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Abstract

The serverless model decouples computation from infrastructure.
This results in flexibility for running serverless functions on hetero-
geneous hardware, such as emerging x86/ARM ISA-heterogeneous
clusters. We present a method for scheduling serverless workloads
across ISA-heterogeneity boundaries to reduce energy usage. Our
method combines the offline profiling of functions for energy use
and performance, the construction of performance/energy affin-
ity models, and an energy-aware scheduler. Our evaluation with
servers equipped with Xeon x86 and Ampere Altra Max ARM pro-
cessors and 22 serverless functions shows that energy usage can be
reduced by up to 15.2%.
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1 Introduction

Serverless computing is a recent computing paradigm that allows
code execution to be decoupled from the underlying infrastructure.
This deployment model, also known as Function as a Service (FaaS),
has gained popularity over the last years due to its simplicity in
deployment and management and its cost-effectiveness, with a pay-
per-use billing scheme for customers. Many applications are suited
for the serverless model, including web and mobile application
backends, data processing, or event-driven workflows [12, 24].
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At the same time, data centers hosting serverless workloads are
becoming increasingly heterogeneous. Among all sources of het-
erogeneity, the Instruction Set Architecture (ISA)-heterogeneity is
of particular interest. ARM CPUs, with their promises of better en-
ergy efficiency and performance, now complement traditional x86
CPUs. For instance, AWS Lambda functions can now be deployed
on ARM Graviton2 processors [2] and, more recently, Google Cloud
introduced their new Axion ARM-based CPUs [26].

The decoupling of computation and execution infrastructure, as
well as the statelessness of functions enforced by the serverless
model, gives cloud operators ample flexibility for consolidation [15],
scale-out, or cross-site migrations [18]. This flexibility also allows
for deploying workloads in heterogeneous environments. Server-
less functions can be compiled for (or interpreted on) different
CPU architectures, allowing the scheduling of serverless workloads
across ISA-heterogeneity boundaries.

We wish to evaluate whether informed scheduling of serverless
functions in a heterogeneous cluster can improve infrastructure
efficiency, particularly in the energy necessary to support a target
workload. Serverless functions typically have different characteris-
tics and responses to heterogeneous resources, e.g., they could be
computation-, memory-, or I/O-dominated [12]. We need precise
models of each function’s performance and energy consumption.
We build such models using offline function profiling, accounting
for the impact of consolidating different functions on the same
server and sharing resources. We use these models in a scheduler,
allocating CPU cores to functions to match a desired throughput
while minimizing the expected energy consumption.

Our study is driven by experimental validation on hardware
representative of a modern, ISA-heterogeneous data center: a cluster
of two medium-end servers. The first is a dual-socket server with
two 24-core (48 threads) Intel Xeon Gold 5318Y CPUs (i.e., 48 cores
or 96 threads), a base frequency of 2.1GHz, and a max frequency
of 3.4GHz. Both Intel CPUs have a Thermal Design Power (TDP)
of 175W, for a total of 350W. The second server features a single
128-core Ampere Altra Max ARM processor [6], with frequencies
ranging from 1 to 3GHz and a TDP of 250W. Both servers have
similar equipment besides CPUs: 256GB of RAM, a Connect-X5
NIC, a single M2 SSD, and no GPU. A connected power distribution
unit (PDU) measures servers’ global electricity consumption. For
conciseness, we will refer to the two servers as x86 and ARM for
the rest of this paper.

Contributions and outline. Our method combines three steps,
illustrated by the workflow in Figure 1. We first describe how we
can isolate the energy consumption of individual functions on
servers (§2). We leverage the PowerAPI toolchain [11]. PowerAPI
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Figure 1: Overview of our method.

Energy and Performance Affinity
Modeling (§3)

only supported x86 CPUs, so we implemented the Ampere Altra
Max ARM CPU support.

Then, we detail how we use these individual energy measure-
ments with performance observations to build models that charac-
terize each function’s affinity towards the different machines (§3).
Our approach uses offline profiling with different mixes of func-
tions. We consider a highly-consolidated context where multiple
functions are deployed on the same hardware. In this context, tak-
ing the impact of function colocation is crucial for building accurate
models.

Finally, we present a scheduling policy building upon affinity
models to decide on a resource allocation that can support a target
throughput for each function (§4). We implement this policy as a
Constraint Programming model.

