Check for
Updates

Estimating the Carbon Footprint of Serverless Functions
on a Public Cloud Platform
Hanan Awwad, Changyuan Lin, Rabab Ward, Mohammad Shahrad

{hanan,chlin,rababw,mshahrad}@ece.ubc.ca
University of British Columbia
Vancouver, BC, Canada

Abstract

As the carbon footprint of cloud data centers grows rapidly, sustain-
ability has become an increasing concern for practitioners. Under-
standing the carbon emissions of cloud workloads and identifying
strategies to reduce them is critical. In this paper, we model and
extensively analyze the carbon emissions of functions executed
on a public serverless platform using available telemetry, offering
new insights into the relationship between carbon emissions and
traditional metrics of cost and performance. We explore various fac-
tors affecting carbon emissions, including host region, architecture,
cold starts, application resource composition, and input-sensitivity.
Based on our findings, we propose future optimization opportuni-
ties and research directions. Our work aims to empower developers
to make more sustainable decisions when configuring or optimizing
their applications.

CCS Concepts

« Social and professional topics — Sustainability; « Software
and its engineering — Cloud computing.

Keywords

Sustainability, Serverless Computing, Carbon Modeling

1 Introduction

Cloud data centers have emerged as significant contributors to
global greenhouse gas (GHG) emissions within the Information and
Communication Technology (ICT) sector [22]. The serverless com-
puting model, which has gained significant traction over the past
few years, offers potential environmental benefits through dynamic
resource allocation, enabled by autoscaling of function or applica-
tion sandboxes (e.g., containers, pods). Minimizing idle resource
waste helps reduce carbon emissions. This capability is particu-
larly critical given that most real-world applications experience
fluctuating traffic patterns. However, the environmental efficacy
of this paradigm remains contingent upon the efficiency of the
building blocks of scaling, i.e., how each sandbox is configured.
Prior research has demonstrated that suboptimal configuration of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1557-0/2025/03

https://doi.org/10.1145/3721465.3721863

12

serverless functions can incur substantial operational costs and per-
formance degradation [34, 49, 55], suggesting a probable correlation
with increased carbon footprints. Consequently, the sustainabil-
ity benefits of serverless computing hinge on understanding and
optimizing for efficient sandbox configurations.

Understanding the key factors driving carbon emissions in server-
less computing is critical for empowering developers to priori-
tize sustainability and optimize their applications. While cloud
providers have introduced initiatives to reduce data center emis-
sions, these efforts often remain disconnected from the configura-
tion decisions developers must make. This raises a pivotal question:
Are developers equipped with the necessary insights to make in-
formed, carbon-aware decisions? Three primary barriers currently
hinder their ability to do so. First, within virtualized serverless
sandboxes, developers lack access to granular infrastructure-level
energy metrics provided by hardware interfaces such as Intel RAPL.
This leaves them blind to the direct environmental impact of their
code. Second, without visibility into co-located workloads on shared
servers, they cannot accurately attribute static power consumption
in multi-tenant environments [50, 65]. Finally, the emissions data
provided to developers by providers arrives via coarse-grained re-
ports at the end of billing cycles [19, 27, 28, 61]—far too late to
inform real-time optimizations. These limitations underscore a gap
between sustainability goals and actionable developer tools, stifling
progress toward greener serverless architectures.

The goal of this study is to investigate how fine-grained teleme-
try accessible to developers combined with published power and
carbon models can reveal opportunities to improve the carbon effi-
ciency of serverless functions through configuration adjustments.
Departing from prior methodologies that rely on controlled local
hardware environments [65] or bare-metal instances with fixed re-
source profiles [58], we instead explore what actionable insights can
be derived solely from existing serverless logs and metrics available
to developers. By narrowing our carbon estimation scope to the
execution phase of serverless functions—the portion developers are
directly charged for and can influence through optimizations—we
examine how well the existing pricing models incentivize emission
reduction efforts by developers. While this approach cannot elimi-
nate the need for providers to implement high-quality, real-time
carbon APIs, it nevertheless establishes a framework to harmonize
current cost-driven optimization practices with sustainability objec-
tives. With this goal, this paper makes the following contributions:

e We build operational and embodied carbon models for functions
executed on AWS Lambda, a popular serverless platform.

e We show which readily-available metrics from AWS CloudWatch
Lambda Insights can be used to feed these carbon models.

e We characterize various sources of emissions and compare carbon
emissions to classic metrics such as performance and cost.

https://doi.org/10.1145/3721465.3721863
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721465.3721863&domain=pdf&date_stamp=2025-03-30

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

o Building on our characterization results, we highlight several
challenges and propose future research directions.

2 Carbon Model

This section explains the fundamental concepts of carbon emissions
in cloud systems and outlines our approach to modeling its various
components for serverless functions.

2.1 Basics

The Greenhouse Gas Protocol (GHG protocol) [9] is a widely adopted
framework for carbon footprint assessment. Under the GHG pro-
tocol, the carbon emission of cloud data centers stems from direct
emission (Scope 1), purchased energy (Scope 2), and carbon em-
bodied in hardware and infrastructure (Scope 3) [51]. Scopes 1 and
2 generally involve the operational carbon of data centers, while
the direct emission (e.g., on-site power generators and employees)
from the data center is usually negligible [3]. The Scope 2 carbon
can be modeled based on the energy consumption, power usage
effectiveness (PUE) of the data center, and the carbon intensity
of the underlying power grid. Scope 3 emission mainly includes
the embodied carbon associated with hardware and infrastructure
manufacturing, transportation, maintenance, and replacement, as
well as the hardware life cycle policy.

The total carbon footprint of serverless functions consists of
operational (Cop) and embodied carbon (Cepm).

)

Operational carbon refers to the carbon emissions generated from
the energy consumed during the execution of serverless functions.
This includes the energy required to power the resources allocated
to the function during its execution. Embodied carbon is deter-
mined by the emissions associated with the hardware on which an
application runs. As discussed in §2.3, it accounts for the carbon
emissions from manufacturing, transportation, installation, mainte-
nance, and disposal of the resources. This evaluation considers life
cycle analysis (LCA) from the production to disposal of devices used
in cloud infrastructure. Serverless functions contribute to embodied
carbon proportional to the hardware capacity they use. Consider-
ation of embodied carbon as one of the primary differentiating
factors for carbon vs. energy optimization. Prior work has demon-
strated that optimizing for carbon is different from optimizing for
energy [68, 76].

In many serverless systems, developers control function con-
figurations (to various degrees). For example, in AWS Lambda,
developers set memory configurations of functions and CPU is
allocated proportionally [7]. Since we study AWS Lambda in this
paper, we adhere to the same resource allocation model and ac-
count for carbon emissions from both allocated and used resources.
Throughout the rest of the paper, we denote the function’s memory
configuration as m. At 1,769 MB of memory, there is exactly one
vCPU allocated to the Lambda function [7].

