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Abstract

Fast cold start is critical for many serverless applications. For
Python, startup is typically dominated by module initialization.
In this work, we analyze the dependencies of 9,678 Python applica-
tions and create ReqBench, a new benchmark for stressing module
initialization. Informed by our findings, we design Forklift, a new
algorithm for training zygote trees based on invocation history.
Each zygote pre-imports some modules and can be forked to cre-
ate other zygotes or function instances. We integrate Forklift with
OpenLambda, improving median invocation latency by about 5x
while using only a modest memory footprint (<6 GB).
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1 Introduction

As serverless platforms [1, 2, 4, 5] become increasingly popular,
fast startup becomes ever more important. Recently, there has been
significant progress towards reducing the startup latency of contain-
ers [13], virtual machines [6, 8, 16, 19], and unikernels [10, 18, 23].
Lightweight sandboxing, however, is only half of the solution; the
other half is initializing processes inside these sandboxes. Popu-
lar languages such as Python and JavaScript have corresponding
package repositories. Tools such as pip and npm make it easy for
developers to construct applications that build upon libraries in
these repositories; the libraries, in turn, frequently depend on other
libraries. Unfortunately, importing these resources introduces sig-
nificant startup latency [20]. When many applications have the
same dependencies, these startup costs are paid repeatedly.
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Figure 1: Example Zygote Trees. Nodes correspond to processes,

labels indicate imported packages, and arrows point from parents
to forked children.

One popular solution is zygote initialization [3, 7, 9, 11, 17, 20].
With this approach, a zygote process pre-imports frequently-used
modules, but does not run any specific application. Applications
needing those modules provision the processes by creating copy-
on-write clones of the zygote. This approach is fast (child processes
already have resources imported), efficient (physical memory con-
taining code is shared across different processes), and isolated (pro-
cesses attempting to modify shared pages trigger copy on write).

In this work, we focus specifically on hierarchical zygotes [20].
When zygotes are hierarchical, parent zygotes importing an initial
set of packages are used to provision child zygotes, each of which
import additional packages and may have their own children. The
resulting structure is a zygote tree. The central question of this
paper is: how should a large tree of zygotes be organized?

Figure 1 shows that there are numerous possibilities, even for
a trivial scenario involving two packages, F and G. Is it better to
allocate memory for one version of each package (tree A), or only
support two releases of a popular package G (tree B)? The answer
clearly depends on workload patterns. Zygote tree structure must
also reflect dependencies between packages. For example, if package
F has a dependency on G2, then tree D is reasonable, but C is not.

Assuming no dependency relationship between packages F and
G2, we must consider security when selecting between trees C and
D. We assume public repositories are not carefully vetted for mali-
cious packages or security bugs [22]. Developers are responsible
for selecting safe dependencies for their functions, and serverless
platforms should not initialize function processes from zygotes
that import dependencies beyond those selected. Thus, a function
requiring only F can safely use tree C, but the zygote for F in tree
D exposes the function to an unwanted package, G2.

Our first contribution in this work is a detailed study of 9,678
Python requirements.txt files from GitHub (§2). This study reveals
dependency patterns with numerous implications for the construc-
tion of zygote trees. For example, the top 15 packages appear in over
50% of the files, so relatively few zygotes could provide substantial
benefit. The average application only has 7 direct package depen-
dencies but 24 total package dependencies; the indirect nature of
dependency layers is a natural fit for hierarchical zygotes. Moreover,
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about half of package dependencies are flexible regarding what ver-
sion of a package to use, creating opportunities to select versions
based on available zygotes. We also contribute a new benchmark,
ReqgBench (§3), based on our dataset of dependencies.

