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Abstract Despite this interest, effective use of serverless computing

We describe a system for serverless computing where users,
programs, and the underlying platform share a common
representation of a computation: a deterministic procedure,
run in an environment of well-specified data or the outputs
of other computations. This representation externalizes I/O:
data movement over the network is performed exclusively
by the platform. Applications can describe the precise data
needed at each stage, helping the provider schedule tasks and
network transfers to reduce starvation. The design suggests
an end-to-end argument for outsourced computing, shifting
the service model from “pay-for-effort” to “pay-for-results”
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1 Introduction

For a decade, cloud-computing operators have offered “server-
less” function-as-a-service products. These systems let users
upload functions to be invoked on request. When this hap-
pens, the function is allocated a slice of a physical machine’s
RAM, CPU, and NIC, and the customer is billed for the time
until it finishes [1, 2]. In practice, cloud functions are typ-
ically used for asynchronous services where each invoca-
tion runs independently, but researchers have also explored
their use for large jobs that launch thousands of parallel
invocations working together with complex dataflow: video
processing [18], linear algebra [25, 39], software compilation
and testing [16], theorem proving [43], 3D rendering [17],
ML training [24], data analysis [26], sorting [30], etc.
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remains elusive. In this paper, we argue that a root cause is
an underconstrained notion of networked computation, one
where the I/O and dependencies of user functions are opaque
to the platform. Consider a common serverless application: a
cloud function that resizes an image [38]. A user creates the
function by uploading a piece of code—call this f. When the
function is invoked, the provider finds a physical server with
enough available RAM and cores, transfers and unpacks the
code if not already present, claims a slice of RAM, and runs
the function, generally as a Linux process in a pre-warmed
VM. After seeing the invocation payload (an HTTP request
or other event), the function requests the image file x from
network storage, e.g. Amazon S3.

From the user’s point of view, the invocation was always
meant to compute f(x) (the resized image), but from the
provider’s perspective, f is a running Linux process, and
its dependency on x wasn’t known until after the code was
placed and running. If S3 has cached x nearby, the retrieval
happens quickly. Otherwise, the function will wait, occupy-
ing and mostly idling its slice of RAM until retrieval finishes.

For computations that are short relative to network and
storage latencies [29, 30], limitations of this service model
can be significant. If the user had been able to express that the
invocation represented “f(x)” in a way the provider under-
stood, the provider might have attempted a better strategy
to place or schedule it, e.g.:

simultaneously transfer f (the code) and x (the image) to the
server so the task can finish sooner,
wait to allocate f’s RAM and CPU until x arrives, letting other
functions run there in the meantime,
instead of starting f on a server chosen without regard to x,
choose a server close to whichever dependency (f or x) is bigger,
delay the invocation, hoping to aggregate multiple tasks that
depend on x to run in a batch on one server,
if f(x) is part of a pipeline g(f(x)), and if y = f(x) is hinted
to be large, then transfer f and x close to their downstream
dependency g, and run f(x) on that server before running g on
the result—avoiding the need to transfer y over the network,
or if x can be computed deterministically by h(z), then if easier,
fetch h and z and recompute x instead of transferring it.
In many cases, these strategies could improve the job
throughputs, latencies, RAM and CPU utilization, and per-
haps costs of serverless platforms. But they probably aren’t
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feasible today, even for an image-resizing function of one
input, because f’s dataflow was “internal”: it fetched x by
opening a socket, sending a request, and receiving arbitrary
data. Even if x came from the provider’s own storage service,
the provider didn’t observe the dependency until after the
task was placed and running. For the sorts of jobs surveyed
in the first paragraph, jobs that launch thousands of parallel
invocations with complex dataflow among them, the need
for good placement and scheduling will be even greater.

This paper presents F1x, an architecture for serverless com-
puting that externalizes I/O, making application dataflow vis-
ible to, and performed by, the underlying networked system.
In F1x, function invocations are described in a low-level ABI
(application binary interface) that specifies a sealed container
where execution occurs, containing dependencies that are ad-
dressed in a way the program and provider both understand—
maybe as the output of another invocation.

In F1x, programs can choose to capture only the minimum
data needed to make progress at each step of a larger job.
The underlying platform uses its visibility and flexibility to
place and schedule tasks and transfers to reduce starvation
and use of the network, e.g. via the strategies above.

This paper’s main contribution is in F1x’s design and the
demonstration that I/O externalization, with the ability to
express precise and dynamic data-dependencies with little
overhead, can boost performance and efficiency. F1x is a
realization of I/O-compute separation [11, 14, 27, 28, 34] as
well a mechanism for programs to provide the platform with
visibility—perhaps partial visibility, refined as computation
proceeds—into future data- and control flow. F1x does this
in a declarative way that can be parsed anywhere, avoiding
round-trips to a scheduler when invoking a new task.

Fix’s design and implementation have a number of mutu-
ally reinforcing characteristics that lead to efficient execu-
tion. F1x’s invocations are concisely described in a packed
binary format designed to minimize runtime overhead. We
implemented a runtime for Fix, called FixpoinT, that has
a per-invocation overhead of about 1.5 ps. This means that
applications can afford to use fine-grained containers that
capture only data needed to make progress at each stage.
Minimizing the data “footprint” of each invocation helps Fix-
POINT reduce cold-start times and optimize the scheduling
and utilization of CPUs, RAM, and the network.

Fix has significant limitations. It represents a constrained
model of computation: to describe each task in a placement-
agnostic way, invocations must be of pure functions applied
to content-addressed data or to the outputs of other invoca-
tions. Functions can’t access data outside the container. At
least at present, Fix doesn’t support calls to nondeterministic
services e.g., clocks, true random number generators, multi-
user databases, or arbitrary Web APIs. F1x is its own ABI and
doesn’t run Linux executables; it runs some POSIX programs
(e.g. CPython, clang) but we had to recompile them with a
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Fix-targeting toolchain to achieve this. We haven’t measured
F1x’s ease of use or effect on developer productivity.

Summary of results. We found that Fix’s approach can
unlock significant advantages in performance and efficiency
(as well as reproducibility and reliability, aspects we did not
evaluate quantitatively). We evaluated several applications
run on F1xpoINT, compared with OpenWhisk, MinlO, and
Kubernetes (open-source analogs of AWS Lambda and S3),
Pheromone [46], and Ray [32]; full results are in Section 5.

FIXPOINT creates hermetic containers without spawning
OS processes, by requiring that functions be converted ahead-
of-time to safe machine code. This results in lower overhead
than systems based on Linux containers (OpenWhisk) or
higher-level programming languages (Ray). To invoke a triv-
ial function that adds two 8-bit integers, FIXPOINT’s contain-
ers show lower overhead (fig. 7a):

Approach Time slowdown vs. Fix
Fix 1.46pus 1X

Linux vfork+exec ~ 449us 307X

Pheromone 1.05ms 720X

Ray 1.29ms 881X

Faasm 10.6ms 7,260%X

OpenWhisk 30.7ms 20,980

In a different experiment, we used Linux’s CPU-state sta-
tistics to measure how much of these gains come from avoid-
ing starvation—by co-scheduling computations and transfers,
and waiting to allocate CPU and RAM until dependencies
have arrived. We wrote a program to count non-overlapping
strings in a 96 GiB dataset from Wikipedia and ran it on a
320-core, 10-node cluster. F1x’s approach avoids a substantial
amount of CPU starvation (fig. 8b):

Approach Time CPU waiting %

(idle + iowait + irq)
Fix 3.25s 37%
FIxX (with “internal” 1/0) 33.8s 92%
OpenWhisk + MinIO + K8s  63.9s 92%