We evaluate our approach with a representative set of 22 server-
less functions (§5), including classical serverless benchmarks and
new workloads representative of modern application backends in
the cloud. While most functions perform better and are more en-
ergy efficient on ARM than on x86, the extent of this difference
varies significantly across functions. In a consolidated setting where
both servers are necessary to achieve the desired throughput for
each function in a workload, our results show that energy-aware
scheduling can reduce the necessary energy by as much as 15.2%.

We terminate this paper by positioning to related work (§6) and
discussing suggestions for future research (§7).

2 Energy and Performance Measurements

Our first step is to measure the performance and individual power
consumption of functions running in a consolidated environment
(i.e., with functions co-located on the same server). Throughput is
the number of executions a function performs sequentially during
an observation. In what follows, we focus on the more delicate case
of energy measurement.

The PDU reports per-server electricity consumption. Intel’s Run-
ning Average Power Limit (RAPL) interface provides information
about the consumption of an entire processor. Both metrics are too
coarse-grained for our purpose: We need to measure the consump-
tion of individual functions when many run on the same server or
CPU. Note that, in this work, we run functions as processes, but
the same reasoning applies when running them as containers.
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Process-level energy monitoring is challenging, as it requires
the aggregation from multiple hardware sensors that are ISA and
vendor-specific [11, 13], and processes are an OS-level abstraction
to which sensors such as RAPL are oblivious. Systems such as Ke-
pler [1] or PowerAPI [11] solve these issues with pre-trained power
models that allow splitting global energy consumption amongst
supported processes.

We selected PowerAPI [11] for its maturity and ease of use. We
extended it to support the Ampere Altra Max processor.

PowerAPI uses two components for energy estimation. The sen-
sor collects a variety of performance counters. The formula aggre-
gates these counters to build self-calibrating power models and
estimate per-process energy consumption. The formula trains one
model per frequency level and selects one at runtime, depending
on the current average frequency of the CPU cores.! Each power
model is an Elastic Net regression, i.e., a regular linear regression
with combined L1 and L2 priors as regularizers. The features used
to train the model are the CPU consumption and multiple hardware
performance counters, such as the number of CPU cycles and cache
misses. Based on these per-process hardware performance counters,
the model infers the share of global CPU energy that each process
consumes.

PowerAPI obtains the CPU-level energy consumption from RAPL
on an Intel CPU, and we added support for the SMpro interface of
the Ampere Altra Max CPU, which exposes the same metrics [7].
We experimentally selected the Ampere-specific hardware perfor-
mance counters that were the most correlated with CPU power
consumption when running multiple instances of the same process.
We selected the number of CPU cycles spent executing the process,
the number of retired instructions, and the number of stalled cycles
as metrics.

3 Energy and Performance Affinity Models

Our next step is to determine, for a workload composed of multiple
functions, the performance and energy consumption expected from
each function when running on different ISAs. The result is two
matrices, E and W, each containing m X n elements, where m is
the number of servers and n is the number of functions. E;; is the
performance of function j on server i, i.e., how many sequential
executions of the functions a single core of processor i can support.
Wi; is the energy efficiency of function j on server i, expressed in
watt-hours per execution.

A straightforward approach to compute E and W is to run every
function sequentially and in isolation on each server, using one or
many cores, and record the number of execution and consumption
levels using PowerAPI. Unfortunately, this approach is ineffective
in a consolidated context. These metrics vary significantly based
on the colocated other functions on our target multi-core CPUs.
This is due to concurrent access to shared system resources (i.e.,
memory bandwidth, file system access, etc.). This observation is
consistent with previous work [27].

Running every possible combination of functions on each server
to capture all colocation impacts is impractical. Our offline profiling

The PowerAPI sensor collects the cores’ frequency by reading two Model-Specific
Registers (MSRs) available on recent x86 processors. The Linux CPPC driver [9] exposes
a set of Ampere Altra Max CPU registers that provide this information.
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Figure 2: Example of a scheduling decision.

uses a middle-ground strategy that proved effective in practice.
We select random groups of functions (eight in our configuration),
equally split the CPU cores on the machine between them (i.e., 16
cores per function on the ARM machine, 12 on the x86 machine),
and collect each function’s performance and energy consumption.
We repeat the process for 20 random groups, ensuring that each
function is represented in at least two groups. The value used for
E;j and Wj; is the average of the measurements on server i for
function j, in groups where it was represented.

4 Scheduling

Our final step is to use the affinity matrices E and W to schedule
functions over the two heterogeneous servers and attempt to reduce
energy consumption compared to non-energy-aware baselines. Our
scheduler receives as input the throughput requirements for a set
of functions as a vector R, where R; is the minimum necessary
throughput for function i (e.g., 4,000 requests per second). Its output
is an allocation of cores to functions across the two machines.
Figure 2 exemplifies the scheduling process.