Based on our package study, we design a new algorithm, Forklift
(§4), for generating efficient zygote trees based on historical invoca-
tion data. The Forklift algorithm is inspired by classic algorithms for
iteratively constructing decision trees, one node at a time. We adapt
the OpenLambda serverless platform [20] to support Forklift trees.
This requires building new support into OpenLambda for multiple
package versions. We also introduce a lazy-loading optimization so
workers can start quickly, even with large trees. We use ReqBench
to carefully evaluate Forklift tree structure and performance bene-
fits (§5). We find that trees importing multiple packages in a single
node outperform trees with single-package nodes. The best trees
improve invocation latency by 5x while consuming <6 GB of RAM.
We finally discuss related work (§6) and conclude (§7).

2 GitHub PyPI Dependency Study

Python package installation typically involves using pip to install
packages from the PyPI repository. For instance, pip install p==1.2.3
installs a specific version, while pip install -r requirements.txt installs
multiple packages listed in the given file. A requirements.txt file
may only list direct dependencies, with pip identifying indirect de-
pendencies recursively. In this section, we analyze requirements.txt
files to discern Python package usage patterns. Understanding these
patterns is crucial for constructing efficient zygote trees.

Our analysis utilizes the GitHub Activity Data from the Big-
Query public dataset [12]. This dataset offers a snapshot of over
2.8 million open-source GitHub repositories as of November 26,
2022, encompassing commits, file paths, and contents. Specifically,
we extracted 9,678 unique requirements.txt files from repositories
updated post-April 21, 2022 for our study.

We expect most of these applications are not meant to be de-
ployed as serverless functions. However, understanding and bench-
marking a broader class of applications is useful; doing so may
enable us to build the next generation of serverless platforms capa-
ble of running applications that are a poor fit for current platforms.

We explore several questions in this section. How precisely do
programmers specify package versions (§2.1)? How many direct and
indirect packages do applications typically require (§2.2)? And what
is the popularity distribution across packages (§2.3)?

2.1 Version Specification Patterns

A requirements.txt file may or may not specify version requirements
for a package; when it does, the requirement may be exact (i.e.
==) or less precise (e.g. !=, =, <, <=, >, and >=). We categorize
version specification patterns as follows: Implicit: there is no version
requirement given, so pip can select a version; Explicit (latest): an
exact version was specified, and that version was the most recent,
as of the dataset’s last update; Explicit (others): a non-latest version
was specified; and Range: other version requirements involving
comparison operators.

Figure 2 shows how versions are specified for the 15 most popular
packages, as well as an average over all 11,842 packages in our
dataset. For the average package, the most popular specifications
are Explicit (latest) and Implicit, at 40.3% and 35.6%, respectively.
The average package uses Explicit (others) only 9.8% of the time,
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Figure 2: The version specification breakdown for the 15 most popu-
lar packages. The comparative "Average" bar represents the percent-
ages for the entire dataset.
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Figure 3: CDF plot showing the number of packages per file type.
but explicit versions are used more often with popular packages,
perhaps because established packages have a longer history of
releases to choose from.

Implications: For the average package, Python applications
are flexible about what version is used (Implicit and Range options
represent the majority of cases). This creates an opportunity for
execution platforms to choose versions based on what packages
are already pre-installed (or otherwise warm) on a server.

2.2 Requirement Counts

We now explore how many package dependencies, direct or other-
wise, a typical Python application has. Indirect dependencies are
packages that are not directly required by the project but by the
project’s dependencies. In order to infer (a) precise package ver-
sions and (b) indirect dependencies, we attempt to pip-compile [21]
each requirements.txt file in our dataset to produce an output re-
quirements file (complete.txt) with precise versions of all packages
(direct or otherwise). The output of a pip-compile depends on the en-
vironment and the latest package versions at the time of execution.
We generated the complete.txt files with Python 3.10 on September
21, 2023. Among our 9,678 requirements.txt files, 71% (6,870) were
compiled successfully. Failures occurred due to inconsistent file
formats, version updates, etc.

Figure 3 shows a CDF of dependency counts for raw require-
ments.txt files, complete.txt files, and the subset of the require-
ments.txt files on which pip-compile ran successfully. An average
requirements.txt file only has 11 requirements, but the compilable
ones were somewhat shorter (about 7). For a typical application,
over 70% of dependencies are indirect (the complete.txt files are, on
average, 3.4X longer than their corresponding inputs). 10.63% of
the complete.txt files have >50 packages.