Crotal = Cop +Cem

2.2 Modeling Operational Carbon

The operational carbon is influenced by 1) the energy efficiency
of the data center, a.k.a. power usage effectiveness (PUE), 2) the
carbon intensity of the electrical grid (Iy;4) [70], and 3) the energy

13

Hanan Awwad, Changyuan Lin, Rabab Ward, Mohammad Shahrad

CPU Vendor, CPU Model Occurrence Idle Active Ref.
Arch.,, and Freq. (Inferred) Frequency | Power (W)* | Power (W)™* :
Intel Haswell 2.50 GHz | Xeon E5-2680 v3 83.17% 44 125 1,10
Intel Haswell 2.90 GHz | Xeon E5-2666 v3! 5.84% 32 135 1,14
Intel Haswell 3.00 GHz | Xeon E5-1660 v3 10.40% 34 140 1, 10
AMD EPYC 2.65 GHz EPYC 7R13! 0.59% 823 225 [13, 66]

*The C1E-state power specification is used for the idle power of Intel CPUs. **TDP power is used.
IThe server CPU is the OEM version with limited datasheet information. The box version of the
CPU (i.e., Intel Xeon E5-2667 v32 and AMD EPYC 76433) with a comparable number of cores, base
frequency, and TDP is used to estimate idle power.

Table 1: The CPU models for serving function requests, preva-
lence in percentages, and their energy metrics.

consumed by the resources used during execution. The previous
work [67, 72] indicates that the main contributors to the system’s
energy are the memory, CPU, network, and storage resources.

Cop = (Emem + Ecpu + Enerwork + Estorage) X PUE X Iorid (2

2.2.1
its active power (Pme) and the idle power (P,
throughout the execution period.

high low
Prmem = Pmem X Mysed + Prem X (Majloc = Mysed)

Memory. The energy usage of memory is influenced by both

low y consumption

®)
We take the average of the memory power consumption figures
collected for idle and active memory m AWS [35]; 3.26e-4 kW/GB

and 8.38e-4 kW/GB for P,lge”;’n and Pmem, respectively. Multiplying
the power by the duration of function execution results in the total
energy consumed.

2.2.2 CPU. The CPU energy consumption, denoted as Ecpy, is
determined by the number of allocated CPU cores Nepu, average
per-core CPU power Pcpy, and function execution duration d:

)

where P¢p,, can be derived from a linear utilization-based power
model [31] that is formulated as

Ecpu = Pepu X nepy X d,

©)

Here, u is the average CPU utilization rate throughout function
execution (i.e., the ratio of the CPU time consumed by the function
to the product of d and the total number of CPU cores), Pégif i
the idle (baseline) CPU power, and P“;t is the active CPU power
under full utilization. In order to obtain the CPU power metrics
(i.e., idle and active power), we read the CPU information from
/proc/cpuinfo. We inferred the CPU model based on the CPU ven-
dor, microarchitecture, and frequency reported by cpuinfo, AWS
documentation [4, 5], and CPU specifications [10] and gathered
power metrics from CPU datasheets and research report [1, 66]. Ta-
ble 1 presents the reported CPU information, inferred CPU models,
frequency of occurrence (out of 2,020 function invocations), and
their corresponding power metrics.

Pcpu — Pldle +uX (Pact

idl
cpu cpu P e)

cpu

2.2.3 Network. The energy needed for data transmission to and
from Lambda functions can be estimated by considering the amount
of data being transferred (S). There is a great deal of uncertainty in
the existing network energy models [20, 23, 52]. We use the E;,qns
of 0.001 kWh/GB in this paper, which appears to be on the lower

Estimating the Carbon Footprint of Serverless Functions on a Public Cloud Platform

end of estimates for 2024 [37]. The energy consumption associated
with the transmission of S gigabytes of data is calculated as

(6)

2.2.4 Storage. The /tmp file system in AWS Lambda offers 512 MB
of ephemeral storage attached to each function, by default (exten-
sible up to 10 GB). Solid state drives (SSDs) are more commonly
used in cloud system data centers than traditional hard disk drives
(HDDs) [48, 71]. We use 1.2e-3 W/GB as the unit power consump-
tion for SSD servers [70]. Multiplying the baseline power (Psq) for
SSDs by the amount of data stored (D) over execution time d yields
the total energy consumption attributed to ephemeral data storage.

™
We exclude the carbon impact of external storage (e.g., attached
volumes and S3 buckets) since their cost and emissions are sepa-

rately measured and reported by the respective storage services
(e.g., Amazon S3 and EBS).

Epetwork = Etrans X S

Estorage = Pgsq Xd XD

2.2.5 PUE. We use a power usage effectiveness (PUE) of 1.11,
which represents the average value within the range of 1.07 to
1.15 as reported by AWS [18].

2.2.6 Carbon Intensity. Carbon intensity can vary over time, daily
or seasonally. In this paper, we use the average carbon intensity
values from 2024 reported from electric grids hosting four public
AWS regions in North America. We use historical datasets provided
by the Electricity Maps [53] for this purpose. The selected regions
demonstrate a spectrum of carbon intensity levels. The us-east-1 re-
gion had the highest annual average is with 392 gCO2e/kWh, while
ca-central-1 records the lowest at 35 gCO2e/kWh. Additionally, us-
west-1 and us-west-2 report carbon intensities at 272 gCO2eq/kWh
and 195 gCO2e/kWh, respectively. The reader should note that the
actual carbon intensity of data centers may vary, as data centers
may have energy storage [15], thermal energy harvesting [77], etc.
These do not affect the trends reported in this work, however.

2.3 Modeling Embodied Carbon

The embodied carbon attributed to the function execution is mainly
determined by the allocated computing resources (e.g., vCPUs and
memory size) and the embodied carbon of the hardware providing
the resource [50]. For a given serverless function f with a set of
allocated resources R, we can formulate the embodied carbon as
Cem =) cem(r) x d x ALC (f,r), ®)
reR
where cepm (7) is the per-unit-and-duration lifetime embodied car-
bon of the hardware associated with the resource r, d is the function
execution duration, and ALC(f, r) is the allocated size of resource
rto f.

We consider a server lifespan of six years, as reported by AWS
in February 2024 [6]. We leverage Datavizta [8], a publicly avail-
able tool for assessing ICT/digital environmental impacts, to ob-
tain the embodied carbon of CPUs and memory. The per-vCPU
embodied carbon of the four CPU models listed from top to bot-
tom in Table 1 are 825 gCO2eq, 860 gCO2eq, 1115.63 gCO2eq, and
312.5 gCO2eq, respectively. The per-GB embodied carbon of mem-
ory is 1796.88 gCO2eq. We adopt the per-GB embodied carbon of
160 gCO2eq for storage [69]. For example, the storage embodied

14

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

carbon of a function with 1 GB of storage and execution duration
of 1s can be calculated as

Cstorage _ 1609€02¢q/Gp

=—— ™7 x1sx1GB=28.46 X 10"'gCO2e
em 6 X 365 X 864005 g 1

To the best of our knowledge, there is no available data on the
embodied carbon associated with network data transfer. So, we do
not consider the embodied carbon of the network in our analysis.

