
FaaSConf: QoS-aware Hybrid Resources Configuration for
Serverless Workflows

Yilun Wang
Anhui University, China

wangyilun@stu.ahu.edu.cn

Pengfei Chen
Sun Yat-sen University, China
chenpf7@mail.sysu.edu.cn

Hui Dou∗, Yiwen Zhang
Anhui University, China

{douhui,zhangyiwen}@ahu.edu.cn

Guangba Yu, Zilong He, Haiyu Huang
Sun Yat-sen University, China

{yugb5,hezlong,huanghy95}@mail2.sysu.edu.cn

ABSTRACT
Serverless computing, also known as Function-as-a-Service (FaaS),
is a significant development trend in modern software system archi-
tecture. Theworkflow composition ofmultiple short-lived functions
has emerged as a prominent pattern in FaaS, exposing a consid-
erable resources configuration challenge compared to individual
independent serverless functions. This challenge unfolds in two
ways. Firstly, workflows frequently encounter dynamic and concur-
rent user workloads, increasing the risk of QoS violations. Secondly,
the performance of a function can be affected by the resource re-
provision of other functions within the workflow.

With the popularity of the mode of concurrent processing in
one single instance, concurrency limit as a critical configuration
parameter imposes restrictions on the capacity of requests per in-
stance. In this study, we present FaaSConf, a QoS-aware hybrid
resource configuration approach that uses multi-agent reinforce-
ment learning (MARL) to configure hybrid resources, including
hardware resources and concurrency, thereby ensuring end-to-end
QoS while minimizing resource costs. To enhance decision-making,
we employ an attention technique in MARL to capture the complex
performance dependencies between functions. We further propose
a safe exploration strategy to mitigate QoS violations, resulting
in a safer and efficient configuration exploration. The experimen-
tal results demonstrate that FaaSConf outperforms state-of-the-art
approaches significantly. On average, it achieves a 26.5% cost re-
duction while exhibiting robustness to dynamic load changes.

CCS CONCEPTS
• Computing methodologies → Distributed computing
methodologies.

KEYWORDS
Serverless Computing; Configuration Tuning; MARL

∗Hui Dou is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695477

ACM Reference Format:
YilunWang, Pengfei Chen, Hui Dou∗, Yiwen Zhang, and Guangba Yu, Zilong
He, Haiyu Huang. 2024. FaaSConf: QoS-aware Hybrid Resources Config-
uration for Serverless Workflows. In 39th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3691620.3695477

1 INTRODUCTION
Serverless computing becomes an important software system ar-
chitecture, primarily due to its ability to eliminate an application’s
reliance on a fixed server infrastructure. This software system archi-
tecture decouples the application from concerns of resource alloca-
tion and elastic scaling. Due to the fine granularity and highly elas-
tic nature, both commercial FaaS providers [16, 24, 25, 27, 39] and
open-source FaaS platforms [59, 60] are witnessing a surge in func-
tion workflows, such as video processing pipelines [23], machine
learning workflows [76, 85]. Nowadays, numerous software devel-
opers are migrating their services to the FaaS platforms [7, 42, 77].
The serverless application is composed of multiple loosely cou-
pled functions, separating process logic and function execution,
pursuing fine-granularity and high elasticity, as well as modular
deployment [92, 96],which have been growing in popularity. De-
spite these benefits, guaranteeing end-to-end Quality of Service
(QoS) and enhancing resource utilization efficiency remain pivotal
challenges for both cloud vendors and users. Cloud vendors such as
AWS Lambda [39], Google Cloud Functions (GCF) [27], and Azure
Functions [25] typically offer resource configurations like CPU and
memory. A lot of prior works have focused on resource manage-
ment for serverless functions. For instance, [1, 8, 67, 78, 90, 91]
employed black-box optimization like BO or RL to learn optimal
configuration tuning, and [22, 44, 52] models relationships between
configurations and performance. While they are effective, another
crucial issue the system has to tackle is resource configuration in
serverless workflows, which exhibits the characteristics of concur-
rency, dynamic loads and performance dependencies. Specifically,
the primary challenges of resource configuration for serverless
workflows are as follows.

C1: Trade-off between QoS and cost under concurrent
workloads. A workflow comprises multiple functions, resulting
in a longer execution path and posing greater challenges in en-
suring QoS compared to individual functions, particularly when
confronted with concurrent requests. However, blindly scaling out
the resources can lead to significant increase on costs and resources
wastage.

957

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3691620.3695477
https://doi.org/10.1145/3691620.3695477
https://doi.org/10.1145/3691620.3695477
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695477&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yilun Wang, Pengfei Chen, Hui Dou∗ , Yiwen Zhang, and Guangba Yu, Zilong He, Haiyu Huang

C2: Complex performance dependencies. There are complex
dependencies between functions in complex workflows, which lead
to cascading effects when reconfiguring resources. Moreover, the
degree of the interactions between functions varies, which is hard
to precisely capture.

C3: Difficulty on policy learning. The configuration space
of workflow grows exponentially in relation to (i) the number of
functions and (ii) the number of configuration knobs, discovering
optimal policies requires extensive explorations, which significantly
increases the training difficulty on learning-based methods[66, 67].

However, prior methods are not practical enough in serverless
workflows for the twomajor reasons. Firstly, many prior approaches
excel in optimizing resources of individual functions [1, 8, 66, 75, 90].
However, when applying them to workflows, two limitations are
observed in our experiments: (i) they primarily focus on optimiz-
ing the trade-off between QoS and cost of individual functions
while disregarding the overall end-to-end performance of function
workflows. (ii) The resource reconfiguration of one function can
cause non negligible impact on other functions within the work-
flow. Hence, it is imperative to adopt a holistic view to maintain
end-to-end QoS while considering the interdependencies to balance
the performance between functions.

Secondly, most prior methods [8, 22, 74, 78, 90, 96] find the opti-
mal configuration in scenarios with a low and simple workloads,
assuming a low invocation frequency of functions and only focus on
optimizing hardware resources. However, serverless workflows of-
ten face dynamic and concurrent loads, with typical scenarios being
substantial requests in online software services and high concur-
rency event-driven tasks [3, 7, 42, 48]. These optimal configurations
that serve a single workload can cause QoS violations under con-
current requests and cannot easily adapt to dynamic workloads.
Recent studies [45, 72] introduce concurrency-based autoscaling
methods to determine the maximum number of requests that can
be processed in parallel per container. Based on our observations
on serverless functions and workflows in different FaaS platforms
in Sec.2.2, the concurrency configuration significantly impacts the
overall system performance under concurrent workloads. However,
hardware resources reconfiguration can shift optimal concurrency
to be sub-optimal[45]. Therefore, a promising solution lies in the
joint optimization of hardware resources and concurrency in order
to provide ideal amount of resources while avoiding overload on
existing resources.

FaaSConf Approach. To fill the gaps of existing works, we
propose FaaSConf, a QoS-aware and hybrid resource configura-
tion approach that aims to automatically unearth FaaS workflows’
optimal hybrid resources Configuration. Our key observation is
that concurrency configuration greatly influences function perfor-
mance in the scenario of concurrent user requests, and should be
optimized along with hardware resources to find the optimal so-
lution, which is ignored in previous works [1, 8, 67, 75, 90, 96].
Treating each function as an agent, FaaSConf leverages multi-agent
reinforcement learning (MARL) to simultaneously optimize both
vertical and horizontal resources, as well as concurrency to support
cost-efficient resource configuration and ensure QoS (solution to
C1). To achieve efficient MARL for hybrid resources configuration,
we combine attention mechanism[79] and mean-field technique[87]

Table 1: Comparison of state-of-the-art serverless resource
configuration approaches.

Approach Vertical Horizontal Concurrency Workflow

COSE [1]
SLAM [71]
Sizeless [22]

FaaSDeliver [90]
Q-Learning [72]

Kraken [7]
StepConf [82]
SIMPPO [67]
ENSURE [75]
Aquatope [96]
ORION [51]

FaaSConf

in MARL to not only capture the dynamic performance dependen-
cies of functions automatically (solution to C2) but also reduce
the computational complexity of policy learning (solution to C3).
Furthermore, we propose a safe exploration strategy to correlate
the price of resources with the quality of configurations to reduce
QoS violations during online resource configuration optimization
process (solution to C1).

Generally, we make the following contributions.
• We conduct extensive studies to reveal that existing resource
configuration optimization methods for FaaS workflows can
result in sub-optimality and inefficiency due to concurrent
requests and function dependencies, which are the typical
characteristics of workflows.

• We propose a MARL-based resource configuration tuning
approach, namely FaaSConf, which jointly optimizes hard-
ware resources and concurrency configuration in an efficient
manner. We combine mean field and attention mecha-
nism to not only learn the varied dependencies between
FaaS functions, but also reduce difficulty of policy learning.

• We implement FaaSConf based on OpenFaaS, we evaluate
FaaSConf with four baselines using realistic serverless work-
loads, demonstrate that FaaSConf significantly reduces the
average resource costs of 26.5% compared to state-of-the-art
baselines and is robust to dynamic workload changes.

2 BACKGROUND AND MOTIVATION
2.1 Background
Serverless Workflows. In addition to single serverless functions,
another important aspect of serverless computing is workflows.
Serverless workflows implement business logic through a series
of interdependent functions. A single function completes indepen-
dent tasks and interacts with other functions through coordination
mechanism provided by the platforms or third-parties, or through
internal calls [14, 15, 92]. Despite the numerous benefits of server-
less workflows, the complex applications make function manage-
ment increasingly difficult. Moreover, concurrent requests in a FaaS
environment can lead to increased response time, QoS violations
and potential resource bottlenecks due to computing resource con-
tention.