Finally, we implemented a key-value store represented on
disk as a B+-tree, using Fix and two other approaches. Each
version traverses the B+-tree node-by-node to retrieve the
value corresponding to a key. As we decrease the maximum
number of children of each B+-tree node, this process results
in a smaller memory footprint and total amount of data
accessed, at the cost of more function invocations. Compared
with Ray, F1x’s semantics let users benefit from breaking
down programs with fine granularity (fig. 9):

Approach (B+-tree of arity 256) Time slowdown vs. Fix
Fix 0.14s 1X
Ray 2.8s 19.6x

Ray (broken into fine-grained invocations) ~ 5.74s 40X
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Fix represents a fundamentally different approach to out-
sourced computing: one that’s more constraining and prob-
ably more difficult to program for, but ultimately advanta-
geous for customers (whose jobs run faster) and providers
(whose infrastructure is used more efficiently). Current ser-
vice abstractions represent something of a “pay-for-effort”
system—by billing customers for each millisecond that a func-
tion occupies a machine slice, idle or not, providers aren’t
directly incentivized to improve scheduling and placement.
Even if a provider wanted to do this, current systems lack
the visibility into application dataflow to do it well. Fix’s
approach suggests a shift towards “pay-for-results”: compu-
tations described in a way that permits providers to innovate
in the placement and scheduling of computation and I/O, so
long as they arrive at the correct answers.

This paper proceeds as follows. In section 2, we discuss
the substantial context of related work across several areas.
We describe Fix’s design (sec. 3) and its implementation in
the FIxpoINT runtime (sec. 4). We report our evaluation in
section 5, finishing with limitations (sec. 6) and a conclusion.

2 Related work

Fix relates to prior work across workflow orchestration
(Hadoop [42], Spark [47], etc.), techniques that optimize
serverless platforms with lightweight containers for dense
packability or locality hints, tools that run highly parallel
workloads on current function-as-a-service platforms, con-
tainerization and execution systems (Docker [31], NixOS [15],
etc.), and content-addressed storage. We discuss how FI1x re-
lates to this prior literature in several areas.

Cluster orchestration systems. Cluster orchestration
systems like Spark [47], Dryad [22], CIEL [33] and Ray [32]
allow programmers to express applications as a group of
tasks, and orchestrate execution of the tasks across a clus-
ter. Task interdependencies can be represented at runtime
as a static DAG (Spark and Dryad) or dynamic task graph
(CIEL and Ray). These systems generally employ language-
level mechanisms: users spawn tasks using domain-specific
languages (CIEL and Dryad), or with a pre-existing program-
ming language (Python for Ray, Scala for Spark, etc.)

Fix’s computation model represents interdependencies
in a dynamic graph (similar to CIEL or Ray), in a some-
what more general sense: F1x’s invocations describe all data-
dependencies that code will have access to; F1x can capture
subselections of existing data objects and the relationships
between application data structures (e.g. the relationships
between nodes in a B+-tree); this kind of dataflow can’t gen-
erally be exposed to the runtime by current systems.

Fix enforces I/O externalization: all data-dependencies
that code need access to must be made explicit. This allows
it to freely schedule tasks at different execution locations. In
comparison, existing systems allow programs to states not
captured by the computation representation, such as local
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filesystem. This makes F1x more amenable to outsourcing
computations to cloud services.

Previous work relies on runtime infrastructure to track
dependency information at a centralized scheduler or a des-
ignated physical node. In contrast, F1x unifies the description
of data flow—inputs and outputs of invocations—with con-
trol flow—which function should be invoked with the results
of another—in a single serializable format. Dependency in-
formation is shipped with data defining a function, avoiding
round-trips. This leads to lower dependency-resolution over-
head that allows finer-grained function invocations.

Scheduling and containers for serverless platforms.
Much prior work is aimed at optimizing the performance
of function-as-a-service platforms with conventional archi-
tectures for applications with interdependent workflows.
This includes adding long-living caches beyond individual
function invocations [35], and providing locality hints [10]
to for better placement decisions. The line of work most
similar to Fix is workflow-based serverless systems [37, 46]
with a static function dependency model, e.g. the outputs
of a function f are always consumed by another function
g. F1x represents data-dependencies in a richer way at a
finer-grained per-invocation level. Prior work has proposed
the model of I/O-compute separation [14] and realization of
the model [27, 28] that targets at better elasticity for spiky
serverless workloads. F1x focus on designing the abstraction
and mechanism for representing computational workloads
in a I/O-compute separation way.

Another line of work designs lightweight containers to
allow denser packability, such as Firecracker [5], Virtine [41],
AlloyStack [45], Junction [19], Faasm [40], and WasmBox-
C/wasm2c [49]. As part of our work on Fix, we became
significant contributors to and maintainers of the wasm2c
codebase; F1x’s toolchain includes this tool.

Massively burst-parallel applications. There has been
considerable interest in using serverless platforms for short-
lived, large-scale, highly parallel jobs, including video pro-
cessing [18], linear algebra [25, 39], software compilation
and testing [16], theorem proving [43], 3D rendering [17],
ML training [24], data analysis [12, 26], etc. F1x aims to be a
better platform for these kinds of applications.

Build environments and content-addressed storage.
F1x’s computation-addressed dependencies for user programs
resemble execution-environment languages like Docker [31],
NixOS [15], or Spark [47] (discussed above). F1x’s binary rep-
resentation of dependencies draws inspiration from content-
addressed systems such as Git [6], Bittorrent [4], Named
Data Networking [23], and IPFS [7].

3 Fix: describing dataflow to the runtime

In this section, we describe the design of Fix: a low-level bi-
nary representation, or ABL, where code externalizes its data-
and control flow. Instead of fetching data by making network
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connections or syscalls and waiting for a reply, programs de-
scribe the code and data they need declaratively, in a format
that’s parsed and executed by the runtime infrastructure.

F1x objects represent pieces of data, function invocations,
dependencies, and data sub-selection, in an in-memory rep-
resentation that is independent of programming language
and placement on a server. User functions make dataflow
visible by constructing F1x objects; a runtime can exchange
references to these objects with native functions using a de-
fined calling convention. The computation graph necessary
to evaluate a F1x object is described by the object itself, so
runtimes do not need to maintain additional metadata.

F1x’s design is intended to let pieces of black-box machine
code precisely express their data needs in a manner light-
weight enough to permit microsecond-level overheads, but
general enough to support arbitrary applications, including
ones where the dataflow graph evolves over the course of
a computation in a data-dependent way. To enable efficient
and flexible execution, F1x’s design goals were:

1. Code can be represented as black-box machine code
that originated from any programming language.

2. The complete data “footprint” needed to evaluate a
function call will be known before it is invoked.

3. A function will always run to completion without
blocking, and will finish execution without invoking
another function or enlarging its data “footprint.”

4. Functions will have tools to subselect from large data
structures to fetch only the portion truly needed.

These considerations led to the design below.

3.1 Data and References

Fix gives user functions an interface for expressing their
data- and control flow. Fix models two core types of Data:
Blob A region of memory (an array of bytes).

Tree A collection of other Frx Handles.

Fix also provides four reference types as Handles, each of
which has a particular binary representation in the ABI:
Object A reference to accessible Data.

Ref A reference to inaccessible Data.

Thunk A reference to a deferred computation.

Encode A request to evaluate a Thunk, and replace it by the
result.