The embodied carbon model we used mainly focuses on the
manufacturing carbon associated with main components such as
CPU, memory, and storage, with the scope limited to serverless
functions. These components are externally measurable. Our model
excludes broader embodied carbon factors, such as manufacturing
carbon for other devices (e.g., motherboards and power supply
units), transportation of components, building construction, and
alike. Therefore, the embodied carbon considered in this work is
essentially a lower-bound.

3 Characterization Results
3.1 Methodology

All experiments were conducted on AWS Lambda, one of the most
popular public serverless platforms. The us-west-1 (California) re-
gion was primarily used in our studies. The host region can affect
our results in two ways: 1) the mix of the underlying hardware,
which we control for as described in §3.4.2, and 2) the electric grid’s
carbon intensity, which we use average regional statistics in §2.2.6.

3.1.1 Metric collection. We use metrics reported by the AWS Cloud-
Watch Lambda Insights [11], a dedicated service for monitoring
serverless applications, to feed our carbon models presented in
§2. Specifically, we use the following metrics: duration for func-
tion execution time, cpu_total_time as the sum of time spent
in user and kernel modes, used_memory_max to track maximum
memory utilized, total_network to capture data transmitted, and
tmp_used to account for how much of the temporary file system
was used. For functions that did not involve network-intensive
operations, we still observed some data transfer values from AWS
Lambda Insights, which can be attributed to network calls made by
the Lambda runtime [11]. To address this variability, we calculated
the average of the collected network data. We had to trace the CPU
information from the function side by accessing /proc/cpuinfo.
We distinguished between cold starts and warm starts by reading
the field cold_start from AWS Lambda Insights logs.

3.1.2 Benchmarks. We analyze invocation logs from five different
benchmarks developed in Python, JavaScript, and Java, which are
the primary languages used by AWS Lambda users [30]. PyAES [45],
a Python-based AWS Lambda function utilizing the AES (Advanced
Encryption Standard) algorithm to secure data, and Markdown-to-
HTML [62], a Python script that transforms Markdown into HTML.
These benchmarks need a reasonable level of computing power
and do not involve any external communication. To accommodate
various energy sources, such as those derived from CPU or I/O oper-
ations, we have chosen specific benchmarks: Video-Processing [29],
a Python script used for adding watermarks to videos and convert-
ing them to GIFs, and Java-S3 [21], a Java application designed to
retrieve, compress, and store images in an S3 bucket. To analyze the

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

—o= Formplug = = Markdown Video

le—4

—o= PyAES
le-5

= = Java-S3

o]
N

2.01

o
i

1.5 1

’WMM
1000 2000 3000
Memory Size (MB)

N
!

e N

AN et a2

Aaa,

Operational Carbon (gCO2e)
sy
Embodied Carbon (gCO2e)

o
!

o

1000 2000 3000 0

Memory Size (MB)

Figure 1: Operational and embodied carbon of five bench-
mark functions under different memory sizes. The lines rep-
resent the average carbon emissions.

behavior of functions under very low memory allocations, we se-
lected Formplug [42], an HTML form forwarding service developed
in JavaScript.

We initiated the benchmarks using specific input values and
subsequently altered the inputs for each benchmark to test input
sensitivity in §3.4.3. Both the Video-Processing and Java-S3 func-
tions processed 1 MB of video and image from an S3 bucket, re-
spectively. PyAES encrypted a message of 256 characters 100 times,
while the Markdown-to-Html benchmark generated an HTML web
form from a Markdown text of 165k characters.

3.1.3 Sampling. The logs were collected at a sampling rate of
20 MB, spanning memory sizes from 128 MB to 3,008 MB. This sam-
pling rate was implemented across all benchmarks except for Video-
Processing, which demonstrated better performance at 500 MB of
memory. Each memory configuration was sampled three times,
excluding cold starts. Cold starts are analyzed separately in §3.4.1.

3.2 Carbon Attribution

In this section, we explore the attribution of carbon emissions with
various criteria. We base our analysis on the execution logs with
the Intel Haswell 2.50 GHz CPU, since it is the predominant CPU
model as presented in Table 1. Also, we further discuss the impact
of different CPU models in §3.4.2.

3.2.1 Operational and Embodied Carbon. Figure 1 illustrates the
operational (left) and embodied (right) carbon emissions of five
benchmark functions deployed in the us-west-1 region. As the fig-
ure shows, carbon emissions vary with memory configurations
for these benchmarks. Emissions do not necessarily increase with
higher configurations; for most benchmarks, the emission functions
are convex rather than monotonically increasing. This occurs be-
cause, up to a certain point, increasing memory—and subsequently
CPU allocation—can reduce execution time when a function is
resource-bottlenecked. Beyond the threshold where all necessary
resources are provided, extra resources only become wasteful.

The other observation is that across benchmarks, operational
and embodied emissions do not change with the same ratio. For
instance, Java-S3 consistently has more than twice the operational
emissions of PyAES, while their embodied emissions are relatively
close. This has to do with the varying mix of resources used by
different functions, something we characterize in §3.2.2.

15

Hanan Awwad, Changyuan Lin, Rabab Ward, Mohammad Shahrad

The operational carbon is influenced by the carbon intensity of
the grid powering the host data center (§2.2.6). Execution on iden-
tical hardware in other regions would linearly scale the emissions
shown in Figure 1-Left, proportional to the ratio of the region’s
carbon intensity to that of us-west-1. This relationship highlights
how regional variations in energy sourcing—not just workload
configuration—impact sustainability outcomes; something recently
explored by researchers to reduce emissions of serverless work-
loads [37, 60].

3.2.2 Contribution by Resources. Figure 2 shows the breakdown
of operational emissions by resource. For three functions, most
of the carbon emissions come from the CPU. For Java-S3 and
Video-Processing benchmarks, the network energy is the dom-
inant contributor to the emissions. As noted earlier in §1, this
paper specifically focuses on emissions generated during the ac-
tive execution phase of serverless functions—a scope aligned with
serverless billing models. Keeping sandboxes alive to mitigate cold
starts [58, 63] extends memory emissions shown in this figure, but
that carbon footprint falls under the provider’s operational respon-
sibility.