Hybrid Resource Configuration. Effective resource configur-
ing in software systems, especially for microservice and FaaS, has

958

FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
La

te
nc

y(
s)

Th
ro

ug
hp

ut

Concurrent users Concurrent users
(a) (b)

CL_Avg_Lat w/o_CL_Avg_Lat
CL_P95_Lat w/o_CL_P95_Lat

CL_TP
w/o_CL_TP

10 20 40
La

te
nc

y(
s)

2C2G
3 Replicas

2C2G
5 Replicas

2C2G
7 Replicas

Figure 1: (a) shows the function latency increases with the
concurrent workloads. (b) shows the average, P95 latency
(Lat) and throughput (TP) with and without setting concur-
rency limit (CL) parameter in Sequential workflow under
different workloads, we set CL=3 here.

gained a great attention among researchers. Unlike well-studied
vertical resources (e.g., CPU, memory and network) and horizontal
auto-scaling, concurrency is another important and configurable
parameters in serverless platforms. However, in the traditional FaaS
architecture, many frameworks initialize new containers for each
request [17, 39], this approach encounters the cold start problem
and low resource utilization. To mitigate this issue, the concurrent
processing on single instance mode have been proposed as novel
solutions in recent popular platforms [16, 25, 27, 37, 59, 60]. These
methods allow for parallel processing of multiple requests within
each container, e.g., OpenFaaS’s watchdog forks a new process for
each request within container[29, 59] and Knative’s queue proxy
allows a certain number of requests to enter the user-container
simultaneously and queues the requests if necessary [37]. As high-
lighted in Tab.1, a significant portion of existing studies primarily
focuses on vertical or horizontal resources allocation, only a small
amount of prior work has noticed this issue. e.g., Schuler et al.
adopt Q-Learning to decide this knob [72], Alibaba Function Com-
pute platform [16] conducts offline stress testing to recommend
the best concurrency value of a function under fixed hardware
resources for user’s functions, but it has poor generalization. Our
study shows that optimizing the hybrid resources of vertical, hor-
izontal resources and concurrency configuration effectively im-
proves function performance and reduces resource costs.

Multi-Agent Reinforcement Learning. MARL is a popular
field within machine learning that studies how multiple agents
learn to make decisions in an environment. It combines principles
from game theory such as strategic interactions, Nash equilibrium,
and cooperative or competitive dynamics[5, 9, 95] with reinforce-
ment learning to create systems where multiple decision-makers
interact, and trying to maximize their long-term rewards. MARL
is particularly relevant for scenarios where multiple agents must
cooperate or compete with each other, such as in traffic light con-
trol [84] and robotic swarm coordination [62]. Recently, applying
MARL to multi-functions resource allocation and scheduling is a
promising way [41, 67, 70], agents exchange information or com-
municate with each other to consider the interdependencies and
cross-functional impact of resource allocation.

0 1 2 3 4 5 6

2 4 6 8 10 12 14

Scaled Cost

 Fn#1 Fn#2 Fn#3 Fn#4 Fn#5

Holistic

Individual

Sequential

Latency(s)

QoS

QoS violation

QoS
maint.

Cost
eff.

QoS
target

Cost
target

YesYesE2EE2E

YesNoE2ES

NoYesSS

Figure 2: Scaled cost and latency under three types of tuning
methods to configure resources for a SequentialMLworkflow.
The bar chart represents the cost, while the dots represent
the latency of eachmethod. Table on the right shows the cost,
QoS targets of optimization and whether cost efficiency and
QoS maintaining.

2.2 Motivations
In this section, we show our empirical studies on hybrid resource
configuration for serverless functions and workflows under con-
current requests and introduce our motivations.

Motivation 1: Concurrency significantly impacts function
performance and should be optimized along with hardware
resources to get optimal results. Excessive concurrent execution
negatively impacts function performance due to competition for
computation, memory, and network resources, thereby degrades
user experience. We find this issue on different FaaS platforms. We
implement a SentimentAnalysis function on OpenFaaS[59] and a
Sort function on Alibaba Function Compute [16] with increasing
concurrent users. As illustrated in the Fig.1, figure(a) demonstrates
that function performance deteriorates with concurrent requests,
with the average latency increased by 10.1× when the concurrent
users increased from 3 to 30 on existing instances.

Fig.1(b) shows the performance of whether to apply concurrency
limit parameter under different concurrent users. We have two key
findings. First, applying concurrency parameter helps to achieve
better performance under the same container-level hardware re-
sources configuration (2 cores and 2GB memory for each replica), it
reduces the average and the P95 end-to-end latency by 26.65% and
42.77%, respectively, while increasing throughput by 19.35% com-
pared to not having concurrency control due to the rational setting
of parallelism degree. Second, when facing autoscaling of dynamic
workloads, we should take concurrency into full consideration as it
is crucial for maintaining the stability of function performance and
especially reducing tail latency.

However, tuning hybrid resources configuration including hard-
ware resources and concurrency for FaaS applications can be com-
plex due to (i) resource knobs interact with each other (e.g., chang-
ing CPU allocation can cause optimal concurrency setting change),
(ii) there are complex performance dependencies between functions
within workflows and an (iii) exponential growth in configuration
space. A recent work[45] decouples hardware scaling and concur-
rency to bypass the issue, but it results in sub-optimal solution,
because the end-to-end performance is mutually influenced by
both hardware resources and concurrency setting in the serverless
environment, which shown in Fig.3(a). Therefore, we aim to jointly
optimize hardware resources and concurrency configuration to
achieve optimal results.

959

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yilun Wang, Pengfei Chen, Hui Dou∗ , Yiwen Zhang, and Guangba Yu, Zilong He, Haiyu Huang

(a) (b)
La

te
nc

y（
s）

Memory（GB） Concurrency

15 users
25 users

Figure 3: (a) shows the latency on different hardware resource
and concurrency in Sequential workflow. (b) shows the per-
formance change rate of the tested functions caused by re-
sources reconfiguration of other functions in Parallel work-
flow under different concurrent users.

Motivation 2: A holistic view is necessary for maintain-
ing end-to-end QoS.Many resource configuration tuning meth-
ods [1, 8, 90], which optimize single functions in the application
independently, greedily seek QoS and cost trade-off of individual
functions. Although configuring computing resources for a single
serverless function in a narrow configuration space seems simple
(e.g., 15 trails for BO to find optimal configurations in work[8]),
but it can readily result in QoS violations because they neglect
the end-to-end performance of the overall workflows. To support
this point, we apply three methods to configure resources for a
Sequential ML workflow consisting of five functions. (a) Individ-
ual tuning that optimizes the resource allocation of each function
independently, the goal is to minimize the individual function re-
source cost while meeting the QoS requirements of each function.
(b) Sequential tuning along the function workflow, with the goal of
minimizing the individual function resource cost while meeting the
QoS requirements of the overall workflow. (c) Holistic optimization
generates the resource configurations for all functions, with the
goal of optimizing the overall cost while meeting the end-to-end
QoS of workflows. Fig.2’s right table details tuning policy of cost
and QoS, and whether it meets the requirements of cost efficiency
and QoS maintaining, E2E for end-to-end view and S represents
only considering single function once in the table.

Fig.2 shows that for individual tuning, each function is indepen-
dently optimized in a greedy manner to pursue its own QoS-cost
trade-off, tending to allocate fewer resources for cost-efficiency.
While the QoS of a single function is satisfied, there is no assurance
of aligning the upstream and downstream processing capabilities,
resulting in an end-to-end latency that exceeds the cumulative la-
tency of each function. Furthermore, selecting a QoS threshold at
each stage is a major challenge, and most production services do
not have per-stage targets[61, 96]. Conversely, sequential tuning
defines QoS threshold based on end-to-end latency. In order to main-
tain the overall workflow’s QoS, the functions in the later stages of
the workflow prefer more resources to maintain QoS. Method (c)
takes a holistic view to ensure end-to-end QoS and provides cost-
efficient resources, automatically allocates appropriate resources to
each stage, saving 29.34% of resource costs compared to sequential
tuning.

Motivation 3: The degree of performance dependencies
between functions varies. The resource configuration change
of a function will affect the performance of adjacent functions in

a serverless application, which we refer to as performance depen-
dency. This situation occurs when functions of the next stages are
under-provisioned to handle the invocations from the previous
stages. To demonstrate this, we keep the resource configuration of
the tested functions and then randomly reconfigure other functions
15 times under a Parallel ML workflow with 5 stages. Subsequently,
we calculate the performance change rate (PCR) as the ratio of
the maximum and minimum values of P75 latency observed in the
tested functions among 15 runs. As shown in Fig.3(b), the resources
reconfiguration of other functions in the application results in a
large value of PCR of tested functions, ranging from 1.5× to 8.5×
under different concurrent requests. This finding validates that re-
sources reconfiguration of functions within a workflow can greatly
influence other functions under concurrent loads, and the degree
of performance dependencies varies across different functions.

The degree of performance dependencies among functions is
influenced by various factors, including the characteristics of func-
tions, and the invocation patterns between two functions in tightly-
coupled applications is also an important consideration. However,
a previous approache SIMPPO [67] assumes equal dependencies
between functions, thus failing to capture the varied interdependen-
cies. To address this limitation, we employ the attention mechanism
to precisely capture the varying dependencies between functions,
enabling better resource configuration.

