
Forklift: Fitting Zygote Trees for Faster Package Initialization
Yuanzhuo Yang

University of Wisconsin-Madison

Madison, WI, USA

Kwangjong Choi

University of Wisconsin-Madison

Madison, WI, USA

Keting Chen

University of Wisconsin-Madison

Madison, WI, USA

Tyler Caraza-Harter

University of Wisconsin-Madison

Madison, WI, USA

Abstract
Fast cold start is critical for many serverless applications. For

Python, startup is typically dominated by module initialization.

In this work, we analyze the dependencies of 9,678 Python applica-

tions and create ReqBench, a new benchmark for stressing module

initialization. Informed by our findings, we design Forklift, a new

algorithm for training zygote trees based on invocation history.

Each zygote pre-imports some modules and can be forked to cre-

ate other zygotes or function instances. We integrate Forklift with

OpenLambda, improving median invocation latency by about 5×
while using only a modest memory footprint (<6 GB).

CCS Concepts
• Computer systems organization→ Cloud computing.

Keywords
function-as-a-service, dependency support, zygote initialization

ACM Reference Format:
Yuanzhuo Yang, Kwangjong Choi, Keting Chen, and Tyler Caraza-Harter.

2024. Forklift: Fitting Zygote Trees for Faster Package Initialization. In

10th International Workshop on Serverless Computing (WoSC ’24), December
2–6, 2024, Hong Kong, Hong Kong. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3702634.3702952

1 Introduction
As serverless platforms [1, 2, 4, 5] become increasingly popular,

fast startup becomes ever more important. Recently, there has been

significant progress towards reducing the startup latency of contain-

ers [13], virtual machines [6, 8, 16, 19], and unikernels [10, 18, 23].

Lightweight sandboxing, however, is only half of the solution; the

other half is initializing processes inside these sandboxes. Popu-

lar languages such as Python and JavaScript have corresponding

package repositories. Tools such as pip and npm make it easy for

developers to construct applications that build upon libraries in

these repositories; the libraries, in turn, frequently depend on other

libraries. Unfortunately, importing these resources introduces sig-

nificant startup latency [20]. When many applications have the

same dependencies, these startup costs are paid repeatedly.
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Figure 1: Example Zygote Trees. Nodes correspond to processes,
labels indicate imported packages, and arrows point from parents
to forked children.

One popular solution is zygote initialization [3, 7, 9, 11, 17, 20].

With this approach, a zygote process pre-imports frequently-used

modules, but does not run any specific application. Applications

needing those modules provision the processes by creating copy-

on-write clones of the zygote. This approach is fast (child processes
already have resources imported), efficient (physical memory con-

taining code is shared across different processes), and isolated (pro-

cesses attempting to modify shared pages trigger copy on write).

In this work, we focus specifically on hierarchical zygotes [20].

When zygotes are hierarchical, parent zygotes importing an initial

set of packages are used to provision child zygotes, each of which

import additional packages and may have their own children. The

resulting structure is a zygote tree. The central question of this

paper is: how should a large tree of zygotes be organized?
Figure 1 shows that there are numerous possibilities, even for

a trivial scenario involving two packages, F and G. Is it better to

allocate memory for one version of each package (tree A), or only

support two releases of a popular package G (tree B)? The answer

clearly depends on workload patterns. Zygote tree structure must

also reflect dependencies between packages. For example, if package

F has a dependency on G2, then tree D is reasonable, but C is not.

Assuming no dependency relationship between packages F and

G2, we must consider security when selecting between trees C and

D. We assume public repositories are not carefully vetted for mali-

cious packages or security bugs [22]. Developers are responsible

for selecting safe dependencies for their functions, and serverless

platforms should not initialize function processes from zygotes

that import dependencies beyond those selected. Thus, a function

requiring only F can safely use tree C, but the zygote for F in tree

D exposes the function to an unwanted package, G2.

Our first contribution in this work is a detailed study of 9,678

Python requirements.txt files from GitHub (§2). This study reveals

dependency patterns with numerous implications for the construc-

tion of zygote trees. For example, the top 15 packages appear in over

50% of the files, so relatively few zygotes could provide substantial

benefit. The average application only has 7 direct package depen-

dencies but 24 total package dependencies; the indirect nature of

dependency layers is a natural fit for hierarchical zygotes. Moreover,
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about half of package dependencies are flexible regarding what ver-

sion of a package to use, creating opportunities to select versions

based on available zygotes. We also contribute a new benchmark,

ReqBench (§3), based on our dataset of dependencies.