3.3 Carbon vs. Classic Metrics

3.3.1 Carbon vs. Cost. To explore the relationship between carbon
emissions and cost, we calculate the cost of each invocation using
the AWS pricing model [17] (excluding the free-tier discounts). We
then compare the costs with the corresponding carbon emissions.
Figure 3 shows the relationship between carbon emissions and cost
across all benchmarks. The figure illustrates a "<"-shaped trend as
memory configurations increase. The sharp cost rise beyond the
Pareto-optimal point stems from this cloud provider charging for al-
located—not utilized—resources. For all benchmarks, optimizing for
cost leads to carbon optimization. As a result, rightsizing serverless
functions will kill two birds with one stone.

3.3.2 Carbon vs. Performance. As Figure 4 shows, optimizing for
performance can reduce carbon emissions until the resources re-
quired by the function are satisfied. Beyond that point (the knee of
the L-shaped curves), increasing the memory configuration merely
raises carbon emissions due to the underutilization of resources
without improving performance. This underscores the importance
of rightsizing serverless functions to optimize performance and
minimize carbon emissions resulting from resource over-allocation.

3.4 Sources of Variance

3.4.1 Cold Starts vs. Warm Starts. Cold start executions have higher
emissions than warm starts, as quantized in Figure 5. This is due to
added resource usage and allocated resources prior to the function
execution. The relative increase in emissions is amplified when: 1)
the function execution is short (Formplug), and 2) the runtime is
slow and resource-intensive, which is the case for JVM (for Java-S3)
compared to Python and Node.js runtimes.

3.4.2 Host Processor. Our logs reveal that various CPU models
are used to execute functions, with the selection being made by
the provider and beyond the developer’s control. Using the data
derived from varying power levels for both active and idle states, as

Estimating the Carbon Footprint of Serverless Functions on a Public Cloud Platform

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

s Memory Storage Network CPU
PyAES Markdown Formplug Java-S3 Video
le—4 le—4 le-5 le—4 le—4

) 8 8
9 J

1.2 1 6
8@ 2.0 4
= s 1.0 A 6 64
8 0.8 - 4
E 4
©10- 0.6 41
g 0.4 2
o .4 i p
= 0.5 - 2 21
5 0.2 1
o
O 0.0 0.0 E T T 0-

128 1024 2048 3000 128 1024 2048 3000 128 1024 2048 3000 128 1024 2048 3000 512 2048 3000

Memory (MB) Memory (MB)

Memory (MB)

Memory (MB) Memory (MB)

Figure 2: The carbon contribution of resources can vary significantly across functions and configurations.

-¥~ Formplug * Markdown —#— PyAES - Java-S3 -l Video
le-5
3.0 1
F
2.51
L 4
—~ 2.0
hi increasing
*g 1.5 memory size /&
; 1 i
ol 4
»
051 ‘ é
00 1 T T T T T
0 2 4 6 8
Total Carbon (gCO2e) le—4

Figure 3: Carbon and cost optimality align well, making func-
tion rightsizing essential to address both.

~¥- Formplug —4— Markdown —#— PyAES > Java-S3 -~ Video

5000 A

4000 A

3000 A

2000 A increasing
memory size

Duration (ms)

1000 A

R ’
| el -
0 2 4 6 8

Total Carbon (gCO2e) le—4

Figure 4: Increasing memory size leads to reduced carbon
and better performance (shorter execution duration) until
resource needs are satisfied, after which excessive memory
merely incurs more carbon without performance gains.

outlined in §2.2, we observe that the underlying CPU model does
not significantly affect carbon emissions (Figure 6).

3.4.3 Input Sensitivity. To assess the impact of input on carbon
footprint, we executed the PyAES and Java-S3 benchmarks using
various workloads. Figure 7 shows the carbon footprint of these

—— PyAES —-= Formplug - — Video
_S —== Markdown e Java-S3
3
@5
i1
E |
o441 1
= TN ,
g | Y i
53 LY. 4l 2N 1 L
2 [ETHE R TR 1l !
S VY hu WWﬁ"/'b.ﬁA A1 by
_% 24 |{ i et Ao X \{‘,}l‘ \I \l \\[‘]-\‘]\
< —_ =N\~
S \,_J‘-" Ny :7"\-’;“:—"-73\7*7«\-;:«:1’\:‘\'\/\ PPRSR
.G 1 -
2k T T T T T T
LIE.I 0 500 1000 1500 2000 2500 3000

Memory (MB)

Figure 5: Cold starts can incur significant carbon emissions.

--*Intel Haswell 3.00 GHz —Intel Haswell 2.50 GHz —-Intel Haswell 2.90 GHz

le—4 PyAES le—4 Markdown
2.0 1
@ 1.1 #
s | l
Q | -“'/ J
i)l.s- %Y 1.0-5 lj/"lv’
8 n}l - 1y | Y
= H-aT 1EY Ry EHNEIER *
816+ "\[ﬁ!”" 0.9 1 l‘"l\ _,..f'-i!"ifﬁ—ﬂm
8 iy i it A% ”'{:l’
s 0.8 1 ; l ~t \’ﬂ i
1.4 1
0 1000 2000 3000 0 1000 2000 3000

Memory (MB) Memory (MB)

Figure 6: Host processors on the studied cloud platform do
not have a major impact on carbon emissions.

functions with different inputs. Black markers in the figure indi-
cate median values. Using different inputs can change resource
consumption as well as execution time, leading to different carbon
emissions. The increase in emissions is not necessarily linear, as
there is a baseline emission incurred even without any work per-
formed on the input for calling the function handler and returning
the response.

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

| PSR
4] s
e .

1MB 5

le—4 Java-S3 le—4 PyAES

& o
1 f

Total Carbon (gCO2e)
N

100 200

Iteration Count

743 KB
Image Size

70 KB

Figure 7: Changing the input can significantly change the
carbon footprint of serverless functions.

Formplug L Mem. Op. Carbon Attribution
VFL B Allocation-based
S Markdown - Vr [Usage-based
o PYAES - %
C
i Java-S3 A %
Video 1 Vﬁk
T T T T T
0 2 4 6 8
Total Carbon (gCO2e) le—4

Figure 8: Whether to include unused allocated memory’s
operational carbon marginally impacts the total footprint.

3.4.4 Memory Allocation Model. Most serverless providers, includ-
ing AWS Lambda, charge based on configured memory, while others,
like Azure Functions, charge only for memory used [54]. The oper-
ational carbon model in Equation (3) accounts for unused allocated
memory. Figure 8 shows the impact on carbon emissions under a
usage-based model (i.e., Ppem = P,};llf,},ll XMyeq)- Distributions cover
all samples across memory configurations. In reality, memory over-
commitment—which cannot be externally measured—means the
true emissions likely fall between the usage-based and allocation-
based results presented in the figure.

4 Challenges and Avenues for Future Research

Based on our above emission characterization results, we identify
several challenges that necessitate further research.