3 FAASCONF OVERVIEW
Optimal Configuration Tuning On Hybrid Resources. We for-
malize a hybrid resource configuration problem, which jointly opti-
mizes hardware resources and concurrency configuration. Consider
a serverless workflow consisting of 𝑛 functions 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑛}
with multiple concurrent invocations, and the holistic resource
configuration 𝐶 = {𝐶1,𝐶2, ...,𝐶𝑛} consisting of all functions in
the workflows 𝐹 , the hybrid resources for function 𝑓𝑗 is 𝐶 𝑗 =

{𝐶 𝑗
𝑐𝑝𝑢 ,𝐶

𝑗
𝑚𝑒𝑚,𝐶

𝑗
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

,𝐶
𝑗
𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦}, include CPU, memory, num-

ber of function instances, and concurrency setting, respectively. We
want to find the holistic optimal hybrid resource configuration
𝐶∗ of workflow that minimizes the overall resource cost (𝑦) while
performance metrics (𝑇) satisfying end-to-end QoS targets 𝜆:

𝐶∗ = 𝑎𝑟𝑔min
𝐶

𝑦 (𝐶), 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇 (𝐶) < 𝜆. (1)

The resource cost is linearly correlated to CPU, memory, instance
numbers and execution time, consistent with cost models in many
production serverless platforms and prior works [8, 25, 27, 39, 96]:

𝑦 (𝐶) =
𝑁∑︁
𝑗=1

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝛼𝐶 𝑗
𝑐𝑝𝑢 + 𝛽𝐶

𝑗
𝑚𝑒𝑚) ∗𝐶 𝑗

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
. (2)

In our study, 𝛼 and 𝛽 is setting according to $0.173/𝑣𝐶𝑃𝑈 ∗ℎ𝑜𝑢𝑟
and $0.0123/𝐺𝐵 ∗ ℎ𝑜𝑢𝑟 from pay as you go premium plan in Azure
Functions[26].

Overview. We depict the overall architecture of FaaSConf in
Fig.4. The core idea of FaaSConf is to apply attention mean-filed
MARL to learn hybrid resource configuring policy for serverless
workflows under concurrent and dynamic workloads. The hybrid
resources configuration tuning system consists of the FaaS envi-
ronment, Controller, Data Store, attention mean-field Multi-Agent

960

FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Safe Exploration
Strategy

Data Store

Metrics
& Logs

Safe Boundary
Data

CPU

Mem

Replica

CL

Container

...

Function 0 Function n...
Concurrent Req.

AttMF

Attention
Module

Actor 0 Actor n...

Critic n...Critic 0

Controller

Metric
Collector

Action
Executor

Action

Res.
Conf.

State
6

5

4

3

FaaS Workflows

Safe Act.

Weighted s & a

Offline Training
1

Online Serving

Topology
Descriptor A.M.

2

7

Figure 4: The architecture of FaaSConf.

Reinforcement Learning (AttMF) and Safe Exploration Strategy
(SES).

Initially, we employ historical data from Data Store for offline
training of the AttMF model 1 . Once the online serving phase
begins, the user-provided workflow topology is preloaded as ad-
jacency matrix by Topology Descriptor into AttMF for identify-
ing function dependencies 2 . FaaSConf generates the optimal
resources configuration based on the runtime states of the work-
flow in an iterative manner. The Metric Collector gathers runtime
data such as resources utilization metrics, workloads, performance
indicators, and latencies as the states of serverless system for AttMF
3 . Within our AttMF, each agent manages hybrid resources config-
uration of a function, which including vertical resources (e.g., CPU
and memory), horizontal resource (e.g. number of replicas), and
concurrency. Agents collaborate together to maximize global re-
ward, taking into account interactions through the weighted states
and actions generated by the Attention Module 4 . Original actions
output by AttMF are fed into SES for further optimization 5 , the
role of the SES is to allow agents to explore within predefined safe
boundaries by resources price, ensuring QoS while minimizing re-
source cost. These boundaries are autonomously generated based
on historical data. Finally, the safe actions from SES are translated
into hybrid resources configuration by the Action Executor and it
schedules resources for FaaS workflows through updating YAML
configuration files and the platform’s command-line interface (CLI)
6 .All hostorical data are stored in the Data Store for model train-
ing and safe boundaries analysis for SES 7 . This iterative process
continues until either the search budget is exhausted or an optimal
action is found.

4 DEISGN OF FAASCONF
4.1 MARL-based Approach
Why MARL?We prefer MARL in resource configuring for large-
scaled serverless workflows becauseMARL has superior feature rep-
resentation and decision-making capabilities for high-dimensional
and mutual-interactional environment of workflows compared to
traditional ML based, single-RL based and heuristic based methods.
In addition, it offers a remarkable adaptability that can transfer
knowledge across dynamic workloads. We introduce some key
components in MARL below.

Table 2: State-Action space of per agent in MARL.

State Space 𝑆𝑡
Resource Utilization(𝑅𝑈 (𝑡)), Function Performance(𝐹𝑃 (𝑡)),
Concurrent Requests(𝐶𝑅(𝑡)), Resource Limits (𝑅𝐿𝑇 (𝑡)),
Number of Instances (𝑁𝐼 (𝑡)), Concurrency Limits (𝐶𝐿(𝑡))

Action Space 𝐴𝑡

Vertical Conf: Resource Limits (𝑅𝐿𝑇 (𝑡)),
Horizontal Conf: Number of Instances (𝑁𝐼 (𝑡)),
Concurrency Conf: Concurrency Limits (𝐶𝐿(𝑡))

Action Space. Based on the analysis presented above, it is nec-
essary to optimize the function’s hybrid resources, as shown in the
Tab.2, the vertical configuration action represents the scaling of the
CPU and memory limits of a function container 𝑅𝐿𝑇 (𝑡), while the
horizontal action is the scaling of the number of function instances
𝑁𝐼 (𝑡). The concurrency limit𝐶𝐿(𝑡) is the max capacity of requests
per instance.

State Space.We consider the telemetry data from system and
resources configuration as the primary state for the MARL agents,
as they provide a comprehensive representation of the system’s
information and can be easily obtained in real-time. Specifically,
we collect the following data for each function at each time step:
Resource Utilization 𝑅𝑈 (𝑡) includes CPU, memory and network.
The function performance 𝐹𝑃 (𝑡) is the tail latency of a function
executing multiple requests, Beside, concurrent requests𝐶𝑅(𝑡) and
current resource configurations 𝑅𝐿𝑇 (𝑡), 𝑁𝐼 (𝑡), 𝐶𝐿(𝑡) are also kept
as part of state.

Reward Function. Our goal is to learn a set of policies that
result in fewer QoS violations while minimizing the resource cost
𝑦 (𝐶) in Eq.2. Therefore, the reward is : 𝑅𝑡 = 𝛼𝑦 (𝐶) + 𝛽 . Where
𝛼 is a negative regulatory factor that regulates the reward. If an
action successfully satisfies the QoS, a positive 𝛽 will be awarded to
the agents, otherwise 𝛽 = 0. We adopt sharing reward mechanism
to encourage cooperative behavior and incentivize the collective
maximization of rewards.

Policy Learning. We implement Multi-Agent Deep Determinis-
tic Policy Gradient (MADDPG) [47] to optimize hybrid resources
allocation policies in serverless environment. MADDPG adopts
the framework of centralized training with decentralized execu-
tion (CTDE). The global state 𝑠 = (𝑠1, . . . , 𝑠𝑛) consists of local
state of each agent and the joint action 𝑎 = (𝑎1, . . . , 𝑎𝑛) consists
of local action of each agent and is produced by jointly policies
𝜋 =

{
𝜋𝜃 1 , 𝜋𝜃 2 , ..., 𝜋𝜃𝑛

}
. It designs centralized critics and decen-

tralized actors, where 𝑄𝑖 (𝑠1, . . . , 𝑠𝑛, 𝑎1, . . . , 𝑎𝑛) is the centralized
action-value function that takes the states and actions of all agents
as input to obtain the information of interactions between agents,
and outputs a Q-value for agent 𝑖 . In centralized training, Tempo-
rary difference (TD) algorithm is used to train every centralized
critic networks, sampling joint tuples (𝑠, 𝑎, 𝑅, 𝑠′) of all agents from
memory pool and the parameters of 𝑄𝑖 are updated with gradient
descent to minimize the loss function ℓ :

ℓ (𝜃𝑖) = E
[(
𝑄𝜋
𝑖 (𝑠1, . . . , 𝑠𝑛, 𝑎1, . . . , 𝑎𝑛) − 𝑦

)2]
,

𝑦 = 𝑟𝑖 + 𝛾𝑄𝜋 ′
𝑖

(
𝑠′1, . . . , 𝑠

′
𝑛, 𝑎

′
1, . . . , 𝑎

′
𝑛

) ���
𝑎′
𝑖
=𝜋 ′

𝑖
(𝑠𝑖)

.
(3)

961

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yilun Wang, Pengfei Chen, Hui Dou∗ , Yiwen Zhang, and Guangba Yu, Zilong He, Haiyu Huang

where 𝜋 ′
𝑖
is the target policy network, according to the feedback of

centralized critic, actor updates policy with policy gradient:

∇𝜃𝑖 𝐽 (𝜋𝑖) = E
[
∇𝜃𝑖𝜋𝑖 (𝑎𝑖 | 𝑠𝑖) ∇𝑎𝑖𝑄

𝜋
𝑖 (𝑠1, . . . , 𝑠𝑛, 𝑎1, . . . , 𝑎𝑛)

��
𝑎𝑖=𝝅𝑖 (𝑠𝑖)

]
.