Implications: Most package requirements are indirect, so pack-
age initialization may be costlier than one might expect; fortunately,
zygotes can help alleviate these costs. The multi-layered nature of
package dependencies is a natural fit for hierarchical zygote trees.
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Figure 4: The cumulative coverage plot depicting the frequency with
which the top X packages appear in the requirements files relative
to the total data set.
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Figure 5: The stacked bar plot delineating the proportion of direct
versus indirect package usages in complete.txt files.

2.3 Popularity Distribution

Some packages are more "popular” than others (i.e., they are de-
pendencies for more applications). We now explore the popularity
skew of the packages in our dataset.

Figure 4 shows how many requirements.txt files specify at least
one of a set of popular packages. The x-axis indicates the number
of top packages considered, and the y-axis displays the percentage
of all requirements.txt files where these top packages appear. Re-
markably, the top 15 packages alone account for more than 50% of
the files for both requirements.txt and complete.txt.

Figure 5 shows how often the top 15 packages appear in com-
plete.txt files, both when grouping together all versions of the same
packages (left) or treating each package version as distinct (right).
We observe that the 6 most popular packages are used as depen-
dencies in about half of all applications. We also observe that the
most popular packages are usually indirect dependencies.

Implications: The significant skew in package popularity indi-
cates that relatively few zygotes could provide substantial benefit.

3 ReqBench

We introduce ReqBench, a new serverless benchmark designed to
measure the efficiency of module import time and memory con-
sumption. We construct a suite of ReqBench functions from our
dataset of complete.txt files (§2) as follows: identify the p most pop-
ular packages, select complete.txt files that use only those packages,
and generate a function corresponding to each complete.txt file.
Each function is a no-op, importing only the top-level modules of
direct dependencies (85% have a single top-level module).

The ReqBench executor invokes functions in parallel and is ex-
tensible for different FaaS platforms. Note that we cannot vet the
security of all the packages of ReqBench (malicious packages have
been found in the PyPI repository [22]), so any execution or instal-
lation of ReqBench functions should be sandboxed.
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with linear regression fit.

RegBench exposes p and n parameters. Package Count (p): select
the p most popular packages during construction of the function
suite. The default setting (p = 500) yields 1793 functions. Concur-
rency (n): ReqBench tasks issue requests as fast as necessary to keep
n requests outstanding at all times (default: n = 5).

Workload Properties: We download the 500 packages for Req-
Bench’s default mode; prior to installation, the cumulative com-
pressed size of these packages is 492.9 MB. Installing all the pre-
downloaded packages sequentially takes 4.9 minutes. The installed
packages have an on-disk footprint of 1.8 GB. We sequentially im-
port each package’s top-level modules (excluding 22 packages for
which imports fail due to faulty dependency metadata); the imports
take 12.7 seconds. We measure the time and memory cost (mea-
sured as wall-clock time and the cumulative size of Python objects,
respectively) of importing the top-level modules for each package.
Figure 6 shows a scatter of the 500 packages used. We observe a
strong correlation between memory allocation and time (R? = 0.91).
We also observe that 43% of packages take over 9 ms to import. This
is a substantial cost, given that a typical application has 7 direct
(and 24 indirect) package dependencies (§2.2).

4 Forklift Zygote Trees

Our analysis shows that a typical Python application requires ~24
packages when counting indirect dependencies (§2.2) and importing
modules for these packages is costly (§3). High package popularity
skew (§2.3) suggests relatively few zygotes could alleviate initial-
ization work for many functions. Furthermore, popular packages
frequently serve as dependencies for many different "higher-level"
packages; hierarchical zygote implementations better reflect these
relationships than flat zygote systems. In this section, we first intro-
duce Forklift, an algorithm for training zygote trees on historical
invocation data (§4.1). Second, we describe how we integrate Fork-
lift trees with the OpenLambda [14] serverless platform (§4.2).

