calls.
As a result, the speed-up does not depend on any specific
combination of models, and we have not noticed any
slowdown with any model combinations.

• FusedInf leverages fast and efficient DAG compilation
for minimal overhead. Moreover, it makes fewer mem-
ory calls, faster memory allocation, and achieves higher
throughput. As a result, it addresses the challenge of
achieving a minimal overhead (C3).

• Finally, FusedInf does not fuse or merge operators from
models across. Each sub-graph processes its own input
without sharing outputs from the layers, which addresses
the challenge of ensuring privacy (C4).

V. EVALUATION

In order to evaluate our system, we selected a few popular
DNN models. We picked 34 different models from 13 different
model families. We ran our evaluations in three phases. In
phase one, we started with one model and gradually increased
the number of models up to 7 to see the impact of combining
models. In the next phase, we swapped 5 models randomly for
10 different consecutive test cases. For both phases, we ran 100
iterations for each model and collected the peak GPU memory
consumption and the total execution time. The execution
time metric was an average of 5 runs, which included the
model loading time and the time to run 100 iterations. In the
third phase, we evaluated the dynamic sub-graph swapping
capability of FusedInf by swapping a sub-graph after a certain
iteration for 5 different sub-graphs in a DAG. The system
used for evaluation consisted of an AMD Ryzen Threadripper
5955WX and an NVIDIA RTX 4090. Table IV presents the
models used for different test cases for the second phase
along with their ImageNet-1K accuracy. Following are the
brief descriptions of the models used for evaluation.



TABLE IV
DNN MODELS USED FOR DIFFERENT TEST CASES.

Model Accuracy Test Cases
Top 1 Top 5 1 2 3 4 5 6 7 8 9 10

AlexNet AlexNet 56.522 79.066 X X X X

VGG

VGG-11 69.02 88.628 X X
VGG-13 69.928 89.246 X
VGG-16 71.592 90.382 X
VGG-19 72.376 90.876 X X X
VGG-11 with batch normalization 70.37 89.81 X
VGG-13 with batch normalization 71.586 90.374 X
VGG-16 with batch normalization 73.36 91.516 X
VGG-19 with batch normalization 74.218 91.842 X

ResNet

ResNet-18 69.758 89.078 X X
ResNet-34 73.314 91.42 X X X X
ResNet-50 76.13 92.862 X X
ResNet-101 77.374 93.546 X X
ResNet-152 78.312 94.046 X X

SqueezeNet SqueezeNet 1.0 58.092 80.42 X
SqueezeNet 1.1 58.178 80.624 X

DenseNet

Densenet-121 74.434 91.972
Densenet-169 75.6 92.806
Densenet-201 76.896 93.37 X
Densenet-161 77.138 93.56 X

Inception Inception v3 77.294 93.45
GoogLeNet GoogLeNet 69.778 89.53

ShuffleNet ShuffleNet V2 x1.0 69.362 88.316 X X
ShuffleNet V2 x0.5 60.552 81.746 X

MobileNet
MobileNetV2 71.878 90.286 X X X X
MobileNet V3 Large 74.042 91.34 X X
MobileNet V3 Small 67.668 87.402

ResNeXt ResNeXt-50-32x4d 77.618 93.698 X
ResNeXt-101-32x8d 79.312 94.526 X X

Wide ResNet Wide ResNet-50-2 78.468 94.086 X X X
Wide ResNet-101-2 78.848 94.284 X

MNASNet MNASNet 1.0 73.456 91.51 X X
MNASNet 0.5 67.734 87.49

EfficientNet EfficientNet V2 Large 85.808 97.788 X

We used VGG models [5], short for Visual Geometry
Group models, which are a family of convolutional neural
networks (CNNs) known for their simplicity and effectiveness
in image recognition tasks. We used AlexNet [23]–named
after Alex Krizhevsky, which is a convolutional neural net-
work (CNN) architecture that revolutionized image recognition
in 2012. We also picked ResNet [24] (short for Residual
Neural Network)–a deep learning architecture specifically de-
signed to address the vanishing gradient problem that can
hinder training in very deep neural networks. Furthermore,
we picked SqueezeNet [25], which is designed for efficiency.
Unlike AlexNet and VGG models with their numerous layers,
SqueezeNet achieves AlexNet-level accuracy for image classi-
fication with significantly fewer parameters. Next, we picked
DenseNets [7], which are a type of CNN architecture known
for their efficient use of parameters and strong feature propaga-
tion. We also selected GoogLeNet developed by researchers
at Google and InceptionNet [26], which was built upon the
success of GoogLeNet with more complex CNN architectures
utilizing the Inception module as a core component. Shuf-
fleNet [27] was also picked, which is a convolutional neu-
ral network architecture specifically designed for deployment
on mobile and other resource-constrained devices. Next, we
picked MobileNet [6], which is a lightweight convolutional