(4)
It is evident that as the number of agents increases, the concatenated
state and action vector will have an extremely high dimensionality,
which complicates the training process. To address this challenge,
we turn to attention mean-field technique to enhance the effective-
ness of MADDPG.

4.2 Attention Mean-Field MARL(AttMF)
Mean-Field for MARL. To effectively train agents and alleviate
the curse of dimensionality introduced by increasing number of
agents,mean-field (MF) techniques is proposed for MARL [87]. The
key idea of mean-field MARL is to represent agents’ interactions
through an average field that captures the distribution of states
and actions in the population. Under the mean-field approximation,
instead of concatenating the global action vectors, the behavior of
adjacent functions is modeled as their mean value of actions 𝑎 𝑗 . the
value function approximation of agent 𝑗 is:

𝑄 (𝑠, 𝑎) ∼ 𝑄
(
𝑠, 𝑎 𝑗 , 𝑎 𝑗

)
, 𝑎 𝑗 =

1
𝑁 𝑗

∑︁
𝑘∈𝑁 𝑗

𝑎𝑘 . (5)

where 𝑁 𝑗 denotes the number of neighboring agents of agent 𝑗 .
This approach reduces the computational complexity of center
training in CTDE, but does not lose much optimality in multi-agent
scenarios, and the approximation error decreases as the number of
agents increases, which is proved by existing work [53].

Weighted Mean-Field. However, the mean-field approach pre-
sumes equal influence among all agents, thus failing to discern
their relative importance. As shown in our motivation 3, the perfor-
mance dependency varies between functions. To address this issue,
the accuracy of MF approximation can be enhanced by employing
a weighted averaging, which captures different performance de-
pendencies between functions. Moreover, we also reduce the state
space with similar method in Eq.5 and assign neighboring agents
with different weights. The value function approximation in weight
MF is :

𝑄 (𝑠, 𝑎) ∼ 𝑄
(
𝑠 𝑗 , 𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗

)
, (6)

𝑎 𝑗 =
1
𝑊𝑗

∑︁
𝑘∈𝑁 𝑗

𝑤 𝑗𝑘𝑎𝑘 , 𝑠 𝑗 =
1
𝑊𝑗

∑︁
𝑘∈𝑁 𝑗

𝑤 𝑗𝑘𝑠𝑘 ,𝑊𝑗 =
∑︁
𝑘∈𝑁 𝑗

𝑤 𝑗𝑘 , (7)

where 𝑤 𝑗𝑘 is the weight between agent 𝑗 and 𝑘 . Similarly, the
input of policy 𝜋 incorporates both its own observation 𝑠 𝑗 and the
weighted average observation of neighboring agents 𝑠 𝑗 to obtain
the observations of other functions to effectively execute the actor-
critic training process.

𝜋 (𝑠) ∼ 𝜋
(
𝑠 𝑗 , 𝑠 𝑗

)
, 𝑠 𝑗 =

1
𝑈 𝑗

∑︁
𝑘∈𝑁 𝑗

𝑢 𝑗𝑘𝑠𝑘 , 𝑈 𝑗 =
∑︁
𝑘∈𝑁 𝑗

𝑢 𝑗𝑘 , (8)

where𝑢 𝑗𝑘 is the weight between agent 𝑗 and 𝑘 from the perspective
of the policy network. To assign different weight of agents, we adopt
attention mechanism to automatically learn them.

Learning AttentionWeight.We want agents to focus on those
functions that have a greater impact on their performance when

Dot Product

Scaled

Hadamard Product

𝛼!"

𝑠#, … , 𝑠$

(𝑠! , 𝑠!&) (𝑠! , 𝑠!(, 𝑎! , 𝑎!()

Action
Attention

Critic
Attention

𝑎!

𝑠#, … , 𝑠$, 𝑎#, … , 𝑎$, 𝐴

𝑞!
Actor

𝑊% 𝑊"

𝐴!"

Critic

Figure 5: Implementation details of AttMF.

making decisions, rather than blindly believing that the perfor-
mance impacts between functions are the same. Inspired by prior
work[34], we adopt attention mechanism [79], which is widely used
in NLP fields. The attention mechanism automatically explores the
potential impact relationships between functions by learning the
similarity between functions state vectors, which contain rich infor-
mation about workloads, resource configurations, function perfor-
mances and resources utilization, thereby achieving better collabo-
ration and avoiding decision-making conflicts. In order to obtain the
weights𝑤 𝑗𝑘 and 𝑢 𝑗𝑘 that reflect the interaction strength between
functions in a serverless application, we use a variant of attention
mechanism that consider application topology to automatically learn
them.

Fig.5 shows the detail components of AttMF.We assign a separate
attention module for actor and critic of each agent with learnable
parameters Query 𝑊𝑞 and Key 𝑊𝑘 . Consider the topology of a
serverless application, in which each function represents a node
and the invocation relationships between functions form edges,
thereby creating an adjacency matrix 𝐴. In each time step, The
attention weight 𝛼 𝑗𝑘 between function 𝑗 and 𝑘 compares the state
vectors 𝑠 𝑗 and 𝑠𝑘 , using the Query-Key system and subsequently
multiples the corresponding elements 𝐴 𝑗𝑘 of the adjacency ma-
trix at their respective positions (Hadamard product) to extract
adjacency structure information:

𝛼 𝑗𝑘 ∝ 𝑒𝑥𝑝 (𝑠 𝑗𝑊𝑞𝑊
𝑇
𝑘
𝑠𝑇
𝑘
)𝐴 𝑗𝑘 , (9)

where matrix𝑊𝑞 transforms 𝑠 𝑗 into a query and matrix𝑊𝑘 trans-
forms 𝑠𝑘 into a key, the matching is then scaled to prevent vanishing
gradients. The weight𝑤 𝑗𝑘 and𝑢 𝑗𝑘 are calculated by critic attention
and actor attention module, respectively.

Ultimately, we calculate the attention MF vector in Eq.7 and
Eq.8, which represents the weighted state and action vectors of the
neighboring functions. These vectors are used as inputs for critic
and actor, respectively, and the attention modules are trained along
with the critic and actor. Our AttMF algorithm enable the agents
to consider the performance influence relationships and prioritize
functions that significantly impact their performance for making
better decisions.

4.3 Safe Exploration Strategy
The online configuration optimization process exploits the perfor-
mance of workflows in production to make decisions, so it is neces-
sary to reduce performance degradation and QoS violations caused
by poor configurations. The above technologies enable FaaSConf
to achieve better performance and unearth cost-efficient resource

962

FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

configurations, yet it cannot guarantee that the online resource con-
figuration optimization consistently meets the QoS requirements
because the inherent noise and uncertainty of FaaS cloud platforms
mislead the algorithm into making bad decisions [11, 96]. The pur-
pose of SES is to allow the agent to explore within the safety price
boundaries that derived from historical data. We hold opinion that
resources price can reflect the amount of resources provisioning,
which can infer the performance. i.e., a recommended resource
configuration with a low price may fail to meet QoS. Conversely, an
excessively priced configuration is likely not optimal. Consequently,
during the online serving stage of FaaSConf, sub-optimal actions
can be filtered out through safe boundary analysis by resources
price before action execution.

Safe Boundary Analysis. We implement SES by employing a
popular statistical approach𝑘-𝜎 rule [64] to capture a representative
range of optimal resources and determine whether a recommended
action is in sub-optimal status. It is essential for the agents to
concentrate on high-performance areas that both guarantee QoS
and provide cost-effective resources during the online serving phase.
So we use history resource configurations that meet QoS with the
most cost-efficient top 20% resource prices to form a set 𝜏 , and then
compute themean total price 𝑃 (𝜏) and standard deviation 𝑠𝑡𝑑 (𝑃 (𝜏))
to establish a safe boundary using 𝑃 (𝜏) ± 𝑁 × 𝑠𝑡𝑑 (𝑃 (𝜏)), denoted
as [𝑙𝑏,𝑢𝑏] (i.e., lower bound and upper bound), this range is likely
to contain optimal solutions. We experimentally determined that
𝑁 = 2.

𝐴 =

{
𝐴𝑐 , 𝑦 (𝐴) ∈ [𝑙𝑏,𝑢𝑏]
𝐴𝑠𝑎𝑓 𝑒 + 𝜖, 𝑦 (𝐴) ∉ [𝑙𝑏,𝑢𝑏]

(10)

As described in Eq.10, in each iteration, MARL output a current
action𝐴𝑐 , we then compute the resource configuration price𝑦 using
Eq.2. If the resource price falls within the defined range [𝑙𝑏,𝑢𝑏],
we recommend this configuration and observe the performance.
If it falls outside this range, algorithm selects a safe action 𝐴𝑠𝑎𝑓 𝑒

randomly from the history and introduces a Gaussian random noise
𝜖 for exploration. By applying SES, FaaSConf can select the safe and
cost-efficient resource configurations and reduce QoS violations in
online optimization scenarios. We record the AppName,Workload,
lb and ub as JSON files in the Data Store.

Boundary Adaptation. We further propose two practical poli-
cies to improve it’s adaptability and effectiveness. First, due to
varied performance, we regularly evaluate the confidence of the
safe range. If the number of QoS violations reaches a threshold, we
will re-determine the range based on the latest data. Second, during
online resource optimization with dynamic and unseen workloads,
records with boundary information may be missing, we retrieve
the record with the similar workloads and set safety configuration
boundaries to provide QoS assurance.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate FaaSConf to answer three questions.

• RQ1: How effective is FaaSConf in finding optimal resource
configuration while ensuring QoS?

• RQ2: How does FaaSConf adapts to dynamic workload?
• RQ3:What is the contribution of each design module?