3.2 Representation

Handles. Every value in FIx is assigned a unique deter-
ministic Handle. These Handles contain information about a
value’s data, its type, and its size. This takes the form of a trun-
cated 192-bit BLAKES3 hash of the data, 16 bits of metadata
and type information, and a 48-bit size field. As an optimiza-
tion, Blobs 30 bytes or smaller are stored as “literals”—putting
the Blob contents directly in the Handle. Handles can be held
and passed in machine SIMD registers, e.g. %ymm on x86-64.
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In-Memory Representation. Data are represented in an
efficient format that minimizes copying; Blobs are a contigu-
ous sequence of bytes, and Trees are a sequence of Handles.

Objects. An Object is a reference to accessible data di-
rectly needed for the next function invocation. A function
that is passed an Object may read its data.

Refs. A Ref is a reference to inaccessible data not directly
needed for the next function invocation, but may be needed
by a downstream consumer. A function that is passed a Ref
may look up the type and length of the referent but not
its data. Refs allow F1x functions to reference remote data
without fetching it to the execution server.

Thunks. A Thunk represents a function invocation whose
value is not yet needed, letting F1x functions refer to data
which can be lazily computed when needed. “Application”
Thunks describe the execution of a function in a container
of available data and memory resource limits. There are two
more styles of Thunk corresponding to common usage pat-
terns. “Identification” Thunks represent the identity function.
“Selection” Thunks represent a “pinpoint” data-dependency:
the extraction of a subrange of a Blob or a Tree.

Encodes. Encodes! embody a request to evaluate a partic-
ular Thunk. When provided in the input to a child function,
they will be replaced with the result of evaluating the Thunk.
There are two styles of Encode, Shallow and Strict.

Shallow Encodes request the minimum amount of com-
putation (or data movement) needed to make meaningful
progress. This means that a Thunk is evaluated until the
result is not a Thunk, and the result is provided as a Ref.
Strict Encodes request the maximum amount of computa-
tion (or data movement) possible. A Thunk is replaced by
its fully-evaluated result as a Object, recursively descending
into any Trees and evaluating all Thunks within. These two
styles of Encode allow F1x programs to express both lazy
and eager styles of evaluation.

3.3 Minimum Repositories

Each Thunk has the ability to access a bounded set of re-
sources, including both Fix data and hardware resources like
RAM. In order to ensure that a function won’t require any
I/O operations before finishing, the runtime must ensure
these resources are available throughout its execution. This
set is called the “minimum repository” of the Thunk. While
a function may not change its minimum repository, it may
create new Thunks with different minimum repositories:
1. It may specify new resource limits in the new Thunk;
2. It may grow the repository by including an Encode,
which will evaluate its referent and add the result to
the new repository;

lan Explicit Named Computation on Data or Encodes
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Figure 1. F1x represents function invocations and data dependencies with a unified serializable format.

3. It may shrink the repository by excluding data which
were part of its own repository from the new Thunk.
Since a function can’t directly call another one (can’t di-
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Algorithm 1 If Procedure

: s If predicate
re‘cﬂy evaluate 2.1 Thunk), these operatlons. don’t aﬂ?ect the [rlimit, if. pred, a, b] — xEAD. TREE(input) is true,
minimum repository of the currently-running function. if READ_BLOB(pred) then *

- return a
3.4 Expressivity else i J If predicate
. is false,
F1x enables programs to express their dataflow at fine granu- return b * o lase

. ofs .. o . . end if *
larity by specifying the minimum repositories of child func-
tions. Programs are required to express, at worst, an over- *

approximation of their data dependencies; it’s impossible
for a program to access any data not explicitly requested.
Fix’s different types allow programs to describe complex
access patterns to FIxpoINT. A pseudocode version of the
F1x API is shown in Table 1; the exact implementation varies
depending on the implementation language.

Function Description

T read_blob(BlobObject)

Value[] read_tree(TreeObject)
BlobObject create_blob(T)
TreeObject create_tree(Valuel[])
Thunk application(Tree)

Thunk identification(Value)
Thunk selection(Value, int)
Encode strict(Thunk) Strictly evaluate a Thunk.
Encode shallow(Thunk) Shallowly evaluate a Thunk.

Read a Blob into a variable.
Read a Tree into an array.
Create a Blob from a variable.
Create a Tree from an array.
Apply a function (lazily).
Apply the identity function.
Select a child element.

Table 1. Fix Pseudocode API

F1x’s Thunks are lazy by default, which allows control flow
to be expressed by user-provided programs. For example,
Fig. 2 shows how a user-provided if procedure can lazily
select one of two Thunks based on a predicate. The other
Thunk, and its data dependencies, never need to be loaded
or executed by FixpoINT. The minimum repository of the if
procedure includes the machine codelet and the predicate,
but excludes the Thunks’ definitions or results.

By returning a Thunk, as in Fig. 3, a function can recurse or
call other functions. In this case, a user-provided fibonacci
procedure creates two Thunks corresponding to recursive

Figure 2. This if procedure reads a boolean predicate from
its input and selects one of two Thunks to return.

Algorithm 2 Fibonacci Procedure K
[rlimit, fib, add, x] <« READ_TREE(input) I:l
add.elf

if x=0Vx=1 then
return CREATE_BLOB(X)
—p Stric
add.elf ‘ )

end if

X1 ¢— CREATE_BLOB(x — 1)

t; < CREATE_TREE([rlimit, fib, add, x])

€] <« STRICT(APPLICATION(?;)) Strict(
Xy ¢— CREATE_BLOB(x — 2) t)_’
t) < CREATE_TREE([rlimit, fib, add, x;])
ey < STRICT(APPLICATION(Z))

tsum < CREATE_TREE([rlimit, add, eq, e;])
return APPLICATION(fgy7m)

O] O]

(DOC) |*

Figure 3. A F1x version of the Fibonacci algorithm creates
recursive Thunks and passes them to an addition procedure.

calls of itself, and a third Thunk adding the two results. The
first two Thunks are wrapped in Strict Encodes, specifying
that the addition function needs the evaluated results.
Selection Thunks provide efficient access to large or par-
tially evaluated data structures without including the entire
structure in a program’s minimum repository. Fig. 4 shows
how a F1x procedure may recursively descend a directory
structure without fetching the full contents of the directories
or the files within. The procedure uses a strictly-encoded
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Algorithm 3 Get File Procedure

[rlimit, elf, path, info, dir] < READ_TREE(input)
i « index of child directory given path and info
pathpe,, — updated path
child < seLECTION(dir, i)
if pathye,, = then
return child
end if
info « sELECTION(child, 0)
Xy < STRICT(info)
x1 < SHALLOW(child)
res < CREATE_TREE([rlimit, elf, pathpeyy, X0, X1])
return APPLICATION(res)
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Figure 4. A Fix procedure identifies the index of “dir0” within a TreeRef, and recurses into “dir0”. It specifies that the inode
information from “dir0” is immediately necessary, while still providing a TreeRef to “dir0” for later use.

Selection Thunk to express its immediate dependency on
the inode information of the subdirectory, and a shallowly-
encoded Selection Thunk to express its eventual dependency
on children of the subdirectory. In this way, the directory
contents are never added to the minimum repository of a
Thunk, avoiding unnecessary data transfers and RAM usage.

4 FixpoiNT: a FIx runtime

In this section, we describe the design and implementation of
F1xpoINT: a Linux application that functions as a multi-node
runtime for programs expressed in the Fix ABL

4.1 Procedures

FIxpOINT procedures are implemented as machine codelets:
small programs compiled to native x86-64 machine code.
Each codelet contains an entrypoint, _fix_apply, which is
invoked when a Thunk referring to that procedure is run.
This function receives as input the Handle of a TreeObject
(the Thunk’s definition), and returns the Handle of a Fix
object. These procedures are provided as Executable and
Linkable Format (ELF) files, which are loaded and linked
against the FixroINT API in a shared address space. Fix-
POINT requires these codelets to be sandboxed, but they may
otherwise contain arbitrary code.