neural network architecture designed for mobile and embedded
devices. Furthermore, we selected ResNeXt [28] that builds
upon the success of ResNet (Residual Network) architecture,
introducing a new concept called cardinality. Wide ResNet
(WRN) [29] was another family we picked, which is a variant
of the popular ResNet architecture specifically designed to
address limitations associated with very deep networks. For
automatic neural network architecture search applications on
mobile devices, we picked MNASNet [30]–Mobile Neural
Architecture Search Net. Finally, we picked EfficientNet [8],
which is a family of convolutional neural networks (CNNs)
designed to achieve a balance between accuracy and efficiency.

Baseline (without FusedInf): For comparison, we adopted
a baseline that executes multiple DNN models with a single
script. From our observation, we realized that running separate
processes for each model in the GPU is extremely inefficient
because each process invokes a separate CUDA Context. Each
CUDA Context takes about 500 MiB of additional GPU
memory, consuming extra time and memory for each model.
In order to present a fair comparison, we initiated multiple
DNN models from a single script, which invokes a single
CUDA Context for all of the models–ensuring optimal GPU
memory consumption. Moreover, the script contains a trigger
that checks for pending requests in the request queue. As soon



No. of Models

M
em

or
y 

(M
iB

)

0

500

1000

1500

2000

2500

2 3 4 5 6 7

Without FusedInf With FusedInf

Fig. 6. GPU memory consumption of different model combinations from 1
to 7 for 100 iterations.

No. of Models

Ti
m

e 
(s

)

0

20

40

60

80

2 3 4 5 6 7

Without FusedInf With FusedInf

Fig. 7. Total execution time of different model combinations from 1 to 7 for
100 iterations.

as a model finishes its execution, the script checks for pending
requests in the queue and initiates a new model if there is
enough GPU memory. The Request Aggregator is responsible
for aggregating requests from the users and putting them in
the queue.
Profiling Tools: We used 2 different profiling tools to profile
and collect data: Nvidia Nsight System and Pytorch Profiler.

A. Impact on Time and Memory with Different Number of
Models

In the first phase, we experimented with 7 DNN models.
We gradually increased to 7 DNN models starting from 1
DNN model. As such, we ran 7 different experiments for this
phase, each with 100 iterations per model. The size of the
inputs for the models was (3, 224, 224)–images of 3 channels
with a dimension of 224×224. Initially, we picked the VGG16
model with batch normalization. When we ran 100 iterations
of this single model, it consumed 954 MiB of GPU memory
and the total time was 4.3 seconds. Next, we ran VGG16 with
MobileNetV3 large. Without FusedInf, the two models peaked
at 1016 MiB in GPU memory usage and the total execution
time was 10.57 seconds. For the two models with FusedInf,
the peak GPU memory usage was 988 MiB and the total
execution time was 10.26 seconds. FusedInf was able to save
28 MiB (2.8% less) of GPU memory and 0.31 seconds (3%
less) of execution time with two DNN models. Afterward, we

M
em

or
y 

(M
iB

)

0

500

1000

1500

2000

2500

Test 
1

Test 
2

Test 
3

Test 
4

Test 
5

Test 
6

Test 
7

Test 
8

Test 
9

Test 
10

Without FusedInf With FusedInf

Fig. 8. GPU memory consumption of 5 randomly picked models for 10
different test cases after 100 iterations each.