5.1 Experimental Settings
5.1.1 Experiment Setup.
Hardware. We construct a distributed testbed that contains 8 vir-
tual machines (VMs). Each VM has a 8-core 2.40GHz CPU, 16GB
memory and runs with Ubuntu 18.04 OS. We guarantee that all the
VMs are in the same local area network to reduce network jitters.

Serverless Platform.We evalute FaaSConf on OpenFaaS [59], a
widely-used open-source serverless platform. OpenFaaS is deployed
on top of Kubernetes[38], which acts as the principal container or-
chestrator. OpenFaaS provides an API gateway for invoking func-
tions, serving as an external route to these functions. Function scal-
ing decisions are facilitated by the AlertManager component, which
scales functions by reading RPS metric from Prometheus[63], which
is an open-source systemmonitoring toolkit and subsequently alert-
ing the gateway. We disbale the AlertManager and use FaaSConf
to carry out resource provision.

starter load

resizeupdate

resnet

starter

mobilenet

resizeupdate

resnet

rgb
starter

mobilenet

resize

updateresnet

rgbload

(a) Sequential (5-funcs) (c) Branch (7-funcs)(b) Parallel (6-funcs)

If/else

left-trip-tickets

left-ticket-
interval

query-config

travelsold-orders

station

price

route-tripid

route-routeid

traintype-
tripid

traintype-
traintypeid

sold-tickets

MongoDB

(d) TcktApp (12-funcs)

Onnx

Figure 6: Architectures of used benchmark applications.

Benchmark Applications. The evaluation of FaaSConf utilizes
two types of end-to-end interactive real-world benchmarks: one is
machine learning (ML) workflows composed of multiple-functions,
and the other is a popular web service, as shown in Fig.6. We employ
ML workflows from prior work [80]. The individual serverless
functions are adapted from publicly available examples that utilize
TensorFlow with Azure Functions [25] and the models are sourced
from the Onnx Model Zoo [58]. We have implemented three types
of serverless workflows: Sequential, and Parallel, Branch with 5, 6
and 7 stateless functions, respectively.

Additionally, we employ an online serverless application with 12
functions: search ticket (TcktApp) from TrainTicket [30], a compre-
hensivemicroservices suite. TcktApp’s role is to retrieve information
about remaining tickets between two locations, with the tickets
information being stored in MongoDB[56]. These functions are
more lightweight in logic and tightly-coupled than ML functions.

5.1.2 Configurations and workloads.
Resource Configuration Space. In our configuration space, we
decouple CPU and memory to provide flexible and cost-efficient
resource choices according to prior work [8]. In ML workflows, the
memory configuration is set to a continuous value within the range
of 256 to 2024 MB, while the CPU is allocated a continuous value

963

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yilun Wang, Pengfei Chen, Hui Dou∗ , Yiwen Zhang, and Guangba Yu, Zilong He, Haiyu Huang

Timeline(minutes)

Concurrent users

Figure 7: Dynamic workloads from Azure Functions trace.
The pentagrams are utilized to represent relative low, middle
and high workload in Sec.5.2.2.

between 250 and 2000 millicores. In web service, the maximum
values for CPU and memory are set to 1000 and 1024, respectively.
We adjust the function replicas number from 1 to 8 and establish
a concurrency limit ranging from 1 to 10, which is specified in
the function configuration file through the max_inflight field in
OpenFaaS[59]. These settings are designed to adapt optimally to
our experimental testbed and maximize the performance of cluster
resources.

Load Generator. We conducted experiments under both static
and dynamic loads which the dynamic workloads is from a real-
word invocation traces from Azure Functions[74]. We use Lo-
cust [46] load generator to emulate users sending concurrent
requests with 10 RPS mean arrival rate until the max concurrent
users is reached. We set 30 seconds to be the length of one time
window to continuously send concurrent requests according to
[88]. The workload generator and functions are never physically
co-located on a server.
5.1.3 Points of Comparisons. We compare FaaSConf with the fol-
lowing approaches.

• Random Search (RS) [6]randomly selects resource con-
figurations from the search space. We treat RS as the basic
approaches without any model.

• Firm [66] is a RL-based state-of-the-art method for multi-
resources management. It uses Deep Deterministic Policy
Gradient (DDPG) to dynamically adjust the resources of
functions during runtime.

• RAMBO [40] holds a holistic view on the entire work-
flows and employs multi-objective Bayesian Optimization
(BO) to allocate resources for applications, thereby achiev-
ing performance-cost tradeoff. RAMBO is coded based on
BayesOpt [54].

• Aquatope [96] is a QoS- and uncertainty-aware resource
management framework for serverless workflows, employs
a customized BO approach. This approach integrates noise
Gaussian Process (GP) models and noisy expected improve-
ment (NEI) acquisition function to capture the uncertainty
of FaaS platforms, while utilizing an independent GP model
for predicting QoS. Aquatope is implemented based on
BoTorch [4].

We first warm-up them through training samples, and then it-
erate 15 rounds to get results of QoS and costs. Our QoS targets
are set as average latency and throughput in one time window. We
linearly scale the resource costs in Eq.2 for better showcase. To
offset performance difference under same resource configurations,
our experimental results are the average of three repeated runs.

(c) Branch (d) TcktApp

(a) Sequential

UsersUsers

FaaSConf Firm RAMBO Aquatope RS

O
pt

. S
ca

le
d

Co
st

10 15 20 25 30
(b) Parallel

X
10 15 20 25 30

8
6
4
2

8
6
4
2

10 15 20 25 30 20 25 30 35 40

Figure 8: The optimal scaled cost under four serverless work-
flows with five different concurrent users (lower is better).
‘X’ means no feasible solution is found.

5.2 Results and Analysis
5.2.1 Effectiveness Validation (RQ1). We now evaluate the FaaS-
Conf’s ability to find cost-efficient resource configurations while
meeting QoS. Fig.8 shows the optimal scaled cost results of differ-
ent serverless workflows within the sampling budgets. For each
workflow, we run 5 experiments with an increasing number of
concurrent users. Under the same sampling budget for resource
exploration, FaaSConf demonstrates superior performance com-
pared to all other methods across the examined applications, and
significantly reduce resource costs. Compared with Firm, RAMBO,
Aquatope and RS, FasSConf can cut the resource cost by average
24%, 23%, 28% and 31%, respectively. Specifically, RAMBO[40] aims
to strike a balance between workflow performance and cost, lead-
ing to over-provisioning of resources to meet QoS requirements,
often getting trapped in local optima. Due to the dependencies of
functions in workflows in the scenario of high concurrent requests,
Aquatope[96] cannot accurately model the complex nonlinear rela-
tionship between resources and performance using Gaussian Pro-
cess (GP) model. Firm[66] also results in sub-optimal cost because
it solely optimizes the scaling-needed functions without consid-
ering the impact on the performance of other functions. Random
search randomly selects a set of configurations to explore across all
functions without leveraging knowledge from previous trials. Fur-
thermore, neglecting to optimize concurrency of baseline methods
can readily result in QoS violations under concurrent workloads,
as requests indefinitely contend for resources. e.g., RAMBO cannot
even find resources that meet QoS requirements within the sam-
pling budgets under Parallel-30 users. In contrast, FaaSConf uses
AttMF to capture the dynamic dependencies among functions, takes
into account the performance implications of neighboring functions
during decision-making, and improves resource efficiency.

We observe an interesting result of TcktApp, FaaSConf’s perfor-
mance benefits are less pronounced. Due to the application being
implemented in a synchronous mode using Java language, requests
are processed synchronously, rendering concurrency configuration
ineffective in this scenario, which bares higher risk of request accu-
mulation and increasing response time compared with concurrency
pattern[19, 20, 65]. Even so, FaaSConf can still reduce the resource
consumption of other baselines by average 16.6% and up to 38.8%.
The above results prove that FaaSConf’s ability for reducing re-
source consumption while meeting QoS for serverless workflows
under concurrent requests.

964

FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

FaaSConf Firm RAMBO Aquatope

Timeline(minutes) Timeline(minutes) Timeline(minutes)

Cu
m

ul
at

iv
e

Va
lu

e

(a) QoS Violations Distribution (b) Latencies Distribution (c) Costs Distribution

Figure 9: Performance comparison on QoS violations, latencies and costs
under dynamic workloads during 85 minutes.

QoS target

FaaSConf Firm RAMBO Aquatope

x
xx

x x

Sc
al

ed
 C

os
t

La
te

nc
y(

s)

(a)Low (b)Mid (c)High

Figure 10: The scaled cost and latency under rela-
tive low,middle andhighworkload that specified
in Fig.7 and ‘X’ means QoS violation.

5.2.2 Adaptability Analysis (RQ2). In real production, the work-
load always changes over time. Fig.7 shows a period of real-world
serverless invocation trace fromAzure Functions [74] in 85 minutes,
emulating typical characteristics of serverless workloads such as
stable, continuous fluctuations and burstly increases.