4.1 Tree Construction
We propose a new approach for constructing zygote trees from
historical function-invocation data. We first describe the basic al-
gorithm that treats all packages equally and constructs trees with
one package per node, where the zygote process corresponding
to each node pre-loads the top-level modules of that package. We
then optimize the algorithm to (a) prioritize "heavy" packages and
(b) allow nodes to load multiple packages.

Algorithm 1 describes the basic version of the Forklift algorithm.
The algorithm trains the tree on historical invocation data, repre-
sented as a binary calls matrix. The basic version supports different
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Algorithm 1 Forklift Tree Construction: Basic Version

1: candidateQ « PriorityQueue() // highest utility first

2: function BUILD_TREE(calls, desired_nodes)

3 root « Node(calls, no packages)

4 ENQUEUE_TOP_CHILD_CANDIDATE(r00t)

5 while desired_nodes > 0 and len(candidateQ) > 0 do
6: best_candidate «— candidateQ.pop()

7 ADD_CHILD_NODE(best_candidate)

8 desired_nodes — —

9: return root

10: function ENQUEUE_TOP_CHILD_CANDIDATE(parent)

11 candidates < empty list

12: for child_pkgV in parent.calls.column_names do

13: if child_pkgV is valid then

14: utility « sum(child_pkgV column of parent.calls)
15: add (parent, child_pkgV, utility) to candidates

16: candidateQ.push(highest-utility candidates entry, if any)
17: function ADD_CHILD_NODE(candidate)

18: parent « candidate.parent

19: child_pkgV <« candidate.child_pkgV

20: child_calls = rows in parent.calls that import child_pkgV
21: child « Node(child_calls, child_pkgV)

22: parent.add_child(child)

23: update parent.calls to remove child_calls rows
24: ENQUEUE_TOP_CHILD_CANDIDATE(parent)
25: ENQUEUE_TOP_CHILD_CANDIDATE(child)

versions of the same package, and each package/version combi-
nation is represented as a column in the matrix. Each function
invocation is represented as a row, and 1’s indicate the packages a
function being invoked needs (including indirect dependencies).

The BUILD_TREE function starts with a single-node tree, then
repeatedly adds nodes to the tree until the tree is a desired size.
Each node (except the root) indicates what package the zygote
should pre-load. A process started from a zygote will have all the
packages pre-loaded along the path from the root zygote to the
zygote that is forked. Thus, a package may often be assigned to
multiple nodes in the tree to provide fast initialization for different
package combinations. Each node has its own calls matrix, indicat-
ing which function invocations would be routed to that zygote for
initialization. Whenever a child is added, a subset of the parent’s
rows are taken away and used to create the child’s call matrix.

At any given time, we can add many child nodes to the exist-
ing tree nodes. A function, ENQUEUE_TOP_CHILD_CANDIDATE,
identifies the best potential child for a given node, according to a
utility measure, and places that candidate in a global priority queue,
candidateQ; the main loop of the algorithm pulls from this queue.
The utility of a candidate is computed as the sum over the column
corresponding to the package/version that the candidate’s zygote
would pre-load; in other words, utility (for now) is simply a mea-
sure of usage frequency. The ENQUEUE_TOP_CHILD_CANDIDATE
function is called on any new node added to the tree, such that each
node in the tree always has an associated candidate, which is the
best potential child that could be added to to that node.
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The ENQUEUE_TOP_CHILD_CANDIDATE function is also re-
sponsible for suppressing some invalid candidates. For example, a
node N should not be responsible for a package P unless the ances-
tor nodes of N are responsible for the dependencies of P. Also, a
package that has already been imported by an ancestor should not
be considered again as a candidate. Finally, conflicting versions of
the same package are not allowed.

The ADD_CHILD_NODE is responsible for actually turning a
candidate into a new child node in the tree and moving some of the
parent’s rows to the child. ENQUEUE_TOP_CHILD_CANDIDATE
is then called to find the best candidate for the new node. There
is no limit on the number of children a node may have, so a new
candidate is also found for the parent of the new node (the new
node was previously a candidate, so after it is added, the parent
needs a new best candidate).