Cloud carbon transparency. We faced challenges of the opaque
cloud infrastructure and the lack of carbon-related metrics from
the provider when modeling the operational and embodied car-
bon of AWS Lambda functions. To estimate the CPU power and
embodied carbon, we referred to the CPU datasheet and research
report of inferred CPU models (Table 1). We also assumed that the
data center leveraged the local power grid and relied on Electricity
Maps to obtain carbon intensity, while the actual energy sources
and intensities may vary. While the analyses of relative trends,
proportions, and correlations are less affected, the absolute carbon
values may be less accurate due to the lack of essential carbon
metrics of cloud data centers (e.g., power grid carbon intensity

17

Hanan Awwad, Changyuan Lin, Rabab Ward, Mohammad Shahrad

and operational and embodied carbon of hardware). To address
this challenge, public cloud providers can increase transparency
by exposing more reliable carbon metrics, carbon proxies, and em-
bodied carbon data [2, 33, 56, 74]. At the same time, providing
fine-grained, real-time carbon emission logs for cloud services can
significantly enhance cloud carbon transparency, enabling develop-
ers to make informed decisions about workload rightsizing, shifting,
and optimization based on carbon emissions. This approach allows
providers to factor in emissions from internal system components
(e.g., for container keep-alive [62] and distributed caches [57]).

The need for dynamic and flexible resource allocation. Prior
work has identified the cost and resource inefficiencies of fixed
resource allocation in serverless [24, 75]. We go beyond that, quan-
tifying how the status quo leads to significant missed opportu-
nities for emission reduction. Firstly, static resource allocation is
carbon-inefficient, especially for input-sensitive applications where
configurations should accommodate peak resource demands [55].
Over-allocation of resources incurs emissions with no gains on
performance (Figure 4). Secondly, proportional CPU-memory al-
location simplifies scheduling but causes unnecessary emissions
unless a function perfectly matches the assigned resource ratio.

Better network energy models. In this study, we faced the lack
of effective methods to model the energy consumption of data trans-
fer. This limitation has been brought up by prior work too; e.g., Lyu
et al. cite “no public data on NICs" [51]. However, the impact can be
more substantial in serverless settings, where typical data transfer
amounts combined with very short execution times [44, 63] result
in a high data-to-compute ratio. Even with the lower than typical
transfer energy of 0.001 kWh/GB (§2.2.3), the share of network in
operational carbon exceeded 50% for network-bound benchmarks
(Figure 2). There is a pressing need for research to develop advanced
network energy models and comprehensive profiling methodolo-
gies to collect relevant system-level information.

5 Related Work

Modeling carbon emissions of serverless systems. While there
has been a large body of work to model carbon emissions of cloud
systems [19, 33, 41, 67], there are only a limited number of works
focused on building specialized carbon models for serverless sys-
tems [26, 50, 58, 64, 65]. Sharma [64] measured the energy footprint
of a specific serverless function using the laptop battery interface.
Chadha et al. [26] leveraged software carbon intensity (SCI) spec-
ification [12], assuming 50% CPU utilization, to model serverless
function emissions in terms of CPU and memory. We use a differ-
ent carbon model that accounts for varying resource usage and
emissions from storage and network. Lin et al. [50] proposed a
per-request carbon model for serverless functions. We adopted a
similar embodied carbon model but employed a different opera-
tional carbon model with alternate power models (linear utilization
and network energy) since dynamic power metering is not feasi-
ble on AWS Lambda. Sharma and Fuerst [65] developed a more
advanced energy consumption quantification method by applying
statistical disaggregation and fair attribution among functions in
a multi-tenant environment. However, this methodology is not
externally applicable due to the unknown mix of co-tenants to

Estimating the Carbon Footprint of Serverless Functions on a Public Cloud Platform

developers. Basu Roy et al. [58] collected energy consumption es-
timates by reading MSR registers via the RAPL interface on a c5
bare-metal EC2 instance, enabling them to profile the energy us-
age of functions in cloud environments—a technique that is not
applicable to managed serverless platforms like AWS Lambda.

External characterization of emissions of computing sys-
tems. Despite limited access to cloud infrastructure internals, exter-
nally characterizing carbon emissions is a crucial first step toward
optimizing resource usage, identifying new research opportunities,
and promoting sustainability for practitioners. Other researchers
have estimated the carbon footprint of computing systems. A num-
ber of studies target carbon characterization of Al infrastructure in
the cloud [25, 32, 59]. Li et al. [47] have conducted a comprehensive
analysis of the carbon footprint of high performance computing
(HPC) systems. This work is similar in nature but focuses on server-
less functions in a public platform.

Broader efforts by the community to improve the sustain-
ability of cloud systems. The climate urgency along with the
sudden increase in emissions of cloud data centers have fueled
many research endeavors in this space over the past few years.
On the provider side, the community has investigated avenues
such as carbon-aware scheduling [26, 40, 43], auto-scaling [39],
load balancing [60], incentive design [36], edge offloading [46],
resource pooling [38], and even hardware design [73]. From the
developer side, there is middleware that allows developers can use
for workload shifting [37] to reduce emissions without support
from providers. There are also specialized tools and libraries they
can use for energy and carbon estimation, such as Kepler [16]. Our
characterization work is orthogonal to these efforts, aiming to pro-
vide insights for practitioners and motivate them to consider the
role of configuration in the sustainability of serverless workloads.

6 Conclusions

We characterize the carbon footprint of serverless workloads with
various inputs and configurations running on a widely adopted
cloud computing platform, AWS Lambda, across different regions
and hardware. In doing so, we use already-available telemetry and
publicly available information. Our characterization results shed
light on the overall alignment of cost and carbon, but highlight
the need for developers to optimize configurations of serverless
functions. In the future, effective dynamic resource management
can remove this burden. Additionally, there is a need for more
research on fine-grained real-time carbon emission reporting and
modeling the carbon emissions of networks.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback.
This work was supported in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC), through research
grants RGPIN-2021-03714 and DGECR-2021-00462, and a Canada
Graduate Scholarship (CGS D). Resources allocated to us by the
Digital Research Alliance of Canada facilitated this work.

References

[1] 2015. Intel(R) Xeon(R) Processor E5-1600, E5-2600, and E5-4600 v3 Product Fami-
lies, Volume 1 of 2, Electrical Datasheet. https://www.intel.com/content/dam/

18

=

[12

[13

(14

[15

=
&

(17

[18

(19]

[20

)
=

[22

[23

[24]

[25]

[26

[27

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-1.pdf. Ac-
cessed: Feb 06 2025.

2021. Carbon proxies: Measuring the greenness of your application - Sustainable
Software. https://devblogs.microsoft.com/sustainable-software/carbon-proxies-
measuring- the-greenness-of-your-application/. Accessed: Feb 06 2025.