We leverage data under five workloads from Sec.5.2.1 experiment
on Parallel workflow to train the model and investigate whether dif-
ferent approaches can rapidly adapt to dynamic loads. Fig.9 shows
the cumulative distribution of QoS violations, latencies and scaled
costs over time. We have two observations. First, FaaSConf quickly
responds to changing loads, ensuring over 74.12% QoS compli-
ance and reducing average 3.48× QoS violations compared to other
methods. Second, FaaSConf can always find nearly optimal resource
configurations and reduce 29.1%, 33.39%, 26.53% cumulative laten-
cies than Firm[66], RAMBO[40] and Aquatope[96], with only 8.48%
more resource costs than oracle, which is obtained by exhaustive
offline search. This confirms that FaaSConf can find better resource
configurations than other methods even with dynamic load changes.
The reason is that our method considers runtime environment char-
acteristics and workload changes, so the learned policy has a good
transferability. In addition, SES helps agents make decisions within
safety resource boundaries to reduce QoS violations. However, other
methods unable to adapt to dynamic loads and make a lot of wrong
decisions. The reason is that BO-based methods (e.g., RAMBO and
Aquatope) focus on finding local optimal solutions in the offline
scenarios. However, the changing environment causes inaccurate
Gaussian Process modeling and requires a large amount of data
for retraining to mitigate performance degradation, which is not
practical in online scenarios. Firm also find it difficult to quickly
update its policy under new environment in a short time. This
demonstrates FaaSConf’s adaptability to quickly recommend cost-
efficient resource configurations in response to dynamic workloads,
ensuring stable performance of FaaS applications.

In order to further facilitate the comparison of the performance
of different methods in dynamic workloads, we select relative low,
middle and high workload marked on Fig.7 for demonstration.
Fig.10 shows the scaled cost and latency under three real-time
workloads. It can be seen that FaaSConf consistently outperforms
other methods, with an average improvement of 11.49%, 23.11%,
24.86% in reducing resource costs, and 8.26%, 18.92%, 16.01% in
reducing end-to-end latency compared with Firm[66], RAMBO[40]
and Aquatope[96], while always satisfying QoS. The other methods
all caused QoS violations under different concurrent workloads
beacause they can not scale out resource according dynamic work-
laods. The above results prove FaaSConf’ s ability to reduce both

QoS violations and costs in production environments where online
continuous resource tuning is required.

5.2.3 Ablation Study (RQ3). In this subsection, we validate the
effectiveness of each design in FaaSConf.

Contribution of Hybrid Resource Optimization. As shown
in Motivation 1, concurrency configuration significantly impacts
the performance of FaaS applications. Configuring a large concur-
rency limit can lead to resource contentions. Conversely, a lower
one can lead to under-utilization of resources. We compare the
optimal hybrid configuration found by FaaSConf with it’s hardware
resources configuration(i.e., CPU, memory and replicas) without
concurrency configuration for each ML workflows. Fig. 11 shows
that the hybrid resources achieves an average 25.58% and up to
34.76% end-to-end latency reduction and an average throughput
improvement of 1.37× and up to 1.79× in Sequential, Parallel and
Branch workflows. This result demonstrates the effectiveness of
hybrid resource configuration tuning that considers both hardware
resources and concurrency in enhancing the performance of FaaS-
Conf.

La
te
nc
y(
s)

Th
ro
ug
hp

ut

Sequential Parallel Branch Sequential Parallel Branch

Hybrid resource Hardware resource

Figure 11: Latency and throughput of hybrid resources config-
uration and hardware resources configuration for ML work-
flows.

Firm tuning hardware resource
Firm tuning hybrid resource

10 15 20 25 30

O
pt

.S
ca

le
d

Co
st

Figure 12: The scaled cost of optimal resources configura-
tion of tuning hybrid resources and hardware resources in
Sequential workflow under five concurrent users.

To further illustrate that optimizing hybrid configurations can
likewise benefit other approaches, we apply Firm[66] to separately
optimize hybrid resources and hardware resources in Sequential
workflow. As shown in Fig. 12, under five different levels of con-
current user workloads, the optimal configuration derived from
optimizing hybrid resources consistently exhibited lower costs than

965

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yilun Wang, Pengfei Chen, Hui Dou∗ , Yiwen Zhang, and Guangba Yu, Zilong He, Haiyu Huang

solely optimizing hardware resources, with 19.89%, 16.48%, 22.1%,
16.14%, 35.81% resource costs reductions respectively and 22.08%
on average. The results imply that optimizing hybrid resources can
reduce resource costs while ensuring QoS and should be considered
in production to ensure the performance stability of the workflows.

AttMF MF MADDPG DDPG

Sequential Parallel Branch

O
pt

. S
ca

le
d

Co
st

Figure 13: The scaled cost of optimal resources configuration
found by different RL algorithms in Sequential, Parallel and
Branch workflows(lower is better).

(a) Branch (b) Sequential

x
x

x xxxx
xx x

xxx
xx

xx x
x x

FaaSConf w/o SES FaaSConf w SES QoS violation

Figure 14: Impact of safe exploration strategy under twowork-
flows. The dark red rectangle represents the area of QoS vio-
lations and ‘X’ means unavailable configuration.

Contribution of Attention Mean-Field. To study the effec-
tiveness of attention mean-field mechanism, we compare our AttMF
with (i) Mean-Field MARL(MF)[87] used in SIMPPO [67], (ii) vanilla
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [47]
and (iii) DDPG algorithm[43] used in Firm[66]. Fig. 13 shows the
most cost-efficient resource configuration during optimization pro-
cess. AttMF achieve the best performance by reducing resource cost
by 11.85%, 19.88% and 10.84% on average and up to 17.9%, 26.09% and
15.87% compared with MF, MADDPG and DDPG while satisfying
QoS. The effectiveness of our AttMF stems from the utilization of
attention mechanism to capture varying performance dependencies
among functions, which allows for allocating different weights to
adjacent functions, thereby facilitating more effective information
sharing. On the other hand, As represented in Eq.3 and Eq.4, MAD-
DPG and vanilla DDPG with global state-action space, suffering
from dimension explosion, hindering effective policy learning. Al-
though MF reduced computational complexity by using mean value
of state vectors, it fails to reflect the true interaction among func-
tions. In summary, AttMF not only considers the collaboration of
resource allocation based on the varied dependencies among func-
tions but also reduces difficulty of policy learning, thus generating
better resource allocation decisions.

Contribution of Safe Exploration Strategy. An online opti-
mization process may evaluate several under-performing resource
configurations, however, such evaluations carry the risks of violat-
ing QoS. To reduce QoS violations, FaaSConf is augmented with a
safe exploration strategy(SES). To demonstrate the effectiveness,
we present the quality of candidate recommended points during an
online resource optimization process. Fig.14 shows the end-to-end
latency, throughput, and scaled resource costs of branch and Sequen-
tial over 15 resource configuration tuning iterations. We have two
observations. First, the use of SES technique reduces 60% and 37.5%
QoS violations during the online optimization period. It imples
that SES can filter unsafe resource configurations and allow MARL
agents to explore in the optimal solution area. Second, the best con-
figuration is discovered to be 7.34% and 0.88% more cost-efficient
compared to the baseline without using SES for Branch and Se-
quential workflows. This is because SES migrates the bad decisions
to safe resource configurations learned form history. The results
confirm that leveraging SES not only enhances QoS assurance of
FaaSConf but also bring about performance improvements.

6 RELATEDWORK
The commercial FaaS platforms provide users with rich configura-
tion parameters to meet the needs of different application scenarios.
These configuration parameters cover CPU, memory, I/O resources,
regions, instance families, concurrency limit, timeout settings, etc..
Automatically resource configuration tuning is an important aspect
of serverless systems to achieve various goals.

Resource Configuration on Serverless Computing. There
are serveral studies work on optimizing resource cost on serverless
platforms. COSE [1] uses the Bayesian Optimization (BO) to min-
imize the cost of execution by optimizing memory configuration.
SLAM [71] estimates the execution time for the applications at dif-
ferent memory configurations and determines the optimal memory
configuration. Aquatope [96] first predict future workloads to warm
start the functions and then optimize resource configuration using
noisy BO. Astra [36] and CE-scaling [83] optimizes configurations
for data-intensive analytic and ML applications in serverless plat-
forms, respectively. Fifer [31] and Kraken [7] resort to the concept
of slack to reduce the containers. FaaSDeliver [90] finds optimal
function delivery policy (FDP) for functions, including platform
selection and resource allocation in a heterogeneous computing
continuum. StepConf [82] dynamically configurememory and inter-
and intra-function parallelism degrees on AWS Lambda, but these
techniques do not consider the interaction between functions. A
similar work to ours is SIMPPO [67] that uses MARL in resource
management on multi-tenant environment. However, there is rela-
tive little researches on hybrid resources configuration tuning that
consider concurrency to improve resource efficiency in serverless
environment.

Resource Configuration in the Cloud. The field of resource
management and configuration in cloud computing is of great
significance, encompasses a wide array of research. VCONF [69],
CherryPick [2] and OPTIMUSCLOUD[50] employ black-box opti-
mization methods to determine optimal cloud configurations for
wide-ranging applications, including VM type and resource size.
Systems such as CLITE [61], PARTIES [13], and OLPART [12] are

966

FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

designed to manage resources for the co-location of multiple inter-
active services within data centers. Another hot field is microser-
vices auto-scaling to provision containers for dynamic workload
changes [28, 35, 49, 55, 68, 81, 86, 89]. However, these systems fails
to take into account the characteristics of serverless workflows.

Configuration Tuning for Software Systems. Configuration
tuning is crucial for various software systems, especially in meet-
ing user SLOs. Prior studies can be mainly divided into categories:
search-based and learning-based methods. Search-based methods
explore the configuration space according to specific rules and
measure the configuration settings until finding satisfying results.
e.g., random search [6, 57], genetic algorithm[73] and hill climb-
ing algorithm[18] have been applied for finding configurations.
Learning-based methods apply a surrogate model to predict the
performance and then find the optimal configurations[1, 32, 33, 93],
or apply RL to learn optimization policies[10, 21, 94]. However,
they cannot effectively address the issue of resource configuration
optimization in software runtime.