4.1.1 Safety and Correctness. FIXPOINT runs arbitrary
machine codelets within a single address space. However,
since these codelets are user-provided and therefore un-
trusted, FIxPOINT must ensure they satisfy these properties.

A particular execution of FixroINT defines a trusted Fix
program which is responsible for generating safe codelets.
The approach FIXPOINT currently uses is to treat the trusted
program as a trusted compilation toolchain for a higher-level
intermediate representation (IR) which provides sandboxing
capabilities. The current implementation uses WebAssembly
(Wasm) [21] as its higher-level IR. Wasm provides memory-
safety and determinism, and is amenable to ahead-of-time

compilation, at the cost of having a larger trusted codebase
than a verifier-based approach.

However, since FIxPOINT doesn’t place any restrictions on
what the input of this program should be, other approaches
are possible; the use of Wasm is not intrinsic to Fix or Fix-
POINT. For example, another approach is to statically ana-
lyze machine code, as in Native Client [36] or Deterministic
Client [44]. These approaches could also provide good per-
formance and memory-safety with a small trusted codebase.

While there are other representations that provide sim-
ilar guarantees, Wasm has the benefits of strong existing
toolchain and language support. This allows existing third-
party software, such as the CPython interpreter or clang
compiler, to be easily ported to Fix. Wasm also provides pro-
grams the ability to reference opaque pieces of external data
(via an externref), which FIxroINT uses to efficiently ex-
change Fix Handles with the otherwise-untrusted function
invocations while maintaining security.

We have implemented an ahead-of-time “trusted toolchain”
that takes programs that have been compiled to Wasm and
compiles them, in turn, into x86-64 machine codelets. Given
a Wasm module, FixpoINT compiles it by using (1) the Wasm-
spec-conforming wasm2c tool [9, 49] to convert it to multiple
C source files, (2) libclang to compile each generated C file
into an optimized x86-64 object file in parallel, and then (3)
1liblld to combine all the generated object files into a single
complete ELF file. We implemented this toolchain against
the FixpoINT API (upstreaming our changes to wasm2c) and
compiled it to Wasm. It is implemented as an ordinary Fix
program, runs within FIxpoINT normally, and is self-hosting:
it can compile itself.

Machine codelets generated by this compilation toolchain
are ELF files containing relocation entries against the Frx-
POINT APL FIXPOINT contains a small in-memory ELF linker
that links the codelet with the FixpoiNT API This can be
done ahead-of-time and is not on the critical path.
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// Map Fix data to native Wasm types

void attach_blob(m256i handle, wasm_memoryx*);

void attach_tree(m256i handle, wasm_tablex);

m256i create_blob(int size, wasm_memoryx);

m256i create_tree(int size, wasm_tablex);

// Create Thunks

m256i application/identification/selection
(m2561i handle);

// Create Encodes

m256i strict/shallow(m256i handle);

// Query information about a Handle

bool is_blob/tree/ref/thunk/encode(m256i handle);

int get_size(m256i handle);

Listing 1. FixpoINT API

4.1.2 FixpoiNT API. From the perspective of the original
Wasm code, FixpoiNT’s API allows it to “map” Blobs and
Trees into native Wasm data types (for Blobs, a read-only
linear memory, and for Trees, an externref-typed table),
and create Blobs and Trees from native Wasm data types.
This allows the procedure to perform zero-copy conversions
between FIXPOINT objects and native structures.

Procedures interact with the FixpoinT API through Han-
dles represented as 256-bit vector types, which can be passed
by value as an m2561 using AVX2 (%ymm) registers on x86-64.
The allowed operations on a Handle are decided by their
type: BlobObjects and TreeObjects are mappable, making
their data accessible; Refs aren’t mappable but procedures
can inspect types and sizes of the referents; Thunks can’t
be inspected at all, but new Encodes can refer to Thunks.
By creating Identification and Selection Thunks referring
to Refs, and then Encodes to those Thunks, procedures can
request that FIxpoINT do the I/O necessary to give a child
function access to their contents.

4.1.3 Security and Isolation. FIxPOINT runs user-provided
machine code in a shared address space. FIXPOINT ensures
isolation between function invocations: Wasm procedures
can only access their own linear memory and make exter-
nal function calls to FixpoiNT API, which provides isolation
similar to software-based fault isolation. Procedures can also
gain read-only access to Fix Blobs and Trees which they
get the Handles of by recursively mapping Trees, starting
from the input to _fix_apply. Proclets do not have access to
shared mutable memory or timers (both of which are nonde-
terministic), which prevent timing side-channels. The safety
and isolation provided by Fix and FIxPOINT is similar to V8
isolates used by Cloudflare Workers platform.

4.1.4 Adapting existing applications. We have begun
implementing a library to let existing Unix-style programs
run on F1xpoINT. The Wasm community has created a stan-
dard C library (wasi-libc) that implements the C/POSIX in-
terface in terms of underlying system calls known as the
Wasm System Interface (WASI). In turn, we implemented a
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library called “Flatware” (Fig. 5) that implements the WASI
interface in terms of the FixpoINT API—treating the Thunk’s
arguments as containing a Unix-like filesystem. FIXPOINT is
oblivious to this translation layer; from its perspective, it is
an ordinary unprivileged part of the procedure.

FixpoiINT, via Flatware, runs an off-the-shelf compilation
of Python 3.12 built for wasm32-wasi by VMWare Labs [8]
with no modifications. The Python script and arguments are
passed in as part of the Thunk’s definition, and the stdout
containing the result is returned as part of the output.

[CPython| [add_posix|
@ <« API: POSIX/C

@ «— API: WASI

[ if ][ fib | [Flatware]  attachblob
.4—_ AP|;create:blob
. n create_tree

| FlXpOInt | create_thunk

Figure 5. Fix can express “native” functions as well as Unix-
style programs that manipulate a filesystem.

4.2 Runtime architecture

Fixpoint node

Fixpoint Job queue
node 1111
Network Worker Thread
Worker
N
—— Scheduler |_,|User : :
Jobs as Fix l— Function : :
; : Worker :
Objects . . . L H
Fix object; | Decides i Thread
Network [lecation ;Cztnt;f" Fixpoint f :
Worker Send semantics AP'
job H
. ELF Linker
Runtime Storage I < |
Handles ==> Data PrOgram RegIStry
Handles ==> linked programs

Figure 6. FixpoINT infrastructure

4.2.1 FixpoiNT workers. The execution engine of Fix-
POINT consists of a thread pool of FixpoINT worker threads.
All worker threads share access to a queue of pending jobs
and a runtime storage that maps from Blobs and Trees to their
data and from Encodes to evaluation results. Each worker
thread contains an instance of the Scheduler, which decides
what I/O and computations are needed for evaluating an
F1x object based on F1x semantics. F1x’s computation model
guarantees that a procedure cannot block on further I/O be-
fore it returns, which allows the worker thread to directly
jump to the entry point of the codelet instead of launching
new threads or processes.

FIXPOINT instances can interact to form a distributed exe-
cution engine. Each node keeps track of which other nodes
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to notify when a job is completed, with a Network Worker
that handles messaging between nodes.

A FixpoINT node delegates jobs to remote nodes by send-
ing Fix values—Blobs and Trees. This allows different nodes
to communicate complicated user-function dataflow without
any intermediate conversion. Moreover, as all dependencies
are specified as part of the packed binary format, FIXxPOINT
doesn’t need to maintain a global data structure or perform
multiple roundtrips between nodes to translate between a
Tree and the function invocation it represents.