2022. Microsoft 2022 Environmental Sustainability Report. https://query.prod.
cms.rt.microsoft.com/cms/api/am/binary/RW14s]N. Accessed: Feb 06 2025.
2023. AWS Lambda: Resilience under-the-hood | AWS Compute Blog. https://aws.
amazon.com/blogs/compute/aws-lambda-resilience-under-the-hood/. Accessed:
Feb 06 2025.

2025. Amazon EC2 instance type specifications - Amazon EC2. https://docs.aws.
amazon.com/ec2/latest/instancetypes/ec2-instance-type-specifications.html. Ac-
cessed: Feb 06 2025.

2025. The Cloud - Amazon Sustainability. https://sustainability.aboutamazon.
com/products-services/the-cloud. Accessed: Feb 06 2025.

2025. Configure Lambda function memory - AWS Lambda. https://docs.aws.
amazon.com/lambda/latest/dg/configuration-memory.html. Accessed: Feb 06
2025.

2025. Datavizta. https://dataviz.boavizta.org/serversimpact. Accessed: Feb 06
2025.

2025. GHG Protocol. https://ghgprotocol.org/. Accessed: Feb 06 2025.

2025. Intel(R) Xeon(R) Processor E5 v3 Family. https://ark.intel.com/
content/www/us/en/ark/products/series/78583/intel-xeon-processor-e5-v3-
family.html. Accessed: Feb 06 2025.

2025. Metrics collected by Lambda Insights - Amazon CloudWatch.
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-
Insights-metrics.html. Accessed: Feb 06 2025.

2025. Software Carbon Intensity (SCI) Specification. https://sci.greensoftware.
foundation/. Accessed: Feb 06 2025.

2025. Specifications for Amazon EC2 general purpose instances - Amazon EC2.
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html. Accessed: Feb
06 2025.

2025. Specifications for Amazon EC2 previous generation instances - Amazon
EC2. https://docs.aws.amazon.com/ec2/latest/instancetypes/pg.html. Accessed:
Feb 06 2025.

Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Aditya Sundarrajan, Kiwan Maeng,
Manoj Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon De-
pendencies in Datacenter Design and Management. SIGENERGY Energy Inform.
Rev. 3, 3 (Oct. 2023), 21-26.

Marcelo Amaral, Huamin Chen, Tatsuhiro Chiba, Rina Nakazawa, Sunyanan
Choochotkaew, Eun Kyung Lee, and Tamar Eilam. 2023. Kepler: A framework
to calculate the energy consumption of containerized applications. In 2023 IEEE
16th International Conference on Cloud Computing (CLOUD). IEEE, 69-71.
Amazon Web Services. 2023. AWS Lambda - Pricing. https://aws.amazon.com/
lambda/pricing/ Accessed: Feb 06 2025.

Amazon Web Services. 2023. Four Trends Driving Global Utility Digitiza-
tion. https://aws.amazon.com/blogs/industries/four-trends-driving- global-
utility-digitization/ Accessed: Feb 06 2025.

Rohan Arora, Umamaheswari Devi, Tamar Eilam, Aanchal Goyal, Chandra
Narayanaswami, and Pritish Parida. 2023. Towards carbon footprint management
in hybrid multicloud. In Proceedings of the 2nd Workshop on Sustainable Computer
Systems. 1-7.

Joshua Aslan, Kieren Mayers, Jonathan G Koomey, and Chris France. 2018. Elec-
tricity intensity of internet data transmission: Untangling the estimates. Journal
of industrial ecology 22, 4 (2018), 785-798.

AWS. 2023. S3 image resizer (Java). Retrieved 2025-02-07 from https://github.
com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
Seth Ayers, Sara Ballan, Vanessa Gray, and Rosie McDonald. 2023. Measuring
the Emissions and Energy Footprint of the ICT Sector: Implications for Climate
Action. (2023).

Jonathan Barnsley, Jhénelle A Williams, Simon Chin-Yee, Anthony Costello, Mark
Maslin, Jacqueline McGlade, Richard Taylor, Matthew Winning, and Priti Parikh.
2023. Location location location: a carbon footprint calculator for transparent
travel to the UN Climate Conference 2022. UCL Open Environment 5 (2023).
Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Rodrigues. 2023.
With Great Freedom Comes Great Opportunity: Rethinking Resource Allocation
for Serverless Functions. In Proceedings of the Eighteenth European Conference on
Computer Systems (Rome, Italy) (EuroSys "23). ACM, 381-397.

Lucia Bouza, Aurélie Bugeau, and Loic Lannelongue. 2023. How to estimate
carbon footprint when training deep learning models? A guide and review. Envi-
ronmental Research Communications 5, 11 (2023), 115014.

Mohak Chadha, Thandayuthapani Subramanian, Eishi Arima, Michael Gerndt,
Martin Schulz, and Osama Abboud. 2023. GreenCourier: Carbon-Aware Schedul-
ing for Serverless Functions. In Proceedings of the 9th International Workshop on
Serverless Computing. 18-23.

Google Cloud. 2025. Viewing Carbon Footprint Data. https://cloud.google.com/
carbon-footprint/docs/view-carbon-data Accessed: Feb 06 2025.

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-1.pdf
https://devblogs.microsoft.com/sustainable-software/carbon-proxies-measuring-the-greenness-of-your-application/
https://devblogs.microsoft.com/sustainable-software/carbon-proxies-measuring-the-greenness-of-your-application/
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RW14sJN
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RW14sJN
https://aws.amazon.com/blogs/compute/aws-lambda-resilience-under-the-hood/
https://aws.amazon.com/blogs/compute/aws-lambda-resilience-under-the-hood/
https://docs.aws.amazon.com/ec2/latest/instancetypes/ec2-instance-type-specifications.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/ec2-instance-type-specifications.html
https://sustainability.aboutamazon.com/products-services/the-cloud
https://sustainability.aboutamazon.com/products-services/the-cloud
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://dataviz.boavizta.org/serversimpact
https://ghgprotocol.org/
https://ark.intel.com/content/www/us/en/ark/products/series/78583/intel-xeon-processor-e5-v3-family.html
https://ark.intel.com/content/www/us/en/ark/products/series/78583/intel-xeon-processor-e5-v3-family.html
https://ark.intel.com/content/www/us/en/ark/products/series/78583/intel-xeon-processor-e5-v3-family.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights-metrics.html
https://sci.greensoftware.foundation/
https://sci.greensoftware.foundation/
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/pg.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/blogs/industries/four-trends-driving-global-utility-digitization/
https://aws.amazon.com/blogs/industries/four-trends-driving-global-utility-digitization/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://cloud.google.com/carbon-footprint/docs/view-carbon-data
https://cloud.google.com/carbon-footprint/docs/view-carbon-data

SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

[28]

[29

[30

[31

o
A

[33

[34]

[35

[36

[37

[38]

[39]

N
)

[41

[42]

[43

[44

[45

[46]

[47

[48

[49]

IBM Cloud. 2025. IBM Cloud Carbon Calculator Methodology (Version 3). https://
cloud.ibm.com/media/docs/downloads/account/carbon-calc-method-v3.pdf Ac-
cessed: Feb 06 2025.