7 DISCUSSION
Overhead. We collected a total of 31K samples for offline training,
each measurement takes around 2 minutes (including updating
resource configurations, deploying functions, replaying workload,
collecting runtime metrics and scaling containers to zero), so the
total time spent on collecting samples is around 43 days. We train
the MARL model on NVIDIA A100 GPU, and use the trained model
in online test. Our model is a relatively compact structure, incorpo-
rating four DNNs with an actor-critic architecture, alongside the
attention parameter matrix for calculating attention scores. The
average time required to map a state to an action is approximately
1ms, which can be considered negligible.

Limitation. First, FaaSConf is a data-driven approach, faces
limitations imposed by both the quality and quantity of the histori-
cal data, these restrictions can potentially impact the effectiveness
and adaptability. Second, while FaasConf can effectively reduce
QoS violations, the concurrency hard limit rejects some requests, if
the request success rate continues to declines, it is necessary for
FaaSConf to consider scaling up resources in the scenarios where
the success rate of requests is a key indicator. Finally, we do not
extensively consider cold start, acknowledging its potential yet
limited impact in high-concurrency scenarios.

8 CONCLUSION
In this work, we propose FaaSConf, a QoS-aware hybrid resources
configuration approach for serverless workflows under concurrent
and dynamic workloads. We show that jointly optimizing hard-
ware and concurrency configurations is crucial to meet QoS and
cost-efficiency for workflows. The key novelty of FaaSConf is to
leverages attention-based MARL to learn resource allocation intel-
ligently, which considers performance interdependencies across
functions. Experiments validate the effectiveness and adaptabil-
ity of FaaSConf, while significantly reducing resource costs and
avoiding QoS violations. The source code of FaasConf is available
at https://github.com/wiluen/FaaSConf.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their valuable
comments and suggestions. This work was supported by the
National Natural Science Foundation of China under Grant No.
61902440 and No. 62272001. This work was also supported by
the National Natural Science Foundation of China (No. 62272495),
the Guangdong Basic and Applied Basic Research Foundation
(No.2023B1515020054). The corresponding author is Hui Dou.

REFERENCES
[1] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. Cose: Config-

uring serverless functions using statistical learning. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 129–138.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. {CherryPick}: Adaptively unearthing the
best cloud configurations for big data analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 469–482.

[3] Aitor Arjona, Pedro García López, Josep Sampé, Aleksander Slominski, and Lionel
Villard. 2021. Triggerflow: Trigger-based orchestration of serverless workflows.
Future Generation Computer Systems 124 (2021), 215–229.

[4] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham,
Andrew G Wilson, and Eytan Bakshy. 2020. BoTorch: A framework for efficient
Monte-Carlo Bayesian optimization. Advances in neural information processing
systems 33 (2020), 21524–21538.

[5] Emmanual N Barron. 2024. Game theory: an introduction. John Wiley & Sons.
[6] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of machine learning research 13, 2 (2012).
[7] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra

Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021. Kraken: Adaptive
container provisioning for deploying dynamic dags in serverless platforms. In
Proceedings of the ACM Symposium on Cloud Computing. 153–167.

[8] Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Rodrigues. 2023.
With great freedom comes great opportunity: Rethinking resource allocation
for serverless functions. In Proceedings of the Eighteenth European Conference on
Computer Systems. 381–397.

[9] Rodica Branzei, Dinko Dimitrov, and Stef Tijs. 2008. Models in cooperative game
theory. Vol. 556. Springer Science & Business Media.

[10] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. 2009. A reinforcement learning ap-
proach to online web systems auto-configuration. In 2009 29th IEEE International
Conference on Distributed Computing Systems. IEEE, 2–11.

[11] Baoqing Cai, Yu Liu, Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua Li,
Bin Cheng, Jie Yang, and Jiashu Xing. 2022. HUNTER: an online cloud database
hybrid tuning system for personalized requirements. In Proceedings of the 2022
International Conference on Management of Data. 646–659.

[12] Ruobing Chen, Haosen Shi, Yusen Li, Xiaoguang Liu, and Gang Wang. 2023.
OLPart: Online Learning based Resource Partitioning for Colocating Multiple
Latency-Critical Jobs on Commodity Computers. In Proceedings of the Eighteenth
European Conference on Computer Systems. 347–364.

[13] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019. Parties: Qos-
aware resource partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. 107–120.

[14] Apache OpenWhisk Composer. 2024. https://github.com/apache/openwhisk-
composer/.

[15] Google Cloud Composer. 2024. https://cloud.google.com/composer.
[16] Alibaba Function Compute. 2024. https://www.alibabacloud.com/zh/product/

function-compute.
[17] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mitigat-

ing cascading cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference. 356–370.

[18] Xiaoan Ding, Yi Liu, and Depei Qian. 2015. Jellyfish: Online performance tuning
with adaptive configuration and elastic container in hadoop yarn. In 2015 IEEE
21st International Conference on Parallel and Distributed Systems (ICPADS). IEEE,
831–836.

[19] Go Documentation. 2024. https://go.dev/doc/.
[20] Java Documentation. 2024. Concurrency. https://docs.oracle.com/javase/tutorial/

essential/concurrency/index.html.
[21] Hui Dou, Yilun Wang, Yiwen Zhang, and Pengfei Chen. 2022. DeepCAT: A Cost-

Efficient Online Configuration Auto-Tuning Approach for Big Data Frameworks.
In Proceedings of the 51st International Conference on Parallel Processing. 1–11.

[22] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas Herbst,
and Samuel Kounev. 2021. Sizeless: Predicting the optimal size of serverless
functions. In Proceedings of the 22nd International Middleware Conference. 248–
259.

967

https://github.com/wiluen/FaaSConf
https://github.com/ apache/openwhisk-composer/
https://github.com/ apache/openwhisk-composer/
 https://cloud.google. com/composer
 https://www.alibabacloud.com/zh/product/function-compute
 https://www.alibabacloud.com/zh/product/function-compute
 https://go.dev/doc/
 https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
 https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yilun Wang, Pengfei Chen, Hui Dou∗ , Yiwen Zhang, and Guangba Yu, Zilong He, Haiyu Huang

[23] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, fast and slow:{Low-Latency} video process-
ing using thousands of tiny threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). 363–376.

[24] IBM Cloud Function. 2024. https://cloud.ibm.com/functions.
[25] Azure Functions. 2024. https://azure.microsoft.com/en-us/services/functions.
[26] Azure Functions. 2024. Pricing. https://azure.microsoft.com/en-us/pricing/

details/functions/.
[27] Google Cloud Functions. 2023. https://cloud.google.com/functions.
[28] Alim Ul Gias, Giuliano Casale, and Murray Woodside. 2019. ATOM: Model-

driven autoscaling for microservices. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 1994–2004.

[29] Github. 2024. OpenFaaS Watchdog. https://docs.openfaas.com/architecture/
watchdog.

[30] Github. 2024. Serverless Train Ticket. https://github.com/FudanSELab/serverless-
trainticket.

[31] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C Nachiappan,
Mahmut Taylan Kandemir, and Chita R Das. 2020. Fifer: Tackling resource
underutilization in the serverless era. In Proceedings of the 21st International
Middleware Conference. 280–295.

[32] Yijin Guo, Huasong Shan, Shixin Huang, Kai Hwang, Jianping Fan, and Zhibin
Yu. 2021. Gml: efficiently auto-tuning flink’s configurations via guided machine
learning. IEEE Transactions on Parallel and Distributed Systems 32, 12 (2021),
2921–2935.

[33] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance prediction for
configurable software with deep sparse neural network. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 1095–1106.

[34] Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, and Yong Li. 2023. GAT-MF:
Graph Attention Mean Field for Very Large Scale Multi-Agent Reinforcement
Learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 685–697.

[35] Md Rajib Hossen, Mohammad A Islam, and Kishwar Ahmed. 2022. Practical
efficient microservice autoscaling with QoS assurance. In Proceedings of the 31st
International Symposium on High-Performance Parallel and Distributed Computing.
240–252.

[36] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2021. Astra: autonomous server-
less analytics with cost-efficiency and QoS-awareness. In 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 756–765.

[37] Knative. 2024. Knative. https://knative.dev/docs/.
[38] Kubernetes. 2024. Production-grade container orchestration. https://kubernetes.

io/.
[39] AWS Lambda. 2024. https://aws.amazon.com/lambda.
[40] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie Tai, Michael Kishinevsky,

and Christos Kozyrakis. 2021. RAMBO: Resource allocation for microservices
using Bayesian optimization. IEEE Computer Architecture Letters 20, 1 (2021),
46–49.

[41] Yihong Li, Tianyu Zeng, Xiaoxi Zhang, JingpuDuan, and ChuanWu. 2023. TapFin-
ger: Task Placement and Fine-Grained Resource Allocation for Edge Machine
Learning. In IEEE INFOCOM.

[42] Zijun Li, Quan Chen, Shuai Xue, Tao Ma, Yong Yang, Zhuo Song, and Minyi
Guo. 2020. Amoeba: Qos-awareness and reduced resource usage of microservices
with serverless computing. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 399–408.

[43] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[44] Changyuan Lin and Hamzeh Khazaei. 2020. Modeling and optimization of
performance and cost of serverless applications. IEEE Transactions on Parallel
and Distributed Systems 32, 3 (2020), 615–632.

[45] Jianshu Liu, Shungeng Zhang, and Qingyang Wang. 2023. 𝜇ConAdapter: Rein-
forcement Learning-based Fast Concurrency Adaptation for Microservices in
Cloud. In Proceedings of the 2023 ACM Symposium on Cloud Computing. 427–442.