Based on our package study, we design a new algorithm, Forklift

(§4), for generating efficient zygote trees based on historical invoca-

tion data. The Forklift algorithm is inspired by classic algorithms for

iteratively constructing decision trees, one node at a time. We adapt

the OpenLambda serverless platform [20] to support Forklift trees.

This requires building new support into OpenLambda for multiple

package versions. We also introduce a lazy-loading optimization so

workers can start quickly, even with large trees. We use ReqBench

to carefully evaluate Forklift tree structure and performance bene-

fits (§5). We find that trees importing multiple packages in a single

node outperform trees with single-package nodes. The best trees

improve invocation latency by 5× while consuming <6 GB of RAM.

We finally discuss related work (§6) and conclude (§7).

2 GitHub PyPI Dependency Study
Python package installation typically involves using pip to install

packages from the PyPI repository. For instance, pip install p==1.2.3
installs a specific version, while pip install -r requirements.txt installs
multiple packages listed in the given file. A requirements.txt file

may only list direct dependencies, with pip identifying indirect de-

pendencies recursively. In this section, we analyze requirements.txt

files to discern Python package usage patterns. Understanding these

patterns is crucial for constructing efficient zygote trees.

Our analysis utilizes the GitHub Activity Data from the Big-

Query public dataset [12]. This dataset offers a snapshot of over

2.8 million open-source GitHub repositories as of November 26,

2022, encompassing commits, file paths, and contents. Specifically,

we extracted 9,678 unique requirements.txt files from repositories

updated post-April 21, 2022 for our study.

We expect most of these applications are not meant to be de-

ployed as serverless functions. However, understanding and bench-

marking a broader class of applications is useful; doing so may

enable us to build the next generation of serverless platforms capa-

ble of running applications that are a poor fit for current platforms.

We explore several questions in this section. How precisely do
programmers specify package versions (§2.1)? How many direct and
indirect packages do applications typically require (§2.2)? And what
is the popularity distribution across packages (§2.3)?

2.1 Version Specification Patterns
A requirements.txt filemay ormay not specify version requirements

for a package; when it does, the requirement may be exact (i.e.
==) or less precise (e.g. !=, =, <, <=, >, and >=). We categorize

version specification patterns as follows: Implicit: there is no version
requirement given, so pip can select a version; Explicit (latest): an
exact version was specified, and that version was the most recent,

as of the dataset’s last update; Explicit (others): a non-latest version
was specified; and Range: other version requirements involving

comparison operators.

Figure 2 shows how versions are specified for the 15most popular

packages, as well as an average over all 11,842 packages in our

dataset. For the average package, the most popular specifications

are Explicit (latest) and Implicit, at 40.3% and 35.6%, respectively.

The average package uses Explicit (others) only 9.8% of the time,
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Figure 2: The version specification breakdown for the 15 most popu-
lar packages. The comparative "Average" bar represents the percent-
ages for the entire dataset.
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Figure 3: CDF plot showing the number of packages per file type.

but explicit versions are used more often with popular packages,

perhaps because established packages have a longer history of

releases to choose from.

Implications: For the average package, Python applications

are flexible about what version is used (Implicit and Range options
represent the majority of cases). This creates an opportunity for

execution platforms to choose versions based on what packages

are already pre-installed (or otherwise warm) on a server.

2.2 Requirement Counts
We now explore how many package dependencies, direct or other-

wise, a typical Python application has. Indirect dependencies are

packages that are not directly required by the project but by the

project’s dependencies. In order to infer (a) precise package ver-

sions and (b) indirect dependencies, we attempt to pip-compile [21]
each requirements.txt file in our dataset to produce an output re-

quirements file (complete.txt) with precise versions of all packages

(direct or otherwise). The output of a pip-compile depends on the en-
vironment and the latest package versions at the time of execution.