ran VGG16, MobileNetv3Large, and DenseNet161 together.
With these three models, the peak GPU memory usage was
1266 MiB without FusedInf and 1102 MiB with FusedInf.
This time, FusedInf saved 164 MiB of GPU memory and 1.33
seconds of execution time with three DNN models. In the
next run, we ran VGG16, MobileNetv3Large, DenseNet161,
and EfficientNetV2Large together. This run peaked at 1728
MiB in GPU memory usage and 1606 MiB GPU memory
usage without and with FusedInf, respectively. In terms of total
execution time, the time was 60.71 seconds and 58.2 seconds,
respectively. As such, FusedInf saved 122 MiB (7.6% less)
of GPU memory and 2.51 seconds (4.3% less) of execution
time with 4 DNN models. For the fifth test, we included
ResNet18 with the rest of the 4 DNN models–running VGG16,
MobileNetv3Large, DenseNet161, EfficientNetV2Large, and
ResNet18 at the same time. When the system was running
there 5 DNN models, the peak GPU memory usage was 1770
MiB without FusedInf and 1626 MiB with FusedInf, which
saved 144 MiB of GPU memory (a reduction of 9%). In terms
of execution time, it took 66 seconds without FusedInf and
64.7 seconds with FusedInf–a reduction of 1.29 seconds (2%
less) with 5 DNN models. The following run included AlexNet
to the rest of the 5 DNN models, making a combination of
6 DNN models. For this run, the GPU memory consumption
was 2014 MiB without FusedInf and 1812 MiB with FusedInf.
As such, FusedInf saved 202 MiB of GPU memory (11.1
% less). When running 6 DNN models at the same time,
the execution time without FusedInf was 65.06 seconds, and
with FusedInf, it was 62.7 seconds–reducing the time by
2.36 seconds (3.8% less) for 6 DNN models. Finally, we ran
7 DNN models (VGG16, MobileNetv3Large, DenseNet161,
EfficientNetV2Large, ResNet18, AlexNet, and SqueezeNet).
Without FusedInf, the 7 DNN models used 2016 MiB of GPU
memory, and the execution time was 67.44 seconds. With
FusedInf, the GPU memory usage went down to 1814 MiB
and the execution time was 64.56 seconds. As such, FusedInf
was able to save 202 MiB of GPU memory (11.1% less),
and the execution time was 2.88 seconds quicker (4.5% less).
Figure 8 and 9 present the GPU memory consumptions and
total execution time of this phase, respectively.



Test Case

Ti
m

e 
(s

)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

Without FusedInf With FusedInf

Fig. 9. Total execution time of 5 randomly picked models for 10 different
test cases after 100 iterations each.

B. Impact on Time and Memory with Consecutive Swaps

In this next phase of experiments, we randomly picked 5
models out of the 34 DNN models belonging to 13 different
model families. We ran 10 consecutive test cases randomly
picking 5 DNN models each time and swapping them. This
evaluation presents the effectiveness of the scheduler that
swaps out DAGs after a fixed number of interactions (100
in this case).

We collected the same metrics as we did for the first phase.
The first test case was inducted with AlexNet, VGG16 (with
batch normalization), ResNet18, DenseNet161, MobileNetV2,
and EfficientNetV2 Large. This test case demonstrated a re-
duction of 164 MiB in peak GPU memory usage (9.27% less)
and 2 seconds faster execution (3.13% less). The second test
case was inducted with AlexNet, VGG11, VGG19, ResNet50,
MobileNetV3 Large, and Wide ResNet-50-2. This test case
demonstrated a reduction of 160 MiB in peak GPU memory
usage (8.96% less) and 3 seconds faster execution (14.3%
less). In the third case, AlexNet, VGG13 (with batch nor-
malization), ResNet34, Densenet-201, and ShuffleNet V2 x1.0
were picked randomly. This test case demonstrated a reduction
of 172 MiB in peak GPU memory usage (10.17% less) and 2
seconds faster execution (4% less). The fourth test case was
randomly picked VGG-11, VGG-19 (with batch normaliza-
tion), ResNet-34, ResNet-152, and ShuffleNet V2 x1.0. This
test case demonstrated a reduction of 344 MiB in peak GPU
memory usage (16.03% less) and 3 seconds faster execution
(10.71% less). In the fifth case, we randomly picked ResNet-
34, SqueezeNet 1.1, ShuffleNet V2 x0.5, MobileNetV2, and
Wide ResNet-101-2. This test case demonstrated a reduction
of 174 MiB in peak GPU memory usage (14.6% less) and
3 seconds faster execution (12% less). The sixth test case
included VGG19, ResNet-18, ResNet-50, MobileNetV2, and
Wide ResNet-50-2. This test case demonstrated a reduction
of 66 MiB in peak GPU memory usage (4.56% less) and
2 seconds faster execution (10% less). The seventh case
was inducted AlexNet, VGG11 (with batch normalization),
ResNet-101, SqueezeNet 1.0, and ResNeXt-101-32x8d. This