[46] Locust. 2024. https://locust.io.
[47] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems 30 (2017).

[48] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice de-
pendency and performance: Alibaba trace analysis. In Proceedings of the ACM
Symposium on Cloud Computing. 412–426.

[49] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang,
and Chengzhong Xu. 2022. The power of prediction: Microservice auto scaling
via workload learning. In Proceedings of the 13th Symposium on Cloud Computing.
355–369.

[50] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020. {OPTIMUSCLOUD}:
Heterogeneous configuration optimization for distributed databases in the cloud.

In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 189–203.
[51] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, So-

mali Chaterji, and Saurabh Bagchi. 2022. ORION and the Three Rights: Sizing,
Bundling, and Prewarming for Serverless DAGs. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 303–320. https://www.usenix.org/conference/osdi22/presentation/
mahgoub

[52] Nima Mahmoudi and Hamzeh Khazaei. 2020. Performance modeling of serverless
computing platforms. IEEE Transactions on Cloud Computing 10, 4 (2020), 2834–
2847.

[53] Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbar-
czyk, Ravishankar Iyer, and Tamer Basar. 2022. A mean-field game approach to
cloud resource management with function approximation. Advances in Neural
Information Processing Systems 35 (2022), 36243–36258.

[54] Ruben Martinez-Cantin. 2014. BayesOpt: a Bayesian optimization library for
nonlinear optimization, experimental design and bandits. J. Mach. Learn. Res. 15,
1 (2014), 3735–3739.

[55] Chunyang Meng, Shijie Song, Haogang Tong, Maolin Pan, and Yang Yu. 2023.
DeepScaler: Holistic Autoscaling forMicroservices Based on Spatiotemporal GNN
with Adaptive Graph Learning. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 53–65.

[56] MongoDB. 2024. https://www.mongodb.com/.
[57] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding

near-optimal configurations in product lines by random sampling. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 61–71.

[58] Onnx. 2024. https://github.com/onnx/models.
[59] OpenFaaS. 2024. https://www.openfaas.com.
[60] Apache OpenWhisk. 2024. https://openwhisk.apache.org.
[61] Tirthak Patel and Devesh Tiwari. 2020. Clite: Efficient and qos-aware co-location

of multiple latency-critical jobs for warehouse scale computers. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 193–206.

[62] Adolfo Perrusquía, Wen Yu, and Xiaoou Li. 2021. Multi-agent reinforcement
learning for redundant robot control in task-space. International Journal of
Machine Learning and Cybernetics 12 (2021), 231–241.

[63] Prometheus. 2024. https://prometheus.io/.
[64] Friedrich Pukelsheim. 1994. The three sigma rule. The American Statistician 48, 2

(1994), 88–91.
[65] Python. 2024. Concurrent Execution. https://docs.python.org/3/library/

concurrency.html.
[66] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-

hankar K Iyer. 2020. {FIRM}: An intelligent fine-grained resource management
framework for {SLO-Oriented} microservices. In 14th USENIX symposium on
operating systems design and implementation (OSDI 20). 805–825.

[67] Haoran Qiu, Weichao Mao, Archit Patke, Chen Wang, Hubertus Franke, Zbig-
niew T Kalbarczyk, Tamer Basar, and Ravishankar K Iyer. 2022. SIMPPO: A
Scalable and Incremental Online Learning Framework for Serverless Resource
Management. In ACM Symposium on Cloud Computing.

[68] Haoran Qiu, Weichao Mao, Chen Wang, Hubertus Franke, Alaa Youssef, Zbig-
niew T Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. 2023. {AWARE}:
Automate Workload Autoscaling with Reinforcement Learning in Production
Cloud Systems. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).
387–402.

[69] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin.
2009. VCONF: a reinforcement learning approach to virtual machines auto-
configuration. In Proceedings of the 6th international conference on Autonomic
computing. 137–146.

[70] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli. 2022.
Dynamic multi-metric thresholds for scaling applications using reinforcement
learning. IEEE Transactions on Cloud Computing (2022).

[71] Gor Safaryan, Anshul Jindal, Mohak Chadha, and Michael Gerndt. 2022. SLAM:
SLO-aware memory optimization for serverless applications. In 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD). IEEE, 30–39.

[72] Lucia Schuler, Somaya Jamil, and Niklas Kühl. 2021. AI-based resource allocation:
Reinforcement learning for adaptive auto-scaling in serverless environments.
In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 804–811.

[73] Arman Shahbazian, Suhrid Karthik, Yuriy Brun, and Nenad Medvidovic. 2020.
eQual: informing early design decisions. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1039–1051.

[74] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 USENIX annual technical
conference (USENIX ATC 20). 205–218.

[75] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-
dra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. 2020. Ensure: Efficient

968

 https://cloud.ibm.com/functions
 https://azure.microsoft.com/en-us/services/functions
 https://azure.microsoft.com/en-us/pricing/details/functions/
 https://azure.microsoft.com/en-us/pricing/details/functions/
 https://cloud.google.com/functions
 https://docs.openfaas.com/architecture/watchdog
 https://docs.openfaas.com/architecture/watchdog
 https://github.com/FudanSELab/serverless-trainticket
 https://github.com/FudanSELab/serverless-trainticket
 https://knative.dev/docs/
 https://kubernetes.io/
 https://kubernetes.io/
 https://aws.amazon.com/lambda
 https://locust.io
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://www.usenix.org/conference/osdi22/presentation/mahgoub
 https://www.mongodb.com/
 https://github.com/onnx/models
 https://www.openfaas.com
 https://openwhisk.apache.org
 https://prometheus.io/
 https://docs.python.org/3/library/concurrency.html
 https://docs.python.org/3/library/concurrency.html

FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

scheduling and autonomous resource management in serverless environments. In
2020 IEEE International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). IEEE, 1–10.

[76] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, et al. 2021. Dory-
lus: Affordable, scalable, and accurate {GNN} training with distributed {CPU}
servers and serverless threads. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). 495–514.

[77] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang.
2022. Owl: Performance-aware scheduling for resource-efficient function-as-a-
service cloud. In Proceedings of the 13th Symposium on Cloud Computing. 78–93.

[78] Parichehr Vahidinia, Bahar Farahani, and Fereidoon ShamsAliee. 2022. Mitigating
cold start problem in serverless computing: a reinforcement learning approach.
IEEE Internet of Things Journal 10, 5 (2022), 3917–3927.

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[80] Runan Wang, Giuliano Casale, and Antonio Filieri. 2022. Enhancing performance
modeling of serverless functions via static analysis. In International Conference
on Service-Oriented Computing. Springer, 71–88.

[81] ZiliangWang, Shiyi Zhu, Jianguo Li, Wei Jiang, KK Ramakrishnan, Yangfei Zheng,
Meng Yan, Xiaohong Zhang, and Alex X Liu. 2022. DeepScaling: microservices
autoscaling for stable CPU utilization in large scale cloud systems. In Proceedings
of the 13th Symposium on Cloud Computing. 16–30.

[82] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: Slo-aware
dynamic resource configuration for serverless function workflows. In IEEE INFO-
COM 2022-IEEE Conference on Computer Communications. IEEE, 1868–1877.

[83] Hao Wu, Junxiao Deng, Hao Fan, Shadi Ibrahim, Song Wu, and Hai Jin. 2023.
QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML
Workflows. In 2023 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 886–896.

[84] Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and
Dapeng Oliver Wu. 2020. Multi-agent deep reinforcement learning for urban traf-
fic light control in vehicular networks. IEEE Transactions on Vehicular Technology
69, 8 (2020), 8243–8256.

[85] Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu. 2021. 𝜆dnn: Achieving
predictable distributed DNN training with serverless architectures. IEEE Trans.
Comput. 71, 2 (2021), 450–463.

[86] Siqiao Xue, Chao Qu, Xiaoming Shi, Cong Liao, Shiyi Zhu, Xiaoyu Tan, Lintao Ma,
Shiyu Wang, Shijun Wang, Yun Hu, et al. 2022. A Meta Reinforcement Learning
Approach for Predictive Autoscaling in the Cloud. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4290–4299.

[87] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.
2018. Mean field multi-agent reinforcement learning. In International conference
on machine learning. PMLR, 5571–5580.

[88] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara Nahrstedt. 2019. MIRAS:
Model-based reinforcement learning for microservice resource allocation over
scientific workflows. In 2019 IEEE 39th international conference on distributed
computing systems (ICDCS). IEEE, 122–132.

[89] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic scaling
for microservices with an online learning approach. In 2019 IEEE International
Conference on Web Services (ICWS). IEEE, 68–75.

[90] Guangba Yu, Pengfei Chen, Zibin Zheng, Jingrun Zhang, Xiaoyun Li, and Zilong
He. 2023. FaaSDeliver: Cost-Efficient and QoS-Aware Function Delivery in
Computing Continuum. IEEE Transactions on Services Computing (2023).

[91] Hanfei Yu, Athirai A Irissappane, Hao Wang, and Wes J Lloyd. 2021. Faasrank:
Learning to schedule functions in serverless platforms. In 2021 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE,
31–40.

[92] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 30–44.

[93] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-aware high dimen-
sional configurations auto-tuning of in-memory cluster computing. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 564–577.

[94] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 international conference on management of data. 415–432.

[95] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. Handbook of
reinforcement learning and control (2021), 321–384.

[96] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022. Aquatope:
Qos-and-uncertainty-aware resource management for multi-stage serverless
workflows. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 1.

1–14.

969