We generated the complete.txt files with Python 3.10 on September

21, 2023. Among our 9,678 requirements.txt files, 71% (6,870) were

compiled successfully. Failures occurred due to inconsistent file

formats, version updates, etc.
Figure 3 shows a CDF of dependency counts for raw require-

ments.txt files, complete.txt files, and the subset of the require-

ments.txt files on which pip-compile ran successfully. An average

requirements.txt file only has 11 requirements, but the compilable

ones were somewhat shorter (about 7). For a typical application,

over 70% of dependencies are indirect (the complete.txt files are, on

average, 3.4× longer than their corresponding inputs). 10.63% of

the complete.txt files have >50 packages.

Implications: Most package requirements are indirect, so pack-

age initialization may be costlier than one might expect; fortunately,

zygotes can help alleviate these costs. The multi-layered nature of

package dependencies is a natural fit for hierarchical zygote trees.
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Figure 4: The cumulative coverage plot depicting the frequency with
which the top X packages appear in the requirements files relative
to the total data set.
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Figure 5: The stacked bar plot delineating the proportion of direct
versus indirect package usages in complete.txt files.

2.3 Popularity Distribution
Some packages are more "popular" than others (i.e., they are de-

pendencies for more applications). We now explore the popularity

skew of the packages in our dataset.

Figure 4 shows how many requirements.txt files specify at least

one of a set of popular packages. The x-axis indicates the number

of top packages considered, and the y-axis displays the percentage

of all requirements.txt files where these top packages appear. Re-

markably, the top 15 packages alone account for more than 50% of

the files for both requirements.txt and complete.txt.

Figure 5 shows how often the top 15 packages appear in com-

plete.txt files, both when grouping together all versions of the same

packages (left) or treating each package version as distinct (right).

We observe that the 6 most popular packages are used as depen-

dencies in about half of all applications. We also observe that the

most popular packages are usually indirect dependencies.

Implications: The significant skew in package popularity indi-

cates that relatively few zygotes could provide substantial benefit.

3 ReqBench
We introduce ReqBench, a new serverless benchmark designed to

measure the efficiency of module import time and memory con-

sumption. We construct a suite of ReqBench functions from our

dataset of complete.txt files (§2) as follows: identify the 𝑝 most pop-

ular packages, select complete.txt files that use only those packages,

and generate a function corresponding to each complete.txt file.

Each function is a no-op, importing only the top-level modules of

direct dependencies (85% have a single top-level module).

The ReqBench executor invokes functions in parallel and is ex-

tensible for different FaaS platforms. Note that we cannot vet the

security of all the packages of ReqBench (malicious packages have

been found in the PyPI repository [22]), so any execution or instal-

lation of ReqBench functions should be sandboxed.
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Figure 6: Import Latency vs. Object Allocation of Python Modules,
with linear regression fit.

ReqBench exposes 𝑝 and 𝑛 parameters. Package Count (p): select
the 𝑝 most popular packages during construction of the function

suite. The default setting (𝑝 = 500) yields 1793 functions. Concur-
rency (n): ReqBench tasks issue requests as fast as necessary to keep
𝑛 requests outstanding at all times (default: 𝑛 = 5).

Workload Properties: We download the 500 packages for Req-

Bench’s default mode; prior to installation, the cumulative com-

pressed size of these packages is 492.9 MB. Installing all the pre-

downloaded packages sequentially takes 4.9 minutes. The installed

packages have an on-disk footprint of 1.8 GB. We sequentially im-

port each package’s top-level modules (excluding 22 packages for

which imports fail due to faulty dependency metadata); the imports

take 12.7 seconds. We measure the time and memory cost (mea-

sured as wall-clock time and the cumulative size of Python objects,

respectively) of importing the top-level modules for each package.

Figure 6 shows a scatter of the 500 packages used. We observe a

strong correlation between memory allocation and time (𝑅2 = 0.91).

We also observe that 43% of packages take over 9 ms to import. This

is a substantial cost, given that a typical application has 7 direct

(and 24 indirect) package dependencies (§2.2).