We aim to determine if energy-aware scheduling has saving po-
tential under the following assumptions. First, we focus on the case
where no single server is sufficient to support the workload require-
ments R (otherwise, the best strategy is always to fill one server
and shut down the other). Second, each function is assigned to a
number of cores on a single server. Cores are not shared between
functions, and functions are not deployed across the two servers.
Finally, we consider fixed assignments and do not implement func-
tion migration across hosts during the execution. While some of
these constraints would need to be relaxed for production-ready,
energy-aware schedulers, they allow for keeping the model simple
and do not impair our conclusions.

We model the scheduling problem as a Constraint Programming
(CP) model. A CP model defines variables (input and decision), con-
straints, and an objective function. Our scheduling model features
five variables. E, W, and R are input variables. The first decision
variable, D, is a boolean matrix of size m X n indicating whether a
function is assigned to a server. D;; is true if function j is assigned
to server i. The second decision variable, A, is a vector representing
the number of cores A; allocated to function i on its server.

Constraints allow defining what schedules are valid. First, each
function is assigned to exactly one server:

D (Dyj)=1 Vje[1n] 1)
i=1
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Then, we need to ensure that the capacity of each server is not
exceeded:

n
Ciz ) (Dij-4) Vie[1m] @)
J=1

where C; is the total number of cores of server i. Finally, we assign

cores to functions as follows:
Rj

Aj = ’Vi (D,'j . E)-‘ Vje [l,n]

i=1

®)

The ceiling in the constraint ensures that each function receives an
integer number of cores.

The final element of the model is the objective function that the
solver will attempt to minimize. We define an objective function Og,
or energy-aware-EA, that sums the total projected energy across

all functions:
m n
Op s ) (D (D Wiy - Ry)
=1 j=1
For comparison purposes, we also use an energy-oblivious func-
tion (cores-aware—CA) that only counts the number of allocated
cores and disregards the content of W:

Oc :i(i(DU 4)))

Jj=

©)

©)

This objective is interesting as a baseline that would maximize
consolidation and may use fewer cores.

We define our variables, constraints, and objective functions
using MiniZinc [19], a solver-independent constraint modeling
language. We use the Gecode [23] solver to produce schedules.
Using the model as-is with simple search strategies is sufficient to
solve small instances (i.e., a few dozen functions and a few servers).
However, the complexity of the problem grows exponentially with
the number of functions and servers. Larger instances call for better
search strategies and heuristics, which we leave to future work.

5 Evaluation

Our evaluation is in three parts. We first validate the power mea-
surements using PowerAPI for the ARM server (§5.1) Then, we
detail our target workload of 22 serverless functions and the re-
sults of offline performance and energy affinity modeling (§5.2).
Finally, we evaluate the ability of our scheduler to reduce energy
in a highly-consolidated environment and compare it to standard
scheduling strategies (§5.3).

5.1 Energy and Performance Measurements

The PowerAPI formula is self-calibrating. It (re)trains the multi-
ple power models when the power consumption estimation error
exceeds a defined threshold. The formula computes the error by
comparing the model’s prediction (at the CPU level) to the values
the CPU power sensors expose. We validate the accuracy of the
process-level estimations from the PowerAPI’s model on the ARM
server using stress-ng. We generate load levels using 0% to 100%
of the cores of the CPU in increments of 10% every 3 minutes.
Figure 3 shows the power estimation and error level. We first
observe that higher loads lead to lower estimation errors. The mea-
sures correspond to the expected TDP (250W) at 100% load. With
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Figure 3: Process-level power estimation on the ARM server.

Function Runtimes Description
Category 1: Crypto
» C++, Compute anonymous credentials for
1-2 ElPasso ‘WebAssembly single-sign-on [28].
Python, ) .
3-5 JWT Node.js, Java Create and sign JWT token.
Category 2: Media
6-8 Thumbnail Python, Resize a base64-encoded image.
Node.js, Java
9-10  VideotoGIF  Lyom Transcode a video to a GIF using ff
i Node.js ranscode a video to a using ffmpeg.
1 Img Rec. Python Object recognition in an image using the AlexNet

model of Torchvision.
Category 3: Scientific

Compute dot product of two random 30x30 matrices

12 Matrix NumPy Python

with NumPy.
13-15  Matrix native Pyt.hon, Compute dot produ.ct of two random 30x30 matrices
Node.js, Java using native code.
16 PageRank Python Compute pagerank ona ;00-vertex, 250-edge graph
using igraph.
Category 4: Web
17-19 HTML Python,  Fill HTML template using jinja2 (Python), Mustache
Node.js, Java (Node.JS), or FreeMaker (Java).
. Python, . . . .
20-22 Zip Compress 3 files into a single zip archive.