4.2.2 Dataflow-aware distributed scheduling. In the
distributed execution engine, the Schedulers could also de-
cide where a job should be executed. In the current imple-
mentation, FixroINT does not have a centralized scheduler,
and each local scheduler makes independent scheduling de-
cisions by consulting a “view” of which data exist on what
node provided by the Network Worker. When two FIxpoINT
nodes first connect, they each provide the other with a list
of objects available locally, and this “view” is advanced pas-
sively: if the other node sends or proposes to send an object,
the object is added to the view of the other node. This “view”
of where the data are located will be replaced by a distributed
object store in the future.

Given an Application Thunk, the FixpoINT scheduler de-
scends the Application Thunk Tree given Fix semantics, and
collects its dependencies on data and the results of other com-
putations. For Encodes without results, it decides where to
evaluate the Thunk by picking the node that needs minimal
data movement given locations of existing F1x objects. Appli-
cations can “hint” an estimated output size of a Thunk, and
if so, the scheduler includes the cost of moving the output as
part of the data movement cost. In addition, Fix allows the
scheduler to see jobs that are dependees of the same down-
stream job, and outsource parallel jobs to different nodes.

The choice of optimizing for data movement specifically
is not intrinsic to FixpoiNT. With I/O externalization, service
providers have the flexibility to implement schedulers that
optimize for platform-specific goals, e.g. better bin-packing
of RAM resources.

5 Evaluation

In this section, we describe our experiments and performance
measurements. We compared FIx programs, running on F1x-
POINT, with comparable applications written for a serverless-
computing system (OpenWhisk, MinlO, and Kubernetes), a
serverless-workflow-orchestration system (Pheromone), a
serverless system with Wasm runtime (Faasm), and a cluster-
orchestration system (Ray). Our evaluation answers five
questions:
e How do F1x and FixpoINT improve function invocation
and orchestration (Section 5.2)?
e How does I/O externalization benefit resource utiliza-
tion (Section 5.3)?
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e How does F1x’s richer features allow computations to
be broken down into much finer-grained (Section 5.4)?

e Can developers port real-word applications to Fix and
gain performance benefit (Section 5.5)?

e What is the experience of porting existing third-party
software to Fix (Section 5.6)?

5.1 Benchmark Setup

Baselines We compare FixpoINT with 4 baselines:

OpenWhisk. OpenWhisk is a popular open-source server-
less platform. We deployed OpenWhisk on Kubernetes with
MinlIO, an open-source object store. OpenWhisk is config-
ured with Kubernetes as the container factory, such that
Kubernetes handles scheduling and placing of OpenWhisk
function invocations. By comparing with OpenWhisk, we
aimed to investigate whether F1x’s approach of externalizing
I/0 to the runtime produces a measurable benefit in practice;
in terms of allowing programs to achieve higher utilization
and decrease end-to-end execution time.

Ray. Ray is an open-source distributed execution frame-
work with a with two main abstractions: ObjectRefs and
ray.get. To get the values associated with a ObjectRef,
users of Ray either 1) pass a ObjectRef as the argument to a
Ray function invocation or 2) call ray . get on the ObjectRef
which blocks the current function until the data are loaded.
ObjectRefs and ray.gets are analogous to Thunks and En-
codes of Fix.

We compare FixpoINT with three styles of Ray programs:

Ray + MinlIO. User functions are Linux executables that
reads from and writes to MinIO. The binaries of user func-
tions locate on a single machine. When a function is invoked,
Ray checks whether the binary is presenting locally, loads
the binary if not, executes the binary via Popen and blocks
until the subprocess returns. For Linux executables, this is
the only viable style, as such user functions can not directly
interact with Ray interfaces.

Ray (blocking-style I/0). User functions are Python func-
tions implemented against Ray API. When a ObjectRef is
needed, the function calls ray.get on the ObjectRef. This
is how we expect Ray is normally used.

Ray (continuation-passing-style I/0). User functions
are Python functions implemented against Ray API. Different
from the previous usage, ray.get is never called. Whenever
a ObjectRef is needed, a new function is invoked with the
ObjectRef as the input, which breaks down applications
into fine-grained function invocations along boundaries of
I/O. This is the closest usage of Ray to Fix.

To illustrate how the latter two usages of Ray differ from
each other and F1x, we describe how retrieving an entry from
a linked-list is implemented in Listing 2 and Listing 3. Ray
(continuation-passing-style) has similar conceptual benefits
to F1x: functions blocked on I/O don’t occupy memory, are
broken into fine-grained movable invocations, and allows
Ray to utilize locality information. For these two usages of
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Ray, we setup Ray to read from the same file directory as
F1xpoINT, and Ray has the same information as FIXPOINT in
terms of where data locates across the nodes.

# A linked-list Node holds two Ray ObjectRefs: the data and
the next Node
Node = Tuple[Ref, Ref]
@ray.remote
def get_blocking(head:
current_node = head
for _ in range(o, i):
# When data of the next Node is needed, the function
blocks on the data
current_node = ray.get(current_node[1])
return ray.get(current_node[0])

Node, i: int):

Listing 2. In Ray (blocking-style), getting an entry is
implemented as a Ray function that gets and blocks on the
data of the next node until it reaches the node it needs. After
the function invocation is started, data for Node objects are
moved to where the function invocation is.

@ray.remote
def get_cps(node:
if (n==0):
return node[0]
else:
# When data of the next Node is needed, the function
calls itself with the new data dependency, and the new
function invocation is called when the data is ready
return get_cps(nodel[1], i-1)

Node, i: int):

Listing 3. In Ray (continuation-passing-style), there is no
function blocked while Ray performs I/O to get the data, and
Ray can choose different execution locations for each new
function invocation.

By comparing with Ray, we would like to show how Fix’s
computation model expresses dataflow dependency at a
lower overhead compares to previous distributed job execu-
tion system, and how F1x enables user procedures expressed
as machine code to make their dataflow visible.

Pheromone. Pheromone allows users to describe dataflow
of serverless applications by specifying dependencies be-
tween functions (e.g. invoke function B on the output of
function A) or dependency of a function on a set of data
(e.g. invoke function A on any data added to bucket B).
Pheromone’s approach targets reducing function orchestra-
tion overhead by collocating intermediate data and function
dependency information. We deployed Pheromone on Kuber-
netes. By comparing with Pheromone, we would like to show
how Fix’s computation model allows functions to specify
dependencies on both intermediate data and external data
from durable storage and achieves collocation of function
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data- and control flow with a more expressive dependency
abstraction.

Faasm. Faasm is a serverless runtime that achieves light-
weight isolation by using Wasm for software fault isolation.
Faasm’s isolation mechanism is similar to FIxPOINT, but with-
out I/O externalization. Therefore, Faasm provides functions
with a host interface that supports operations such as file
system I/Os, shared states across multiple running function
invocations, etc., which leads to a more general interface
than FixpoINT, but also a heavier runtime overhead. We de-
ploy Faasm locally using Docker containers. By comparing
with Faasm, we would like to show Fix’s abstraction allows
user programs to declare precise code dependencies and let
FIXPOINT minimize runtime overhead.

Hardware The experiments were run on m5.8xlarge
Amazon EC2 instances. At the time of writing, anm5. 8xlarge
instance has 32 vCPU cores and 128 GiB memory. The vol-
umes we used are Amazon EBS gp3 volumes with 3,000 IOPS.

5.2 Function invocation and orchestration

5.2.1 Invocation overhead. In this section, we measure
the raw overhead of Fix invocations by measuring the per-
formance of a trivial function—add two 8-bit numbers—run
in different types of isolation mechanisms. We compare the
latency of executing 8 functions:

static: Calling a statically linked function in C.

virtual: The same, called as a virtual function in C++.