4 Forklift Zygote Trees
Our analysis shows that a typical Python application requires ~24

packages when counting indirect dependencies (§2.2) and importing

modules for these packages is costly (§3). High package popularity

skew (§2.3) suggests relatively few zygotes could alleviate initial-

ization work for many functions. Furthermore, popular packages

frequently serve as dependencies for many different "higher-level"

packages; hierarchical zygote implementations better reflect these

relationships than flat zygote systems. In this section, we first intro-

duce Forklift, an algorithm for training zygote trees on historical

invocation data (§4.1). Second, we describe how we integrate Fork-

lift trees with the OpenLambda [14] serverless platform (§4.2).

4.1 Tree Construction
We propose a new approach for constructing zygote trees from

historical function-invocation data. We first describe the basic al-

gorithm that treats all packages equally and constructs trees with

one package per node, where the zygote process corresponding

to each node pre-loads the top-level modules of that package. We

then optimize the algorithm to (a) prioritize "heavy" packages and

(b) allow nodes to load multiple packages.

Algorithm 1 describes the basic version of the Forklift algorithm.

The algorithm trains the tree on historical invocation data, repre-

sented as a binary calls matrix. The basic version supports different
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Algorithm 1 Forklift Tree Construction: Basic Version

1: candidateQ← PriorityQueue() // highest utility first
2: function build_tree(𝑐𝑎𝑙𝑙𝑠, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠)

3: 𝑟𝑜𝑜𝑡 ← Node(𝑐𝑎𝑙𝑙𝑠 , no packages)
4: enqeue_top_child_candidate(𝑟𝑜𝑜𝑡 )

5: while 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 > 0 and 𝑙𝑒𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄) > 0 do
6: 𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄.pop()

7: add_child_node(𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

8: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 − −
9: return 𝑟𝑜𝑜𝑡

10: function enqeue_top_child_candidate(𝑝𝑎𝑟𝑒𝑛𝑡 )

11: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← empty list

12: for 𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉 in 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐𝑎𝑙𝑙𝑠 .𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠 do
13: if 𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉 is valid then
14: 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ← sum(𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉 column of 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐𝑎𝑙𝑙𝑠)

15: add (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉 ,𝑢𝑡𝑖𝑙𝑖𝑡𝑦) to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
16: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑄 .push(highest-utility 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 entry, if any)

17: function add_child_node(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

18: 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑝𝑎𝑟𝑒𝑛𝑡

19: 𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉

20: 𝑐ℎ𝑖𝑙𝑑_𝑐𝑎𝑙𝑙𝑠 = 𝑟𝑜𝑤𝑠 in 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐𝑎𝑙𝑙𝑠 that import 𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉

21: 𝑐ℎ𝑖𝑙𝑑 ← Node(𝑐ℎ𝑖𝑙𝑑_𝑐𝑎𝑙𝑙𝑠 , 𝑐ℎ𝑖𝑙𝑑_𝑝𝑘𝑔𝑉 )

22: 𝑝𝑎𝑟𝑒𝑛𝑡 .add_child(𝑐ℎ𝑖𝑙𝑑)

23: update 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐𝑎𝑙𝑙𝑠 to remove 𝑐ℎ𝑖𝑙𝑑_𝑐𝑎𝑙𝑙𝑠 rows

24: enqeue_top_child_candidate(𝑝𝑎𝑟𝑒𝑛𝑡 )

25: enqeue_top_child_candidate(𝑐ℎ𝑖𝑙𝑑)

versions of the same package, and each package/version combi-

nation is represented as a column in the matrix. Each function

invocation is represented as a row, and 1’s indicate the packages a

function being invoked needs (including indirect dependencies).

The BUILD_TREE function starts with a single-node tree, then

repeatedly adds nodes to the tree until the tree is a desired size.

Each node (except the root) indicates what package the zygote

should pre-load. A process started from a zygote will have all the

packages pre-loaded along the path from the root zygote to the

zygote that is forked. Thus, a package may often be assigned to

multiple nodes in the tree to provide fast initialization for different

package combinations. Each node has its own calls matrix, indicat-

ing which function invocations would be routed to that zygote for

initialization. Whenever a child is added, a subset of the parent’s

rows are taken away and used to create the child’s call matrix.

At any given time, we can add many child nodes to the exist-

ing tree nodes. A function, ENQUEUE_TOP_CHILD_CANDIDATE,
identifies the best potential child for a given node, according to a

utility measure, and places that candidate in a global priority queue,

candidateQ; the main loop of the algorithm pulls from this queue.