Optimizations: The final Forklift algorithm has two improve-
ments beyond the basic approach. First, we profile packages and
give more weight to those with slow module imports. One could
alternatively weight based on memory consumption, though these
two measures are highly correlated (§3). We implement priority by
replacing the 1’s in the binary calls matrix with the weight values
(recall that utility is a sum over a column in the matrix).

For our second optimization, we remove the requirement that a
node can only have one corresponding package/version. We do so
by lifting the requirement that a node N can only be responsible for
P if N’s ancestors are responsible for P’s dependencies. When we
assign P to N, we simply assign any of P’s unsatisfied dependencies
to N as well. The utility is then calculated by summing the weights
of all dependencies and multiplying this total by the number of
calls to import these packages.

4.2 Tree Deployment in OpenLambda

We adapt the OpenLambda serverless platform [14] to use Forklift
trees to initialize containers for functions. OpenLambda is based on
SOCK [20], a lightweight container implementation that supports a
sandbox-level fork. Although this mechanism supports hierarchical
zygotes, the SOCK approach has two major limitations: (1) there is
no support for different versions of the same package and (2) zygotes
are created greedily to serve the needs of the current invocation,
without consideration of historical workload patterns.

We modify the OpenLambda worker to support multiple package
versions. In our version, functions must provide complete require-
ments.txt files listing exact versions of every package (users may
generate these using pip-compile on a regular requirements.txt file).
All package versions installed by workers are visible via package
mounting inside every sandbox; automatically configured path vari-
ables ensure functions import the desired version. Unless function
code tampers with the path, functions are not exposed to potentially
malicious unrequired packages.

We also modify OpenLambda to take a tree specification upon
startup. In a typical deployment, we imagine Forklift running in
the background (e.g., hourly), generating trees based on recent
invocations. OpenLambda workers could restart when there is a
new tree. To speed up restart, zygotes are created lazily upon first
use. Zygotes may be evicted under memory pressure.

Upon an invocation, OpenLambda traverses the zygote tree,
starting from the top and choosing the deepest zygote that only
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includes requested packages (if a zygote Z provides a package a
function F does not need, it would be insecure to initialize F from
Z, as packages are neither vetted nor trusted). If multiple zygotes
match the needs of the function, the left-most child is selected.

5 Evaluation

We use ReqBench to evaluate Forklift trees on an OpenLambda
worker deployed on an Azure VM (8 cores, 32 GB RAM, Ubuntu
22.04). To avoid overfitting, we split the default ReqBench call trace,
which consists of 1793 functions (each with a single invocation), into
equal sized train and test traces. Forklift constructs trees from the
train trace, and we execute the test trace to measure performance.

Kernel bottlenecks from cgroup locking and namespace unshar-
ing hindered deploying large trees under heavy load. Therefore, we
disabled unsharing and configured OpenLambda to reuse cgroups
in our experiments. This setup reduces isolation between functions,
but the performance results better represent the benefits of zygote
trees if future kernel work (orthogonal to our work) removes these
concurrency bottlenecks.

For the first experiment, we construct trees of different sizes,
using four variants of the Forklift algorithm. We measure work-
load throughput and zygote consumption for each tree at steady
state (achieved by playing the trace twice and measuring perfor-
mance during the second run). Throughput matters directly to
cloud providers (high-throughput workers save money) and often
indirectly to users (providers may pass some savings along to cus-
tomers). Figure 7 shows the results, averaged over 10 runs. The
best tree improves throughput by 4.3x relative to the baseline (a
single zygote consisting of an initialized Python interpreter and no
additional modules). All the trees have a modest memory footprint
(<6 GB of RAM). We observe that assigning multiple packages to a
single zygote is a critical optimization; the trees that do so double
throughput relative to their single-package equivalents. Finally,
weighting packages by import time is helpful for smaller trees, but
the benefit becomes less significant for the largest trees.