test case demonstrated a reduction of 58 MiB in peak GPU
memory usage (3.36% less) and 2 seconds faster execution
(8.7% less). The eighth case included VGG16, ResNet-101,
ResNet-152, ResNeXt-101-32x8d, and MNASNet 1.0 ran-
domly. This test case demonstrated a reduction of 198 MiB in
peak GPU memory usage (10.47% less) and 1 second faster
execution (2.38% less). The following test case was conducted
with AlexNet, VGG11, ResNet-34, Wide ResNet-50-2, and
MNASNet 1.0. This test case demonstrated a reduction of
324 MiB in peak GPU memory usage (17.63% less) but about
the same execution time. In the final test, VGG13, VGG19,
MobileNetV2, MobileNet V3 Large, and ResNeXt-50-32x4d
were randomly chosen. This test case demonstrated a reduction
of 92 MiB in peak GPU memory usage (5.14% less) and 1
second faster execution (5% less).

Figure 8 and 9 presents the peak GPU memory consumption
and the total execution time for the consecutive test cases,
receptively. On average, FusedInf saves 2 seconds per 30
seconds of operation executing 5 models. After 10 consecutive
runs with 5 different models, the total execution time with
FusedInf was 311 seconds, compared to 330 seconds without
FusedInf. Following this trend, service providers will be able
to save about 3 hours and 12 minutes per day, allowing them
to run approximately 2000 more models per day.

C. Impact on Time and Memory with Individual Model Swaps
in a DAG

In the final phase, we evaluated the sub-graph (model)
swapping feature of FusedInf. We started with 5 different
models and swapped each after completing the required itera-
tions. This evaluation presents the effectiveness of the dynamic
adaptive DAG compiler. FusedInf is capable of compiling a
part of the DAG without the need to recompile the entire DAG.

The initial DAG contained VGG-19 with Batch Normaliza-
tion, ResNet-50, MobileNet V3 Large, ResNeXt-50 (32x4d),
and MNASNet 1.0. The first 25 iterations were 0.8 sec-
onds faster (3.42%) consuming 198 MiB less (16.69%) GPU
memory. After the 25th iteration, we swapped VGG-19 with
EfficientNet where FusedInf was ahead by 2.07 seconds
(3.13%) consuming 154 MiB less memory (13.82%). After
50 iterations, we swapped ResNet-50 with Inception v3, where
FusedInf was ahead by 4.91 seconds (4.08%) consuming 152
MiB less memory (13.67%). After 75 iterations, we swapped
ResNeXt-50-32x4d with SqueezeNet 1.1, where FusedInf was
ahead by 5.7 seconds (3.36%) consuming 154 MiB less mem-
ory (15.01%). After 100 iterations, we swapped MobileNet
V3 Large with VGG-16, where FusedInf was ahead by 7.71
seconds (3.58%) consuming 152 MiB less memory (9.95%).
Finally, after 125 iterations, we swapped MNASNet 1.0 with
Wide ResNet-101-2, and ran 25 iterations, where FusedInf
was ahead by 8.76 seconds (3.28%) consuming 152 MiB less
memory (7.54%).

Table V presents the results after each swap. The GPU
memory presents the peak consumption after each swap. The
time presented is the total execution time after each swap.
From the results, we can see that FusedInf was able to save



TABLE V
MEMORY AND TIME OF DIFFERENT SWAPS WITHIN A DAG.