FixpoINT: The same, implemented in Wasm against the
Fix APL This and the below approaches provide various
forms of containerized or visible dataflow.

Faasm: A C++ function against Faasm’s API, pre-compiled.

Pheromone: A C++ function against Pheromone’s APL

Ray: A Python function that adds two 8-bit integers, called
as a Ray remote function.

OpenWhisk: A full C/POSIX program that takes a JSON
input, invoked as an OpenWhisk action.

Linux Process: A full C/POSIX program that takes two
8-bit integers as command line arguments.

Benchmark: For the first seven, we evaluate the add func-
tion 4,096 times, and report the average time per function
call. FixpoINT, Pheromone, Ray and OpenWhisk have differ-
ent way of setting up a function. FIxpoINT statically links the
executable; Pheromone dynamically load the function as a
shared library; Ray pickles the Python function; OpenWhisk
sets up the function container. To exclude the function setup
time from the measurement, we evaluate the add function
one time before the measurement, and the time reported
does not include function setup time. For the Linux process,
we vfork the add program and wait for its completion 4,096
times, and average the time per execution. We report the av-
erage of five benchmark runs. For OpenWhisk, Pheromone
and Faasm, we also collect the core function logic execution
time reported by the systems, shown as stacked bars in the
figure.
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Figure 7. (a) Duration of a single trivial function invocation on FIxpoINT and comparator systems. FIxroINT’s overhead is
lower, letting applications express themselves in finer-grained steps that each capture the minimum data needed. Dashed
lines show “core” execution time recorded by some systems’ internal timers (generally excluding orchestration and cleanup).
(b) Duration of a chain of 500 function invocations, with the client either near the server (left) or farther away (right). Ray incurs
500 network roundtrips, while FixpoINT and Pheromone can express the intended control flow in one go. For applications with
pipelines of many fine-grained invocations, it’s helpful to reduce the overhead of function composition as much as possible.

Analysis: As Fig. 7a shows, add as static or virtual func-
tion calls are the fastest implementations, taking 1.8 ns and
12.2 ns for execution, but do not provide isolation. Executing
add as a Linux process provides isolation, at the cost of a
>400 ps context-switching penalty.

By contrast, the FIXPOINT program has an overhead of
about 1.5 ps. This overhead suggests a lower bound on the
practical granularity of an individual function invocation in
F1x; in order to provide > 50% efficiency, each invocation
will need do about 1.5 ps of computation (>3 kcycles). This,
in turn, suggests a minimum granularity of data “footprint”
that will be efficient in a multi-stage application.

Although F1xpoINT isn’t close to the overhead of a func-
tion call, it is much lighter than comparator systems: F1x-
POINT is about 880X lighter than Ray and 20, 000x lighter
than OpenWhisk. FIxPOINT is also 3500 lighter than Faasm.
FixpoINT’s speed-up is not solely attributable to its choice
of isolation mechanism, but also benefits from Fix’s abstrac-
tions. These differences in overhead suggest that Fix pro-
grams will be able to afford to break down computation into
much finer-grained and smaller containers.

5.2.2 Orchestration overhead. In this section, we mea-
sure the overhead of Fix function orchestration by measuring
the performance of a function chain.

Benchmark. Each function invocation increments its
input value by 1, which is consumed by the next function
invocation. We measure the performance of 500 chained
functions, as shown in Fig. 7b. We run the experiment with
the clients placed on one of the machine in the EC2 cluster
and on a remote server and report the average latency over
5 runs. We invoke the function once before taking the mea-
surements, such that the measured results do not include the
time of function loading for all three systems.

Analysis. Ray allows users to specify dependency on the
level of individual function invocations, but the specified
dependencies are coupled with the location where they are

specified. Ray needs to pay for a roundtrip to the client for
each dependency resolution.

Compared with Ray, Pheromone restricts the expressivity
of its dependency model to the level of individual functions.
It decreases the overhead of sharing function dependencies
in a distributed setting, and enables Pheromone to collo-
cate function dependency information and function outputs.
Pheromone is 47x faster and 303X faster than Ray with dif-
ferent client locations.

Fix allows users to specify dependency on the level of
individual function invocations. This gives Fix the level of
expressivity of Ray and Pheromone’s capabilities of coupling
function data- and control flow.

5.3 1/0 externalization

F1x has a computation model that externalizes all I/Os of user
function invocations, making it possible for service providers
to late binding physical resources and optimize placement
decisions with locality information. In this section, we focus
on how I/O externalization benefits 1) one-off functions that
depend on input from network storage and 2) a map-reducing
style workload with locality information.

To better understand the contributions of Fix and Fix-
POINT, we conduct the experiments with two ablations:

FixpoiNT (no locality): The scheduler picks a random
execution location for each function invocation.

FixpoiINT (“internal” I/0): Function invocations occupy
the claimed physical resources before their I/O dependen-
cies are resolved. In addition, we oversubscribe the num-
ber of CPU cores and do not oversubscribe the memory for
FixpoINT, which is analogous to how status quo serverless
platforms manage physical resources.

5.3.1 I/O externalization for one-off functions. We
measure the benefits of Fix’s I/O externalization for indi-
vidual function invocations that depend on inputs residing
on a remote data server configured with 150ms response
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latency to mimic Amazon S3 performance of fetching small
objects [3].

Each function invocation reads an input that resides on
the remote data server, and adds the input to itself. Different
function invocations depend on different inputs. Each func-
tion invocation requests 1 CPU and 1 GB memory, and the
FIxpoINT server is configured with 32 available cores and
64 GiB available memory, which allows up to 32 function
invocations that FixroINT has fetched the inputs for to run
in parallel. In FixpoiNT (“internal” I/O), we oversubscribed
the CPU cores to 200, which allows up to 64 function invoca-
tions to fetch the inputs and calculate the result in parallel.
This is analogous to current serverless services where a func-
tion invocation starts fetching data from network storage
after it is placed and the requested physical resources are
provisioned. We run 1,024 function invocations for each run,
recorded the CPU utilization data on the server and report
the average latency of 5 runs in Fig. 8a.

Analysis. /0 externalization allows FIXPOINT to achieve
late binding of physical resources: resources are allocated
after the data for function invocations is ready. As a result
FixpoOINT is 8.7X faster than FixpoINT (“internal” I/O). This
suggests that typical serverless workloads—individual func-
tion invocations that depend on input from network storage—
could benefit from F1x’s computation model.

5.3.2 1/O externalization with locality information.
We count the occurrences of a 3-character string through a
dump of the English Wikipedia sharded into 984 100 MiB
chunks in a map-reducing style. The workload consists of 2
functions: (1) count-string takes a chunk and a string as
inputs and reports the number of occurrences of the string
and (2) merge-counts merges the results in a binary reduc-
tion. count-string is invoked on every Wikipedia chunk
and merge-counts is invoked on the results of every two
completed function invocations until the final result. We
deploy FixpoIiNT, OpenWhisk and Ray on a 10-node cluster
with 320 vCPUs in total. The 100 MiB chunks are scattered
among the 10 nodes randomly for FixpoiNT and Ray, and
store in MinlO deployed on the same cluster for OpenWhisk.
We measure the end-to-end execution time of FixroINT, Fix-
POINT (no locality), FixpoINT (no locality + “internal” I/O),
Ray (continuation-passing), Ray (blocking-style) and Open-
Whisk, and record CPU utilization data of the 10 nodes from
/proc/stat. Results are shown in Fig. 8b, averaged over 16
runs.