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In Proceedings of the 22nd International Middleware Conference
(Middleware °21). ACM, 64-78.
Datadog. 2024. State of Serverless.
serverless/. Accessed: Feb 06 2025.
Miyuru Dayarathna, Yonggang Wen, and Rui Fan. 2015. Data center energy
consumption modeling: a survey. IEEE Communications Surveys & Tutorials 18, 1
(2015), 732-794.

Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy
Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A. Smith, Nicole
DeCario, and Will Buchanan. 2022. Measuring the Carbon Intensity of Al in
Cloud Instances. In Proceedings of the 2022 ACM Conference on Fairness, Account-
ability, and Transparency (Seoul, Republic of Korea) (FAccT '22). ACM, 1877-1894.
Tamar Eilam. 2021. Towards transparent and trustworthy cloud carbon account-
ing. In Proceedings of the 22nd International Middleware Conference: Extended
Abstracts. 1-5.

Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas Herbst,
and Samuel Kounev. 2021. Sizeless: predicting the optimal size of serverless
functions. In Proceedings of the 22nd International Middleware Conference (Québec
city, Canada) (Middleware °21). ACM, 248-259.

Teads Engineering. 2020. Estimating AWS EC2 Instances’ Power Consump-
tion. https://medium.com/teads-engineering/estimating-aws-ec2-instances-
power-consumption-c9745e347959 Accessed: Feb 06 2025.

Anshul Gandhi, Dongyoon Lee, Zhenhua Liu, Shuai Mu, Erez Zadok, Kanad
Ghose, Kartik Gopalan, Yu David Liu, Syed Rafiul Hussain, and Patrick Mcdaniel.
2023. Metrics for sustainability in data centers. ACM SIGENERGY Energy Infor-
matics Review 3, 3 (2023), 40-46.

Viktor Urban Gsteiger, Pin Hong (Daniel) Long, Yiran (Jerry) Sun, Parshan
Javanrood, and Mohammad Shahrad. 2024. Caribou: Fine-Grained Geospatial
Shifting of Serverless Applications for Sustainability (SOSP °24). ACM, 403-420.
Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. 2022.
Clio: A hardware-software co-designed disaggregated memory system. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 417-433.

Walid A Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and Prashant Shenoy.
2024. CarbonScaler: leveraging cloud workload elasticity for optimizing carbon-
efficiency. ACM SIGMETRICS Performance Evaluation Review 52, 1 (2024), 49-50.
Walid A Hanafy, Qianlin Liang, Noman Bashir, Abel Souza, David Irwin, and
Prashant Shenoy. 2024. Going Green for Less Green: Optimizing the Cost of
Reducing Cloud Carbon Emissions. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3. 479-496.

Hongyu He, Michal Friedman, and Theodoros Rekatsinas. 2023. EnergAt: Fine-
Grained Energy Attribution for Multi-Tenancy. In Proceedings of the 2nd Workshop
on Sustainable Computer Systems. 1-8.

Daniel Ireson. 2021. Formplug. Retrieved 2025-02-07 from https://github.com/
danielireson/formplug/

Yankai Jiang, Rohan Basu Roy, Baolin Li, and Devesh Tiwari. 2024. EcoLife:
Carbon-Aware Serverless Function Scheduling for Sustainable Computing. In
SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis. 1-15.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,
Jianfeng Wang, and Adam Barker. 2023. How Does It Function? Characterizing
Long-term Trends in Production Serverless Workloads. In Proceedings of the 2023
ACM Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23). ACM,
443-458.

Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). IEEE, 502-504.

Dragi Kimovski, Roland Matha, Josef Hammer, Narges Mehran, Hermann Hell-
wagner, and Radu Prodan. 2021. Cloud, fog, or edge: Where to compute? IEEE
Internet Computing 25, 4 (2021), 30-36.

Baolin Li, Rohan Basu Roy, Daniel Wang, Siddharth Samsi, Vijay Gadepally, and
Devesh Tiwari. 2023. Toward Sustainable HPC: Carbon Footprint Estimation and
Environmental Implications of HPC Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, CO, USA) (SC "23). ACM, Article 19, 15 pages.

Shuwen Liang, Zhi Qiao, Jacob Hochstetler, Song Huang, Song Fu, Weisong
Shi, Devesh Tiwari, Hsing-Bung Chen, Bradley Settlemyer, and David Montoya.
2018. Reliability Characterization of Solid State Drives in a Scalable Production
Datacenter. In 2018 IEEE International Conference on Big Data (Big Data). 3341—
3349. https://doi.org/10.1109/BigData.2018.8622643

Changyuan Lin, Nima Mahmoudi, Caixiang Fan, and Hamzeh Khazaei. 2023. Fine-
Grained Performance and Cost Modeling and Optimization for FaaS Applications.

https://www.datadoghq.com/state-of-

19

[50]

[51

[52

o
=

[54

[55

(56

[57

[58

[59

[60

[61

[62

[63

=
=)

(65

[66

[67

[68]

[69

[70

71

[72

=
&

Hanan Awwad, Changyuan Lin, Rabab Ward, Mohammad Shahrad

IEEE Transactions on Parallel and Distributed Systems 34, 1 (2023), 180-194.
Changyuan Lin and Mohammad Shahrad. 2024. Bridging the Sustainability Gap
in Serverless through Observability and Carbon-Aware Pricing. In Proceedings of
the 3rd Workshop on Sustainable Computer Systems.

Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang, Celine Irvene, Esha Choukse,
Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhamiaka, and Daniel S Berger.
2023. Myths and misconceptions around reducing carbon embedded in cloud
platforms. In Proceedings of the 2nd Workshop on Sustainable Computer Systems.
Jens Malmodin, Nina Lovehagen, Pernilla Bergmark, and Dag Lundén. 2024. ICT
sector electricity consumption and greenhouse gas emissions — 2020 outcome.
Telecommunications Policy 48, 3 (2024), 102701. https://www.sciencedirect.com/
science/article/pii/S0308596123002124

Electricity Maps. 2024. Electricity Maps Datasets. https://portal.electricitymaps.
com/datasets Accessed: Feb 06 2025.