Models
in

DAG

Swap 1 Swap 2 Swap 3 Swap 4 Swap 5 Swap 6
VGG-19 with BN EfficientNet V2 EfficientNet V2 EfficientNet V2 EfficientNet V2 EfficientNet V2
ResNet-50 ResNet-50 Inception v3 Inception v3 Inception v3 Inception v3
MobileNet V3 L MobileNet V3 L MobileNet V3 L MobileNet V3 L VGG-16 VGG-16
ResNeXt-50-32x4d ResNeXt-50-32x4d ResNeXt-50-32x4d SqueezeNet 1.1 SqueezeNet 1.1 SqueezeNet 1.1
MNASNet 1.0 MNASNet 1.0 MNASNet 1.0 MNASNet 1.0 MNASNet 1.0 WideResNet-101

Memory
without
FusedInf

(MiB)

1384 1268 1264 1180 1680 2168

Memory
with

FusedInf
(MiB)

1186
(-16.69%)

1114
(-13.82%)

1112
(-13.67%)

1026
(-15.01%)

1528
(-9.95%)

2016
(-7.54%)

Time
without
FusedInf

(s)

24.23 68.18 125.16 175.14 223.25 275.66

Time
with

FusedInf
(s)

23.43
(-3.41%)

66.11
(-3.13%)

120.25
(-4.08%)

169.44
(-3.36%)

215.54
(-3.58%)

266.9
(-3.28%)

an average of 160 MiB of memory (12.05%) and a total of
8.76 seconds (3.28%) of total execution time.

VI. DISCUSSION

FusedInf is designed to facilitate DNN model swapping on
resource-constrained edge boxes. From the evaluation results,
we can see that FusedInf is capable of efficiently swapping
DNN models in various use cases. The evaluation in Sec-
tion V-A demonstrates that the greater the number of models,
the more efficient FusedInf can be in terms of execution time
and memory consumption. The evaluation in Section V-A
shows that the total execution time with FusedInf was 19 sec-
onds faster after 10 consecutive runs with 5 different models
running for 100 iterations per cycle. This translates to 3 hours
and 12 minutes saved per day, allowing a service provider
to perform approximately 2000 more swaps per day, which
is a significant number. Finally, Section V-C demonstrates
the efficiency of swapping individual DNN models within a
compiled DAG. FusedInf can not only efficiently compile a
DAG of multiple models but also recompile a DAG efficiently
by swapping a particular sub-graph (model) from the DAG.

VII. RELATED WORK

There are a few production-level inference systems offered
by popular machine learning frameworks. TorchServe is one
of the most popular inference engine services provided by
PyTorch [31]. TorchServe is a flexible and high-performance
tool designed specifically for serving PyTorch deep learning
models in production environments. TorchServe provides a
built-in web server that allows applications to make predictions
using the deployed model through a set of easy-to-use REST
APIs. TensorFlow serving is another tool by TensorFlow [32]
for deploying inference engines on the edge. It is a software
library designed specifically for deploying machine learning

models trained with TensorFlow in production environments
on the edge. Moreover, it provides both RESTful API and
gRPC interfaces for clients to interact with the models, mak-
ing it accessible to various edge development environments.
ONNX, short for Open Neural Network Exchange, functions
as an open-source format for representing machine learning
models. It acts as a common language, enabling a seamless ex-
change of models between different deep-learning frameworks.
This interoperability empowers developers to train models in
their preferred framework (like TensorFlow or PyTorch) and
then deploy them on various edge platforms or runtimes that
support ONNX [33]. Clipper is a low-latency online prediction
serving system proposed by Crankshaw et. al. [34]. Clipper is a
system designed to take machine learning models from various
frameworks and optimize their performance for real-world
use. It sits between applications and the models, simplifying
deployment and using techniques like caching and batching to
deliver predictions faster and more accurately.

Popular cloud service providers are also allowing users to
deploy and run DNN models on their cloud or edge infrastruc-
ture by providing their own services. AWS SageMaker [35]
is a cloud-based platform offered by Amazon Web Services
(AWS) specifically designed to streamline the ML workflow.
It simplifies the process of building, training, deploying, and
managing ML models on the edge. Azure Machine Learning
(Azure ML [36]) is a cloud-based service offered by Microsoft.
It streamlines the entire machine learning lifecycle, from data
preparation and model training to deployment and monitoring
on the edge. Vertex AI [37] by Google Cloud simplifies
the AI development process on the edge by providing a
central platform for data management, model training, and
deployment.