FixpoINT (no locality) selects a random node for each
invocation of count-string. On top of that, FIXPOINT (no
locality + “internal” I/O) oversubscribes the CPU, running
128 threads instead of 31.

Due to the implementation of Pheromone, we are not able
to get the reduce-phase (i.e. merge-counts) to run: before
map-phase function invocations complete, Pheromone starts
the reduce-phase function invocations which try to access
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the output bucket of the map phase with a hard-coded time-
out value. Pheromone’s implementation makes it hard to
precisely record the CPU utilization data, as its components
have 100% CPU utilization whether there are user applica-
tions running or not. We report the end-to-end execution
time of the map phase in Pheromone, averaged over 5 runs.

Analysis. I/O externalization allows FIXPOINT to pick
execution locations of functions with the knowledge of data
locality information, and F1xpoINT achieves 9.7X speed-up
compared to FIXPOINT (no locality). Ray sees similar benefits
as Ray (continuation-passing-style) breaks the program into
fine-grained invocations such that Ray can pick the execution
location before the function is started.

FixpoINT (no locality + “internal” I/O) oversubscribes
CPUs such that no count-string invocation is blocked due
to physical resource limitation, but the oversubscription in-
troduces a 7.5% overhead.

Compared to Fix, Pheromone’s dependency abstraction
does not allow users to specify function dependencies on data
that are not intermediate results. Although the end-to-end
execution time of Pheromone does not reflect the actual per-
formance of a production-grade system implemented with
similar ideas, its execution time is of a magnitude that is
more analogous to FIxpoINT (no locality).

5.4 Fine-grained function invocations

Compared to status quo serverless workloads—individual
function invocations—other real-world applications have
more dynamic data dependencies. They may traverse tree-
like structures and require several rounds of I/O, for example,
identifying objects given a BVH tree of scene data for 3D
rendering, or fetching a file from a file system represented
by nested trees. Breaking down these applications into fine-
grained function invocations reduces their memory footprint,
but may hurt overall performance due to the overhead of
function invocation and orchestration. In this section, we
would like to show how Fix and FixpoIiNT allow users to de-
scribe data dependencies precisely and benefit from breaking
applications into fine-grained steps.

Benchmark. We take the list of titles of English Wikipedia
articles, about 6 million entries with an average length of 22
bytes, and create B+ Trees of different arities with the titles
as keys (details shown in Table 2). Each node of the tree is im-
plemented as a list of ObjectRef's for Ray and as a Tree of for
F1xPOINT. An internal node contains the ObjectRef/Handles
to subtrees. A leaf node contains the ObjectRef/Handles
to values. All nodes contain the ObjectRef/Handle to an
array of keys. Traversing the keyspace of the B+ Trees de-
scends the B+ Tree node-by-node. For each layer, Ray gets
2 ObjectRefs: one for a list of child ObjectRefs, and one
for the array of keys corresponding to each child. For each
ObjectRef, Ray (blocking-style) does a blocking get and
Ray (continuation-passing-style) makes a new Ray function
call.
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Figure 8. (a) Duration to execute 1,024 function-invocation requests on a server with 32 CPUs and 64 GiB RAM. Each invocation
depends on a single input from a network storage with a 150 ms response time and asks for 1 CPU core and 1 GB memory.
I/O externalization allows FIxpoINT to fetch data dependencies before committing physical resources, greatly increasing task
throughput. (b) Counting occurrences of a 3-character chunk in 984 100-MiB shards from Wikipedia. FIXPOINT’s runtime is
much lower than other systems’—fueled, in large part, by its ability to avoid stalling CPUs to wait for dependencies.

Tree arity (a) / Tree depth (d) [ 2%%/1 [ 2"%/2 [ 21°/3 [ 2°/5

# of function invocations

data accessed maximum memory footprint

FIXPOINT d adO(key size) aO(key size)
Ray (Continuation Passing) 2d ad(O(key size) + O(entry size)) | a(O(key size)+O(entry size))
Ray (Blocking) 1 ad(O(key size) + O(entry size)) | ad(O(key size) + O(entry size))

Table 2. The amount of data accessed and maximum memory footprint of FIxPoINT and comparator systems to get a value
from B+ Trees of different arities that hold all Wikipedia article titles. O(key size) stands for the length of Wikipedia article

titles and O(entry size) stands for the size of Tree entry.
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Figure 9. Applications with data-dependent dependencies
benefit from F1x’s model. Plotted here is the time to traverse
a 6M-entry B+-tree of Wikipedia article titles, searching for
one entry. Each step of the search examines one node to
decide which node to descend into. A Ray program (broken
into fine-grained invocations in continuation-passing style)
scales poorly as the tree arity decreases. A blocking Ray pro-
gram performs better here, but worse in Fig. 8b. Compared
with F1x, both Ray implementations are hindered by a lack
of expressiveness regarding data and control flow.

We deploy FixpoINT and Ray on a single node, and con-
figure FixpoINT and Ray to each use a single worker thread.

All the data of the B+ tree is stored on the same node for
FrxpoINT and Ray. We run five independent sets of queries, re-
setting the system state between each set. Each set of queries
contains 10 sequential queries for different keys chosen ran-
domly. We measure the end-to-end execution time of execut-
ing a set of queries, and average the results across the five
set of queries. We run this experiments twice for arity 224,
and 16 times for all other arities, results in Fig. 9.

Analysis. As the arity of B+ Tree decreases, the total
data accessed and maximum memory footprint of the 3 com-
parators decrease, with a different factor across different
implementations at the cost of increased number of function
calls.

Although Ray (continuation-passing-style) outperforms
Ray (blocking-style) in Fig. 8b as it shares similar bene-
fits as F1x, Ray (continuation-passing-style) involves more
function invocations. As the function invocations get more
fine-grained in this benchmark, the extra function invoca-
tion and orchestration overhead makes it a net loss for Ray
(continuation-passing-style), which consistently performs
worse than Ray (blocking-style) and sees an increase in end-
to-end execution time as the arity decreases from 22 to 28,
while FIXPOINT sees a decrease in end-to-end execution time.
At the arity of 2°, Ray (blocking-style) is 22.3x slower; and
Ray (continuation-passing-style) is 49.9% slower.

This suggests that F1x’s richer semantics and lower over-
head of function orchestration makes it possible for user and
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Figure 10. Duration to run a large software-compilation job,
with a dataflow graph that evolves over time, on a 10-node
cluster with 320 total vCPUs. Fix lets FIXPOINT outsource
function invocations with more fine-grained data needs, and
bundles the data-dependencies along with the invocations.
Error bars represent standard deviation of 5 runs.

the platforms to benefit from smaller memory footprint and
amount of data accessed by decomposing applications into
multiple invocations of fine-grained data dependency, which
could benefit applications with dynamic data dependency
mentioned before.

5.5 Burst-parallel application

In this section, we would like to study whether users can
port real-world applications to F1x and see performance gain.
We port libclang and 1ibl1d to Fix, which involves three
parts of programmer efforts: we made a one-line change
to upstream LLVM codebase to remove its dependency on
threading support; we created function stubs for functions
that wasi-libc does not implement; we wrote driver programs
that interact with Fix for I/Os, which includes 186 lines of
code in C, and 93 lines of code in WAT (the POSIX counter-
parts are implemented with 92 lines of code in C).

Benchmark. To measure FIxPOINT’s performance on
burst-parallel applications, we compile a project with al-
most 2,000 C source files, resulting in parallel invocations of
libclang (each depends on a input C file, plus system and
clang headers) and a single invocation of 1ibl1d to combine
the outputs into a single object file.