Node.js, Java

Table 1: Workload of 22 serverless functions (10 functions,
each for 1 to 3 different languages and runtimes).

only 10% initial load (~12.8 cores), the consumption is around 50W.
The estimation error spikes after a change in load but reduces over
time. This results from the self-calibration of the PowerAPI models,
which adjust the model over time to correct prediction errors. We
account for these two observations in the profiling phase by run-
ning and monitoring functions under high load and for a sufficient
duration, i.e., three minutes of observations following a one-minute
warm-up.

5.2 Energy and Performance Affinity Models

We now evaluate the offline affinity modeling process. We use the
22-function workload detailed in Table 1. This represents the vari-
ety of functions supported by serverless platforms. Seven triplets of
functions (all but #11, #12, and #16) are different implementations
of the same task using three different programming languages and
runtimes. The numbering of these functions follows the order of
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Figure 4: Relative energy (top) and performance (bottom)
affinity profiles of the 22 functions on x86 and ARM.

options in the “Runtimes” column of Table 1. For instance, func-
tions #3, #4, and #5 implement the generation of JWT tokens using
Python, Node.JS, or Java, respectively. Eight functions (#6, #7, #9,
#11, #16, #17, #18, and #20) are from the SeBS benchmark suite [8],
while we implemented the others to improve diversity. Functions
#1 and #2 are representative of modern, computationally intensive
cryptography operations used in privacy-preserving systems and
web3 [28]. They use either native (C++) or WebAssembly code. We
group functions into four categories depending on their application
domain.

Figure 4 presents the energy and performance profiles of the 22
functions obtained from offline profiling (§3). We choose to present
relative values comparing the ARM and x86 estimations. A ratio of
1 means that both servers have comparable performance or energy
efficiency. A ratio >1 means x86 is better, and a ratio < 1 means
ARM is.

21/22 functions have either better performance or better energy
efficiency on ARM. Only one function (#11, image recognition) has
better results for both metrics on x86. Five functions (#1, #2, #7,
#11 and #18) execute more instances per core per second on x86,
but their energy efficiency remains lower. Some functions (e.g., #11,
#12, and #18) show high metrics variability, meaning that their per-
formance and energy efficiency are heavily influenced by colocated
functions.? Overall, while there is a general advantage in perfor-
mance and energy efficiency for ARM, the extent of this advantage
varies significantly, from 21% (#18) to 280% (#4). Intuitively, func-
tions that benefit the most from one type of machine should have
a higher priority to be scheduled on that machine than functions
that perform more similarly on the two heterogeneous platforms.

5.3 Scheduling

We evaluate the ability of our scheduler to improve the heteroge-
neous cluster’s energy consumption, as measured by the PDU level

2Note that we leave for future work the analysis of resource sharing at the CPU and
memory level to understand the reasons for these variations. For the present study,
high-level “opaque box” models are sufficient.
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Figure 5: Total energy consumed by the cluster for a balanced workload (General) and workloads dominated by an application
class. Policies: Round-Robin (RR), Intel-First (IF), Ampere-First (AF), Cores-aware (CA), and Energy-aware (EA).

for the two machines (i.e., not only their CPUs). We compare our
energy-aware (EA) policy to four baselines. Core-aware (CA) mini-
mizes the number of cores used but ignores energy-efficiency pro-
files. Round-Robin places functions alternatively on the two servers,
allocating the necessary cores according to the performance model.
Finally, Ampere-First (AF) and Intel-First (IF) consider functions
in a randomized order and start by filling one server (ARM or x86)
before assigning the remaining functions to the other. AF and IF do
not consider energy efficiency.

We consider five workloads, all using the 22 functions. The “Gen-
eral” workload assigns a request requirement vector R such that
the computational volume, as measured as the average between
the number of cores necessary on ARM and x86, is balanced across
functions. This allows accounting for the vast difference between
absolute throughput across functions (i.e., from 0.48 req/core/s for
#9 to 49,508 req/core/s for #5) and balancing the contributions of
all functions. The “x-dominated” workloads, where ‘X’ is a category
of Table 1 assign R such that functions of category ‘x’ account for
80% of the load, with 20% remaining for all other functions.