Figure 8 show a CDF of invocation latency for a single run of
the workload. We see that both small and large trees provide large
speedups relative to the baseline (a single zygote). The baseline’s
median latency is 76.5 ms; with small and large trees, median re-
quests are 3.2x and 4.8x faster, respectively. At the 95th percentile,
speedups are 2.7X and 5.3x, respectively.
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Figures 9 and 10 show small (i.e., 40-node) multi-package trees,
without and with time weighting, respectively. We observe that
for small trees such as these, the uniform-weight version (which
only considers frequency) misses many of the heavy zygotes that
the time-weighted variant constructs. Larger trees will naturally
serve more package combinations, so for that case it is less critical
to add nodes for heavy packages first. The nodes in the figures are
annotated to indicate how many packages are pre-loaded. For ex-
ample, the Jupyter nodes usually require about 90 packages. Clearly,
initializing a 90-node zygote chain (from root to leaf) will be costly;
anecdotally, this explains why the single-package zygote trees per-
form poorly relative to the multi-package trees.
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Although we initialize zygote processes lazily upon first use,
some providers may wish to eagerly initialize zygotes to make the
performance more predictable. Figure 11a shows that all zygotes
can be created in less than 7 seconds, even for large trees (we
concurrently create the zygote processes with six threads).

Figure 11b shows hit rates for trees of different sizes. When a
function is initialized from a zygote, we count every package the
zygote provides to the function as a hit; packages not provided
by zygotes are misses. We see that the multi-package, uniform-
weighted tree has the best hit rates (over 90%); the fact that the
time-weighted tree is the fastest indicates that not all misses are
equal (some package imports are slower than others).

6 Related Work

Many systems use zygotes for fast initialization. Java processes
on Android [9] are an early case (and the first usage of the term
"zygote" of which we are aware). More recently, Meta open-sourced
Cinder [3], a modified Python interpreter that optimizes garbage
collection for copy-on-write memory and is used for zygote ini-
tialization by Instagram. Fast startup is especially important in
serverless settings; OpenLambda [20], SAND [7], Catalyzer [11],
and Pagurus [17] have all previously used zygote-based techniques
to initialize serverless function instances. Prior work focuses on
zygote mechanisms, whereas Forklift orthogonally suggests a new
way to fit zygote trees to historical invocation data.

Pre-initialized instances are an alternative to zygotes [19]. While
pools can improve latency, zygotes are more efficient: zygotes can
support high throughput whereas pools may become exhausted,
and zygotes naturally support memory sharing between instances.
Sharing does entail risk: address space randomization is difficult to
implement in combination with zygotes [15], but not with pools.

Dependencies are not the only cause for slow startup. Fire-
cracker [8] and Kata [6] are recent lightweight virtual machine
implementations designed for fast startup. RunD [16] (based on
Kata) is designed to overcome some of the challenges we encoun-
tered with cgroup bottlenecks.

7 Conclusion

We have analyzed the package requirements for over 9,678 Python
projects on GitHub and found that modern applications rely heavily
on third party packages, which in turn rely on other packages. We
introduce Forklift, a new algorithm for constructing trees of zygotes
to help initialize these dependencies more quickly for new sand-
boxes. We have integrated Forklift trees with OpenLambda, making
invocation latency about 5X faster for the ReqBench workload.

18

Yuanzhuo Yang, Kwangjong Choi, Keting Chen, and Tyler Caraza-Harter

8 Acknowledgements

We thank Remzi H. Arpaci-Dusseau and the anonymous WoSC
reviewers for their valuable feedback.

References

[1] 2024. AWS Lambda. https://aws.amazon.com/lambda/.

] 2024. Azure Functions. https://azure.microsoft.com/en-us/services/functions/.

] 2024. Cinder. https://github.com/facebookincubator/cinder.

[4] 2024. Google Cloud Functions. https://cloud.google.com/functions/docs/.

] 2024. IBM OpenWhisk. https://developer.ibm.com/openwhisk/.

] 2024. The speed of containers, the security of VMs. https://katacontainers.io/.

] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance serverless computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18). 923-935.

[8] Jeff Barr. 2018. Firecracker — Lightweight Virtualization for Serverless Computing.
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-
serverless-computing/.

[9] Dan Bornstein. 2008. Dalvik VM Internals. https://www.kandroid.org/board/dat

a/board/AndroidBeginner/file_in_body/1/2008-05- 29-Presentation- Of-Dalvik-

VM-Internals.pdf.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make serverless fast.

In Proceedings of the Fifteenth European Conference on Computer Systems. 1-15.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-

uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for Serverless

Computing with Initialization-less Booting. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and

Operating Systems. 467-481.

GitHub. 2022. GitHub Repos Public Dataset. https://console.cloud.google.com/m

arketplace/product/github/github-repos

Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. 2016. Slacker: Fast Distribution with Lazy Docker Containers.

In 14th USENIX Conference on File and Storage Technologies (FAST 16). USENIX

Association, Santa Clara, CA, 181-195. https://www.usenix.org/conference/fast

16/technical-sessions/presentation/harter

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-

mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. Serverless

Computation with OpenLambda. In 8th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 16).

Byoungyoung Lee, Long Lu, Tielei Wang, Taesoo Kim, and Wenke Lee. 2014.

From Zygote to Morula: Fortifying Weakened ASLR on Android. In 2014 IEEE

Symposium on Security and Privacy. IEEE, 424-439.

Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha,

Qiang Wang, Weidong Han, and Minyi Guo. 2022. RunD: A Lightweight Secure

Container Runtime for High-density Deployment and High-concurrency Startup

in Serverless Computing. In 2022 USENIX Annual Technical Conference (USENIX

ATC 22). 53-68.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo

Song, Tao Ma, Yong Yang, Chao Li, et al. 2022. Help Rather Than Recycle: Allevi-

ating Cold Startup in Serverless Computing Through Inter-Function Container

Sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 69-84.

Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,

David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon

Ludlam, et al. 2015. Jitsu: Just-In-Time Summoning of Unikernels. In 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 15). 559-573.

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit

Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter

(and Safer) than your Container. In Proceedings of the 26th Symposium on Operat-

ing Systems Principles (SOSP ’17). Association for Computing Machinery, New

York, NY, USA, 218-233.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea

Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-

sioning with Serverless-Optimized Containers. In 2018 USENIX annual technical

conference (USENIX ATC 18). 57-70.

The pip-tools Contributors. 2023. pip-tools documentation v7.3.0. https://pip-

tools.readthedocs.io/en/stable/

Nikolai Philipp Tschacher. 2016. Typosquatting in Programming Language Package

Managers. Ph. D. Dissertation. Universitdt Hamburg, Fachbereich Informatik.

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li,

Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX:

A Dynamic Library Operating System for Simplified and Efficient Cloud Virtual-

ization. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 173-186.

[12

[13

[14

[15

[16

[17

=
&

[19

[20

[21

~
&,

[23


https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/facebookincubator/cinder
https://cloud.google.com/functions/docs/
https://developer.ibm.com/openwhisk/
https://katacontainers.io/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless- computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless- computing/
https://www.kandroid.org/board/data/board/AndroidBeginner/file_in_body/1/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf
https://www.kandroid.org/board/data/board/AndroidBeginner/file_in_body/1/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf
https://www.kandroid.org/board/data/board/AndroidBeginner/file_in_body/1/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf
https://console.cloud.google.com/marketplace/product/github/github-repos
https://console.cloud.google.com/marketplace/product/github/github-repos
https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://pip-tools.readthedocs.io/en/stable/
https://pip-tools.readthedocs.io/en/stable/

	Abstract
	1 Introduction
	2 GitHub PyPI Dependency Study
	2.1 Version Specification Patterns
	2.2 Requirement Counts
	2.3 Popularity Distribution

	3 ReqBench
	4 Forklift Zygote Trees
	4.1 Tree Construction
	4.2 Tree Deployment in OpenLambda

	5 Evaluation
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