The utility of a candidate is computed as the sum over the column

corresponding to the package/version that the candidate’s zygote

would pre-load; in other words, utility (for now) is simply a mea-

sure of usage frequency. The ENQUEUE_TOP_CHILD_CANDIDATE
function is called on any new node added to the tree, such that each

node in the tree always has an associated candidate, which is the

best potential child that could be added to to that node.

The ENQUEUE_TOP_CHILD_CANDIDATE function is also re-

sponsible for suppressing some invalid candidates. For example, a

node N should not be responsible for a package P unless the ances-

tor nodes of N are responsible for the dependencies of P. Also, a

package that has already been imported by an ancestor should not

be considered again as a candidate. Finally, conflicting versions of

the same package are not allowed.

The ADD_CHILD_NODE is responsible for actually turning a

candidate into a new child node in the tree and moving some of the

parent’s rows to the child. ENQUEUE_TOP_CHILD_CANDIDATE
is then called to find the best candidate for the new node. There

is no limit on the number of children a node may have, so a new

candidate is also found for the parent of the new node (the new

node was previously a candidate, so after it is added, the parent

needs a new best candidate).

Optimizations: The final Forklift algorithm has two improve-

ments beyond the basic approach. First, we profile packages and

give more weight to those with slow module imports. One could

alternatively weight based on memory consumption, though these

two measures are highly correlated (§3). We implement priority by

replacing the 1’s in the binary calls matrix with the weight values

(recall that utility is a sum over a column in the matrix).

For our second optimization, we remove the requirement that a

node can only have one corresponding package/version. We do so

by lifting the requirement that a node N can only be responsible for

P if N’s ancestors are responsible for P’s dependencies. When we

assign P to N, we simply assign any of P’s unsatisfied dependencies

to N as well. The utility is then calculated by summing the weights

of all dependencies and multiplying this total by the number of

calls to import these packages.

4.2 Tree Deployment in OpenLambda
We adapt the OpenLambda serverless platform [14] to use Forklift

trees to initialize containers for functions. OpenLambda is based on

SOCK [20], a lightweight container implementation that supports a

sandbox-level fork. Although this mechanism supports hierarchical

zygotes, the SOCK approach has two major limitations: (1) there is

no support for different versions of the same package and (2) zygotes

are created greedily to serve the needs of the current invocation,

without consideration of historical workload patterns.

Wemodify the OpenLambda worker to support multiple package

versions. In our version, functions must provide complete require-

ments.txt files listing exact versions of every package (users may

generate these using pip-compile on a regular requirements.txt file).

All package versions installed by workers are visible via package

mounting inside every sandbox; automatically configured path vari-

ables ensure functions import the desired version. Unless function

code tampers with the path, functions are not exposed to potentially

malicious unrequired packages.

We also modify OpenLambda to take a tree specification upon

startup. In a typical deployment, we imagine Forklift running in

the background (e.g., hourly), generating trees based on recent

invocations. OpenLambda workers could restart when there is a

new tree. To speed up restart, zygotes are created lazily upon first

use. Zygotes may be evicted under memory pressure.

Upon an invocation, OpenLambda traverses the zygote tree,

starting from the top and choosing the deepest zygote that only
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Figure 7: Memory usage and throughput for different Forklift trees.

includes requested packages (if a zygote Z provides a package a

function F does not need, it would be insecure to initialize F from

Z, as packages are neither vetted nor trusted). If multiple zygotes

match the needs of the function, the left-most child is selected.

5 Evaluation
We use ReqBench to evaluate Forklift trees on an OpenLambda

worker deployed on an Azure VM (8 cores, 32 GB RAM, Ubuntu

22.04). To avoid overfitting, we split the default ReqBench call trace,

which consists of 1793 functions (eachwith a single invocation), into

equal sized train and test traces. Forklift constructs trees from the

train trace, and we execute the test trace to measure performance.

Kernel bottlenecks from cgroup locking and namespace unshar-

ing hindered deploying large trees under heavy load. Therefore, we

disabled unsharing and configured OpenLambda to reuse cgroups

in our experiments. This setup reduces isolation between functions,

but the performance results better represent the benefits of zygote

trees if future kernel work (orthogonal to our work) removes these

concurrency bottlenecks.