In 2021, Romero et. al. proposed INFaaS [38]–an auto-
mated model-less inference serving system. INFaaS simplifies



deploying DNN models for real-time use. Instead of devel-
opers choosing specific DNN models for each task, INFaaS
automatically selects the best option based on the desired
performance (latency) and accuracy trade-off. applications
send their requests to INFaaS through a user-friendly interface
(Front-End). The core system (Controller) then analyzes these
requests and picks the most fitting model variant for the
job. This chosen variant, along with the actual query, is then
directed to a Worker machine. Finally, the Worker leverages
the appropriate hardware components (Hardware Executors)
to execute the inference task and sends the results back to the
application. However, in its current implementation, a Worker
is only responsible for handling queries of one DNN model,
which is not very efficient for the resource-contained edge
devices.

AWS SageMaker recently introduced serverless inference
services [39] for deploying DNN models that automatically
scale resources based on incoming requests. This eliminates
the need for manual server management and is ideal for
workloads with unpredictable traffic patterns, as it only al-
locates resources when needed. This saves costs compared
to constantly running servers and simplifies deployment for
small to medium-sized businesses. Vertex AI Pipeline [40]
by Google Cloud offers similar functionalities. Vertex AI
Pipelines eliminates the need to manage machine learning
projects and allows users to build automated workflows that
handle everything from training the DNN models to monitor-
ing their performance–all without needing to manage servers.

AMPS-inf [41] is a framework developed to exploit the
serverless inference services to mitigate the management and
overall cost while meeting the response time. AMPS-inf
achieves that by using a technique of model partitioning.
This involves breaking down the model into smaller pieces
that can be run independently. It then formulates a Mixed-
Integer Quadratic Programming problem to determine how
many partitions to split the model into and how to assign those
partitions to be run on serverless functions. The appropriate
resources for each serverless function (e.g., memory, CPU) are
acquired by solving this problem, AMPS-Inf aims to find the
most cost-effective way to run the inference tasks while still
meeting the required response time.

Ali et. al. proposed a framework called BATCH [42] for
latency performance and cost-effectiveness of machine learn-
ing inference. BATCH uses an optimizer to provide inference
tail latency guarantees and cost optimization and to enable
adaptive batching support. To meet the service level objectives
BATCH adopts adaptive parameter tuning, which allows it
to dynamically adjust the batching parameter based on the
objectives defined by the user.

TETRIS is a serverless platform specifically designed for
running deep learning inference tasks efficiently. It tackles
the common problem of high memory usage in serverless
environments by using a combination of techniques. TETRIS
automatically shares resources like the tensors used by differ-
ent inference tasks and reclaims unused memory and schedules
serverless instances efficiently to minimize wasted resources. It

also ensures the required performance standards of a serverless
inference system.

VIII. CONCLUSION

FusedInf is designed to efficiently load and query multiple
DNN models concurrently at the same time. The purpose
of FusedInf is to facilitate the serverless inference services
on the edge in order to serve more users per day by sav-
ing time when initializing and executing DNN models. The
proposed framework achieves this by efficiently compiling a
single DAG of multiple DNN models, which requires fewer
memory calls, accelerates memory allocation, and achieves
higher throughput. As such, FusedInf can allow a serverless
inference service provider to serve more users at a time
when there is a high traffic of queries for a wide variety
of different DNN models. In the future, we will experiment
with more model architectures and try to employ opportunistic
approaches to find the best model combination for the most
efficient utilization of GPU memory and function calls.

REFERENCES

[1] P. McEnroe, S. Wang, and M. Liyanage, “A survey on the convergence
of edge computing and ai for uavs: Opportunities and challenges,” IEEE
Internet of Things Journal, vol. 9, no. 17, pp. 15 435–15 459, 2022.

[2] M. Kamruzzaman, “New opportunities, challenges, and applications
of edge-ai for connected healthcare in smart cities,” in 2021 IEEE
Globecom Workshops (GC Wkshps). IEEE, 2021, pp. 1–6.

[3] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Amps-inf: Automatic model
partitioning for serverless inference with cost efficiency,” in Proceedings
of the 50th International Conference on Parallel Processing, 2021, pp.
1–12.

[4] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and K. Li,
“Infless: a native serverless system for low-latency, high-throughput
inference,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2022, pp. 768–781.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[8] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[9] J. Yao, S. Zhang, Y. Yao, F. Wang, J. Ma, J. Zhang, Y. Chu, L. Ji,
K. Jia, T. Shen et al., “Edge-cloud polarization and collaboration: A
comprehensive survey for ai,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 7, pp. 6866–6886, 2022.