For OpenWhisk, 1libclang and 1ibl1d are created with
Docker images due to OpenWhisk’s limit on binary size.
Other data dependencies and input/output files are stored in
MinlIO. OpenWhisk functions are created when needed, and
the reported execution time includes function creations.

For Ray, each executable behaves the same as in Open-
Whisk, and Ray launches executables via Popen. The exe-
cutables start on a single node. When a Ray job is scheduled
on a node, it first checks whether the executable exists on
the machine, and loads the executable if not. As Ray does
not provide interfaces of getting data for such executables,
the executables read data dependencies from MinlO, similar
to OpenWhisk.
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For F1xpPoINT, all dependencies including data and binaries
are uploaded from the client at execution time. The FixpoINT
client is connected to a single FIXPOINT server node.

We deployed FrxpoinT, OpenWhisk and Ray on a 10-node
cluster with 320 vCPUs in total, and measured the end-to-end
execution time of F1xpoINT, Ray + MinlO, and OpenWhisk.
Results are shown in fig. 10, averaged over 5 runs.

Analysis. Fix allows user programs expressed in machine
code, like libclang and 1iblld, to make their dataflow
visible to FIxPOINT in a language-agnostic way. FIXPOINT
also has a lower function invocation and orchestration over-
head, such that the large number of parallel function invoca-
tions are distributed across the nodes efficiently. FIxpoINT
achieves a 1.9X speed-up compared to Ray and 2.5X speed-
up compared to OpenWhisk since Ray and OpenWhisk do
not have the same level of visibility as FIXPOINT.

5.6 Porting existing third-party software

In this section, we would like to show the user efforts in-
volved in porting existing applications with the support
of Flatware. We take two functions— dynamic-html and
compression—from SeBS [13], a popular serverless bench-
mark suite. dynamic-html takes a user name as input, and
generates an HTML from a template using Jinja library.
compression takes a bucket name as input, downloads all
the files and creates an archive. Porting these two functions
involves two parts: (1) we modify the functions to read inputs
from command line arguments, and the data dependencies
from the file system; and (2) we identify dependencies of
the functions. dynamic-html depends on external libraries
and the HTML template, while compression depends on
the files to create an archive for. We create Fix objects that
represent the dependencies as files in a Unix-like filesystem
in the format required by Flatware. With these changes, we
are able to run the two functions with an off-the-shelf com-
pilation of Python 3.12 built for wasm-wasi in FIXPOINT via
Flatware.

Python 3.12 : Dependencies represented “Command line

+ Flatware in Flatware filesystem format: ' args to CPython
i w
Fer.nplate/template.html python
inode | Jinia2 d ic-html
info J[markupsafe ynamic-ntml.py
dynamic-html.py uhan

Figure 11. Represent an invocation of dynamic-html with
F1x objects.

These two parts are representative of the process of port-
ing arbitrary programs to Fix: (1) modifying the source code
to remove code dependencies that are not yet supported
by WASI or Fix (e.g. socket operations, threads, etc.); and
(2) identifying the minimum repositories that the programs
will need access to. Complexity of the porting process varies
across different programs. Applications that are mainly “com-
putational” are easier to port to F1x, while ones that heavily
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depend on nondeterministic services need either refactor-
ing the applications, or expanding Fix. Identifying the min-
imum repository relies on application-specific knowledge.
For applications like serverless functions with well-defined
dependencies, programmers could include everything in the
minimum repository, as what we did for the two SeBS func-
tions. For applications with highly-dynamic dataflow, how
they should be broken down into smaller invocations with
evolving minimum repositories relies on programmers’ dis-
cretion.

6 Limitations and Future Work

Fix is a constrained model of computation, and this comes
with significant limitations. Although some of these might
be lifted with future work, doing so will require solving some
open research problems.

F1x can only model functional workloads. Although
FixpoINT shows substantial performance benefits in func-
tional workloads, Fix’s model of computation is more limited
than existing FaaS platforms. FIx requires user programs to
be pure functions that consume content-addressed data (or
the outputs of other computations). We think this model is
compatible with many typical uses of FaaS platforms, where
functions use provider APIs to perform limited I/O to other
services, but excludes applications that rely on the ability to
perform arbitrary network requests. It also excludes appli-
cations that wouldn’t fit the serverless model because of a
reliance on shared mutable state, e.g., multi-user databases,
message buses, e-commerce workloads [20], etc. Existing ap-
plications that rely on such state are deployed on a combina-
tion of services: computations are run on serverless services,
while the shared mutable state is managed by other external
services like databases or blob storage. We imagine that F1x’s
role in such applications will one day be similar to current
serverless platforms, but currently Fix doesn’t support them.

Nondeterministic I/O must be delineated. Fix requires
inputs and dependencies of a function invocation to be identi-
fiable deterministically. However, real-world programs some-
times desire nondeterministic I/O, e.g., to gather a random
seed, the time, or arbitrary information from a remote sensor
or service. In F1x’s world, this nondeterministic I/O needs
to be delineated from the rest of the program, so it can be
performed externally by a Fix runtime. We believe that it
will be possible to statically or dynamically transform exist-
ing programs with embedded I/O into a sequence of pure
functions with delineated I/O, using techniques similar to
asynchronous programming languages [48].

I/0 externalization is burdensome. Existing programs
have to be recompiled with a Fix-targeting toolchain. Pro-
grammers need to separate applications into I/O and com-
pute, so each stage of a computation can declare its depen-
dencies before execution, and convert existing programs to
continuation-passing style to keep necessary state across
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points of I/Os. This burden could be lifted by expanding
Flatware and providing implementations of common pro-
gramming paradigms, e.g. map-reduce, on Fix. In addition,
F1x’s visibility into data- and control flow suggests the pos-
sibility of lightweight continuation capture, where existing
programs are automatically split at I/O operations. We leave
implementation of this transformation to future work.

Towards computation-as-a-service. We are optimistic
that changing the interface to computation on FaaS platforms
could make it possible to realize new efficiencies, to the
mutual benefit of operators and their customers. We expect
serverless platforms might be able to change dramatically:

Ultra-high-density multitenancy. Serverless platforms will
be able to pack as many applications as possible into limited
memory and CPU resources, with fine-grained understand-
ing of each application’s time-varying memory footprint.

Computational “garbage” collection. Because Fix compu-
tations are deterministic products of known dependencies,
users who opt for “delayed-availability” storage would grant
the provider the ability to delete stored objects as long as the
provider knows how to recompute them on demand, within
the SLA window for the data to be delivered.

“Paying for results.” Billing models that reward better place-
ment and scheduling strategies could benefit both users and
providers. Operators could compute prices based on an “up-
front” cost (the size of an invocation’s data inputs and RAM
reservation), plus a “runtime” cost that immunizes the cus-
tomer from bad placement or a “noisy neighbor” E.g., instead
of milliseconds of wall-clock time, the runtime cost might be
a combination of “instructions retired” plus a penalty for L1
and L2 cache misses (which are the core’s fault), but not L3
cache misses, which may be affected by neighbors on a CPU.
Invocations that come with more-distant deadlines could
carry a lower cost and allow a provider to spread out load.

Commoditizing cloud computing. Because computations
will have a single, unambiguous result, providers could sign
statements with their answers—“f(x) — y, according to
Provider Z”—and customers could bid out jobs to any provider
that carries acceptable “wrong answer” insurance and double-
check answers if and when they choose.

7 Conclusion

In this paper, we presented F1x, an architecture for serverless
computing where functions and the underlying platform
share a common representation of a computation. This leads
to better placement and scheduling of user jobs, improving
performance and reducing waste. F1x is available at https:
//github.com/fix-project/fix, with a Zenodo snapshot at https:
//zenodo.org/records/17154970.
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