For the first experiment, we construct trees of different sizes,

using four variants of the Forklift algorithm. We measure work-

load throughput and zygote consumption for each tree at steady

state (achieved by playing the trace twice and measuring perfor-

mance during the second run). Throughput matters directly to

cloud providers (high-throughput workers save money) and often

indirectly to users (providers may pass some savings along to cus-

tomers). Figure 7 shows the results, averaged over 10 runs. The

best tree improves throughput by 4.3× relative to the baseline (a

single zygote consisting of an initialized Python interpreter and no

additional modules). All the trees have a modest memory footprint

(<6 GB of RAM). We observe that assigning multiple packages to a

single zygote is a critical optimization; the trees that do so double

throughput relative to their single-package equivalents. Finally,

weighting packages by import time is helpful for smaller trees, but

the benefit becomes less significant for the largest trees.

Figure 8 show a CDF of invocation latency for a single run of

the workload. We see that both small and large trees provide large

speedups relative to the baseline (a single zygote). The baseline’s

median latency is 76.5 ms; with small and large trees, median re-

quests are 3.2× and 4.8× faster, respectively. At the 95th percentile,

speedups are 2.7× and 5.3×, respectively.
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Figure 8: Latency CDF For multi-package time-based Forklift tree.
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Figures 9 and 10 show small (i.e., 40-node) multi-package trees,

without and with time weighting, respectively. We observe that

for small trees such as these, the uniform-weight version (which

only considers frequency) misses many of the heavy zygotes that

the time-weighted variant constructs. Larger trees will naturally

serve more package combinations, so for that case it is less critical

to add nodes for heavy packages first. The nodes in the figures are

annotated to indicate how many packages are pre-loaded. For ex-

ample, the Jupyter nodes usually require about 90 packages. Clearly,

initializing a 90-node zygote chain (from root to leaf) will be costly;

anecdotally, this explains why the single-package zygote trees per-

form poorly relative to the multi-package trees.
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Although we initialize zygote processes lazily upon first use,

some providers may wish to eagerly initialize zygotes to make the

performance more predictable. Figure 11a shows that all zygotes

can be created in less than 7 seconds, even for large trees (we

concurrently create the zygote processes with six threads).

Figure 11b shows hit rates for trees of different sizes. When a

function is initialized from a zygote, we count every package the

zygote provides to the function as a hit; packages not provided

by zygotes are misses. We see that the multi-package, uniform-

weighted tree has the best hit rates (over 90%); the fact that the

time-weighted tree is the fastest indicates that not all misses are

equal (some package imports are slower than others).

6 Related Work
Many systems use zygotes for fast initialization. Java processes

on Android [9] are an early case (and the first usage of the term

"zygote" of which we are aware). More recently, Meta open-sourced

Cinder [3], a modified Python interpreter that optimizes garbage

collection for copy-on-write memory and is used for zygote ini-

tialization by Instagram. Fast startup is especially important in

serverless settings; OpenLambda [20], SAND [7], Catalyzer [11],

and Pagurus [17] have all previously used zygote-based techniques

to initialize serverless function instances. Prior work focuses on

zygote mechanisms, whereas Forklift orthogonally suggests a new

way to fit zygote trees to historical invocation data.

Pre-initialized instances are an alternative to zygotes [19]. While

pools can improve latency, zygotes are more efficient: zygotes can

support high throughput whereas pools may become exhausted,

and zygotes naturally support memory sharing between instances.

Sharing does entail risk: address space randomization is difficult to

implement in combination with zygotes [15], but not with pools.

Dependencies are not the only cause for slow startup. Fire-

cracker [8] and Kata [6] are recent lightweight virtual machine

implementations designed for fast startup. RunD [16] (based on

Kata) is designed to overcome some of the challenges we encoun-

tered with cgroup bottlenecks.

7 Conclusion
We have analyzed the package requirements for over 9,678 Python

projects on GitHub and found that modern applications rely heavily

on third party packages, which in turn rely on other packages. We

introduce Forklift, a new algorithm for constructing trees of zygotes

to help initialize these dependencies more quickly for new sand-

boxes. We have integrated Forklift trees with OpenLambda, making

invocation latency about 5× faster for the ReqBench workload.
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