Figure 5 presents the overall consumption for the workloads,
with resources statically assigned by the different policies. RR is sys-
tematically the worst, except for the Crypto-dominated workload,
where using ARM first leads to the highest energy consumption.
IF shows a similar performance to RR. CA is an improvement to
RR in all cases. Minimizing the number of cores across machines
improves performance from 0.6% to 6.9%. EA achieves the best
improvement in the General, Media-dominated, and particularly
Crypto-dominated workloads, with gains ranging from 5.3% to
15.2% and improving upon the CA policy. For the Scientific- and
Web-dominated workloads, however, there is no significative gain
from reducing expected energy consumption compared to reducing
the number of cores used. For the Scientific-dominated workload,
EA uses more ARM cores than CA (128/158 total vs. 115/155). EA
and CA use the 128 ARM cores for the Web-dominated workload
and yield the same assignment. In summary, we observe that EA is
better for some workloads and never worse than CA.

Summary. Our evaluation shows that energy-efficient scheduling,
by leveraging heterogeneity, may positively impact the electrical
consumption of highly consolidated serverless infrastructures. The
most significant gains are with the crypto-dominated workload,
which is very CPU-intensive and includes functions that benefit
more from x86. In practice, we also observe that ARM’s advantage
in performance and energy efficiency is real for individual functions,
but high colocation leads to performance losses that reduce the gap
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with x86, which is less subject to such colocation effects. Measuring
the micro-architectural reasons for this difference is an interesting
path for future work.

6 Related work

Chen et al. [5] study the relative performance of serverless functions
on x86 (Intel) and ARMé64 (Graviton2) running on AWS Lambda.
Their study highlights that functions requiring more system calls
tend to perform better on x86, while ARM performance tends to
be more stable. Their evaluation targets a closed cloud system, so
they could not relate this to energy.

The use of heterogeneous hardware to support serverless work-
loads has been explored by Molecule [10], a serverless platform
supporting the execution of functions over various accelerators
(e.g., GPUs and FPGA), and Icebreaker [22], which leverages a het-
erogeneous fleet of servers (i.e., inexpensive servers together with
expensive ones using the same ISA) to reduce the bootstrap time
of functions. Molecule and Icebreaker aim, however, to maximize
function execution throughput, not reduce energy consumption.

EcoFaaS [25] is an energy-aware serverless execution framework
that uses a model of the execution time vs. functions’ input charac-
teristics. This model assigns optimal core frequency to functions and
reduces energy consumption. While we did not consider frequency
throttling in this paper, this approach would complement ours. Eco-
Faa$S does not target environments formed of ISA-heterogeneous
nodes.

HEATS [21] is a serverless scheduler that allows users to ex-
press a tradeoff between energy and performance and schedule
functions to the best suitable and sufficient node. Similarly to our
work, HEATS uses a profiling phase, but, in contrast to it, it only
considers energy consumption at the PDU level, i.e., for an entire
server.

EcolLife [16] and Casa [20] are two serverless schedulers whose
goal is to minimize the carbon footprint of functions’ execution.
Interestingly, EcoLife considers the hardware’s embodied (manu-
facturing) footprint and not only its consumption when executing
functions.

GreenCourier [4] and Caribou [14] propose to schedule server-
less workloads across geo-distributed sites, accounting for their
carbon efficiency, i.e., the amount of carbon dioxide emitted by the
electricity sources used by these sites. Lin and Shahrad [17] fur-
ther suggest that the carbon footprint of serverless applications
be integrated into pricing models and make it financially attrac-
tive to propose and use more sustainable execution infrastructure.
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These approaches complement ours, as the scheduling of serverless
workloads on each site and for a given electricity source could still
leverage heterogeneity to reduce the local footprint.

While this paper focuses on data center environments, the sched-
uling of serverless functions at the edge also involves heterogene-
ity. Aslanpour et al. [3] show how the scheduling of functions
can consider the nature of the energy used by support nodes (e.g.,
battery-powered vs. using a local source of renewable energy).

7 Conclusion

We evaluated the possibility of scheduling serverless workloads in
ISA-heterogeneous infrastructures based on offline performance
and energy efficiency modeling. Our results with different mixes of
22 serverless functions show that such an approach can improve
energy efficiency. An immediate follow-up direction for this work
is the analysis (e.g., at the micro-architecture level) of the impact
of function colocation on performance and the integration of such
information in the model and scheduling policies. Evaluations at a
larger-scale, and combining heterogeneity between servers with
CPU of the same ISA (e.g., of different generations) is also an inter-
esting possibility for extension.
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