[10] F. Firouzi, B. Farahani, and A. Marinšek, “The convergence and inter-
play of edge, fog, and cloud in the ai-driven internet of things (iot),”
Information Systems, vol. 107, p. 101840, 2022.

[11] Y. Wu, “Cloud-edge orchestration for the internet of things: Architecture
and ai-powered data processing,” IEEE Internet of Things Journal,
vol. 8, no. 16, pp. 12 792–12 805, 2020.

[12] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[13] P. Guo, B. Hu, and W. Hu, “Mistify: Automating {DNN} model porting
for {On-Device} inference at the edge,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21), 2021, pp.
705–719.



[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda: Is cuda the parallel programming model that
application developers have been waiting for?” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[15] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[16] Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, and M. Yang,
“Estimating gpu memory consumption of deep learning models,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 1342–1352.

[17] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[18] A. Padmanabhan, N. Agarwal, A. Iyer, G. Ananthanarayanan, Y. Shu,
N. Karianakis, G. H. Xu, and R. Netravali, “Gemel: Model merging for
{Memory-Efficient},{Real-Time} video analytics at the edge,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 973–994.

[19] D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia, “Acceler-
ating deep learning workloads through efficient multi-model execution,”
in NeurIPS Workshop on Systems for Machine Learning, vol. 20, 2018.

[20] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra,
M. Kaminsky, M. A. Kozuch, P. Pillai, D. G. Andersen, and
G. R. Ganger, “Mainstream: Dynamic Stem-Sharing for Multi-Tenant
video processing,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp.
29–42. [Online]. Available: https://www.usenix.org/conference/atc18/
presentation/jiang

[21] X. Sun, R. Panda, R. Feris, and K. Saenko, “Adashare: Learning what
to share for efficient deep multi-task learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 8728–8740, 2020.

[22] “Cisco annual internet report (2018–2023) white paper,” https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html, accessed: 2024.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[27] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848–6856.

[28] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[29] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[30] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 2820–2828.

[31] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[33] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”
https://github.com/onnx/onnx, 2019.

[34] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A Low-Latency online prediction serving
system,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). Boston, MA: USENIX Association,
Mar. 2017, pp. 613–627. [Online]. Available: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/crankshaw

[35] “Machine learning service - amazon sagemaker,” https://aws.amazon.
com/sagemaker/, accessed: 2024.

[36] J. Barnes, “Azure machine learning,” Microsoft Azure Essentials. 1st ed,
Microsoft, 2015.

[37] “Vertex ai - machine learning platform,” https://cloud.google.com/
vertex-ai, accessed: 2024.

[38] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association,
Jul. 2021, pp. 397–411. [Online]. Available: https://www.usenix.org/
conference/atc21/presentation/romero

[39] “Amazon sagemaker serverless inference,” https://docs.aws.amazon.
com/sagemaker/latest/dg/serverless-endpoints.html, accessed: 2024.

[40] “Introduction to vertex ai pipelines,” https://cloud.google.com/vertex-ai/
docs/pipelines/introduction, accessed: 2024.

[41] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Amps-inf: Automatic model
partitioning for serverless inference with cost efficiency,” in Proceedings
of the 50th International Conference on Parallel Processing, ser. ICPP
’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3472456.3472501

[42] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learn-
ing inference serving on serverless platforms with adaptive batching,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1–15.

https://www.usenix.org/conference/atc18/presentation/jiang
https://www.usenix.org/conference/atc18/presentation/jiang
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://arxiv.org/abs/1409.4842
https://www.tensorflow.org/
https://github.com/onnx/onnx
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://cloud.google.com/vertex-ai/docs/pipelines/introduction
https://cloud.google.com/vertex-ai/docs/pipelines/introduction
https://doi.org/10.1145/3472456.3472501

	Introduction
	Background
	CUDA API Operations
	Recent Advancements

	Challenges & Motivation
	CUDA Optimization Challenges
	Motivation

	System Design
	System Architecture
	FusedInf Optimization Techniques
	How FusedInf Addresses the Challenges

	Evaluation
	Impact on Time and Memory with Different Number of Models
	Impact on Time and Memory with Consecutive Swaps
	Impact on Time and Memory with Individual Model Swaps in a DAG

	Discussion
	Related Work
	Conclusion
	References