Microsoft. 2025. Azure Functions Pricing. Microsoft Azure. https://azure.
microsoft.com/en-us/pricing/details/functions/#overview Accessed: Mar 03 2025.
Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and Mohammad
Shahrad. 2023. Parrotfish: Parametric regression for optimizing serverless func-
tions. In Proceedings of the 2023 ACM Symposium on Cloud Computing. 177-192.
Pratyush Patel, Theo Gregersen, and Thomas Anderson. 2023. An agile pathway
towards carbon-aware clouds. In Proceedings of the 2nd Workshop on Sustainable
Computer Systems. 1-8.

Francisco Romero, Gohar Irfan Chaudhry, iﬁigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). ACM, 122-137.

Rohan Basu Roy, Raghavendra Kanakagiri, Yankai Jiang, and Devesh Tiwari. 2024.
The Hidden Carbon Footprint of Serverless Computing. In Proceedings of the 2024
ACM Symposium on Cloud Computing (Redmond, WA, USA) (SoCC °24). ACM,
570-579.

Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, and Mehdi Bennis. 2023. An
Energy and Carbon Footprint Analysis of Distributed and Federated Learning.
IEEE Transactions on Green Communications and Networking 7, 1 (2023), 248-264.
Jayden Serenari, Sreekanth Sreekumar, Kaiwen Zhao, Saurabh Sarkar, and
Stephen Lee. 2024. GreenWhisk: Emission-Aware Computing for Serverless
Platform. In 2024 IEEE International Conference on Cloud Engineering (IC2E). IEEE,
44-54.

Amazon Web Services. 2025. Customer Carbon Footprint Tool Overview.
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/what-is-
ccft.html#ccft-gettingstarted Accessed Feb 06 2025.

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
implications of function-as-a-service computing. In Proceedings of the 52nd annual
IEEE/ACM international symposium on microarchitecture. 1063-1075.
Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205-218.

Prateek Sharma. 2023. Challenges and opportunities in sustainable serverless
computing. ACM SIGENERGY Energy Informatics Review 3, 3 (2023), 53-58.
Prateek Sharma and Alexander Fuerst. 2024. Accountable Carbon Footprints
and Energy Profiling For Serverless Functions. In Proceedings of the 2024 ACM
Symposium on Cloud Computing (Redmond, WA, USA) (SoCC °24). ACM, 522-541.
Emanuele Simili, Gordon Stewart, Samuel Skipsey, Dwayne Spiteri, and David
Britton. 2023. Power Efficiency in HEP (x86 vs. ARM). Power (W) 350, 400 (2023),
450.

Thibault Simon, David Ekchajzer, Adrien Berthelot, Eric Fourboul, Samuel Rince,
and Romain Rouvoy. 2024. BoaviztAPI: a bottom-up model to assess the environ-
mental impacts of cloud services. In HotCarbon’24.

Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David
Irwin, and Prashant Shenoy. 2023. Ecovisor: A Virtual Energy System for Carbon-
Efficient Applications. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). ACM, 252-265.

Swamit Tannu and Prashant J Nair. 2023. The dirty secret of SSDs: Embodied
carbon. ACM SIGENERGY Energy Informatics Review 3, 3 (2023), 4-9.
Thoughtworks. 2023. Cloud Carbon Footprint Methodology. https://www.
cloudcarbonfootprint.org/docs/methodology. Accessed: Feb 06 2025.

Erica Tomes and Nihat Altiparmak. 2017. A comparative study of HDD and
SSD RAIDs’ impact on server energy consumption. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 625-626.

B. M. Tudor and Y. M. Teo. 2013. On understanding the energy consumption of
ARM-based multicore servers. SIGMETRICS Performance Evaluation Review 41, 1
(Jun 2013), 267-278.

Jaylen Wang, Daniel S. Berger, Fiodar Kazhamiaka, Celine Irvene, Chaojie Zhang,
Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier, Chetan Bansal,

https://cloud.ibm.com/media/docs/downloads/account/carbon-calc-method-v3.pdf
https://cloud.ibm.com/media/docs/downloads/account/carbon-calc-method-v3.pdf
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://medium.com/teads-engineering/estimating-aws-ec2-instances-power-consumption-c9745e347959
https://medium.com/teads-engineering/estimating-aws-ec2-instances-power-consumption-c9745e347959
https://github.com/danielireson/formplug/
https://github.com/danielireson/formplug/
https://doi.org/10.1109/BigData.2018.8622643
https://www.sciencedirect.com/science/article/pii/S0308596123002124
https://www.sciencedirect.com/science/article/pii/S0308596123002124
https://portal.electricitymaps.com/datasets
https://portal.electricitymaps.com/datasets
https://azure.microsoft.com/en-us/pricing/details/functions/#overview
https://azure.microsoft.com/en-us/pricing/details/functions/#overview
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/what-is-ccft.html#ccft-gettingstarted
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/what-is-ccft.html#ccft-gettingstarted
https://www.cloudcarbonfootprint.org/docs/methodology
https://www.cloudcarbonfootprint.org/docs/methodology

Estimating the Carbon Footprint of Serverless Functions on a Public Cloud Platform SESAME’ 25, March 30-April 3 2025, Rotterdam, Netherlands

Jonathan Stern, Ricardo Bianchini, and Akshitha Sriraman. 2024. Designing Web Conference 2022 (Virtual Event, Lyon, France) (WWW 22). ACM, 1741-1751.
Cloud Servers for Lower Carbon. In 2024 ACM/IEEE 51st Annual International [76] Zhi Zhou, Fangming Liu, Ruolan Zou, Jiangchuan Liu, Hong Xu, and Hai Jin.
Symposium on Computer Architecture (ISCA). 452-470. 2016. Carbon-Aware Online Control of Geo-Distributed Cloud Services. IEEE

[74] Jaylen Wang, Udit Gupta, and Akshitha Sriraman. 2023. Peeling back the carbon Transactions on Parallel and Distributed Systems 27, 9 (2016), 2506—-2519.
curtain: Carbon optimization challenges in cloud computing. In Proceedings of [77] Xinhui Zhu, Weixiang Jiang, Fangming Liu, Qixia Zhang, Li Pan, Qiong Chen,
the 2nd Workshop on Sustainable Computer Systems. 1-7. and Ziyang Jia. 2020. Heat to Power: Thermal Energy Harvesting and Recycling

[75] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Accelerating for Warm Water-Cooled Datacenters. In 2020 ACM/IEEE 47th Annual International
Serverless Computing by Harvesting Idle Resources. In Proceedings of the ACM Symposium on Computer Architecture (ISCA). 405-418.

20

	Abstract
	1 Introduction
	2 Carbon Model
	2.1 Basics
	2.2 Modeling Operational Carbon
	2.3 Modeling Embodied Carbon

	3 Characterization Results
	3.1 Methodology
	3.2 Carbon Attribution
	3.3 Carbon vs. Classic Metrics
	3.4 Sources of Variance

	4 Challenges and Avenues for Future Research
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

