
Disease Prediction using Chest X-ray Images in
Serverless Data pipeline Framework

Vikas Singh
Computer Science

IIIT Lucknow
Lucknow, India, 226002

Email id: mcs21018@iiitl.ac.in

Neha Singh
Computer Science

IIIT Lucknow
Lucknow, India, 226002

Email id: neha08hs@gmail.com

Mainak Adhikari
Computer Science

IIIT Lucknow
Lucknow, India, 226002

Email id: mainak@iiitl.ac.in

Abstract—Serverless architecture is a rapidly emerging trend
in the field of cloud computing that promises increased flexibility,
scalability, and cost-effectiveness compared to traditional server-
based approaches. Leveraging machines to automatically analyze
and predict the disease using image data such as chest X-ray
images is becoming a challenging task for various contempo-
rary applications. Serverless computing is a cloud computing
execution model that provides and manages resources based on
the requirements of the users/applications. Besides that, modern
data-intensive applications require the power to manage the flow
of data between different components in a serverless platform.
Motivated by that, in this paper, we develop a new serverless
data pipeline framework for predicting disease using chest X-
ray images. The system utilizes Deep Learning (DL)-based image
classification models hosted on Google serverless platform for
COVID-19 diagnosis. For disease prediction, we incorporate
a transfer learning technique over three popular DL models,
namely VGG-16, DenseNet121, and ResNet50. The experimental
analysis demonstrates that the proposed serverless data pipeline
framework achieves high accuracy, reliability, and speed during
COVID-19 disease diagnosis. As per the simulation results, the
VGG-16 model outperforms the existing DL models and achieves
97.66% accuracy.

Index Terms—Serverless Computing, Data Pipeline, Cloud
Functions, Cloud Storage Bucket, Function-as-a-Service.

I. INTRODUCTION

Diagnosis of diseases in early stages can help to prevent

them from progressing to more advanced stages. In many

cases, early treatment can be less invasive and less costly,

which can help improve patient outcomes and reduce health-

care costs. Traditional diagnostics methods are often limited

by subjectivity and variability as different clinicians interpret

the same results differently. Traditional approaches are also

limited by their capacity to handle a large amount of data, de-

tect shallow and complex patterns at times requiring extensive

manual analysis and rely on the availability of experts who

can interpret those diagnostic reports.

Artificial Intelligence (AI) and Machine Learning (ML)

based approaches for disease diagnosis can provide many

consistent and objective results while reducing human effort.

AI techniques can be cost-effective, requiring less expensive

equipment and less specialized expertise than traditional di-

agnostic methods. However, utilizing the existing AI-based

diagnosis methods is challenging due to high training and

running time. Besides, most of the existing AI techniques

require a certain level of technical expertise, which medical

professionals lack and often need to outsource it. Moreover,

the need to manage the computing resources such as hardware

and software can add to the already existing overheads during

model training.

The traditional approach of image classification requires

huge resource utilization and human intervention. As a solu-

tion, cloud computing is used for delivering efficient comput-

ing resources such as processing devices, storage, databases,

networking, software, and analytics tools, over the Internet.

In other words, instead of owning and maintaining phys-

ical servers and other infrastructure, individuals, and or-

ganizations can access these resources remotely through a

third-party service provider like Amazon, Google, IBM, etc.

There are several different types of cloud computing archi-

tecture like Infrastructure-as-a-Service, Platform-as-a-Service,

Software-as-a-Service, and Function-as-a-Service (FaaS). In

recent times, FaaS has been gaining immense popularity as

a cloud computing model. FaaS allows developers to write

and deploy small pieces of independent code (known as

functions) that can be executed on demand without the need

of managing and scaling any underlying infrastructure. The

cloud provider manages the servers, networking, and other

resources required to execute the code, and charges the users

based on the actual usage of the function rather than a fixed fee

for the entire infrastructure. FaaS is best suited for building

event-driven applications and serverless architectures, where

functions are triggered by specific events such as user requests

or changes in data. All the cloud providers have their version

of FaaS computing platforms like Amazon Web Services

(AWS) Lambda, Azure Functions, Google Cloud Function

(GCF), etc., referred to as cloud functions. The application

platform may be different but the underlying concept and

structure remain the same for different service providers.

Many individuals tend to think of serverless computing and

FaaS as being the same, though they are related concepts but

not the same thing. Serverless computing is a broader concept

that encompasses a range of cloud computing services that

allow developers to build and deploy applications without

having to manage any underlying infrastructure. This can

include FaaS as well as other serverless services such as

databases, storage, and messaging. In other words, FaaS is
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a specific type of serverless computing that focuses on the

execution of small code functions while serverless computing

encompasses a wider range of services and functionality.

As stated earlier, FaaS functions are independent chunks of

code executed individually, so it is important to resolve the

dependencies of each function, which makes the concept of

containerization important from the perspective of FaaS and

Serverless. Containerization refers to the process of packaging

an application or a function with all its dependencies and

resources into a container allowing developers to create and

deploy functions as self-contained and isolated units. Using

containerization, developers create complex workflows or ap-

plications that involve multiple functions and each function

can be packaged into a separate container and deployed

independently.

Further, the incorporation of a serverless data pipeline can

greatly enhance the automation of disease detection and diag-

nosis processes by streamlining the movement of data through

various stages of the prediction process. The data pipeline

streamlines the movement of data through various stages of

the prediction process such as data collection, pre-processing,

and modeling. The serverless nature of the pipeline allows

for efficient scaling and automatic allocation of resources as

needed without requiring manual intervention. Serverless com-

puting is cost-effective and highly scalable when compared

to traditional centralized computing systems. Deep Learning

(DL)-based serverless FaaS pipeline also allows for faster

development speed and higher availability of the system as

opposed to traditional distributed ML/DL approaches while

being easier to manage and highly cost-effective.

A. Motivation

The emergence of new and potentially fatal diseases that

can rapidly spread across borders poses a significant threat

to public health. Consequently, there is a pressing need for

innovative and efficient methods of illness diagnosis that can

aid in mitigating the risks associated with these diseases. AI

has been identified as a potential solution to this problem

due to its ability to enhance the accuracy and effectiveness

of medical diagnostics. Utilizing techniques such as image

processing and genetics-based diagnostics, AI has the potential

to provide better care for patients and reduce the workload of

healthcare professionals. However, implementing AI in health-

care requires significant computational power and resources,

which can result in high development and maintenance costs.

To overcome these challenges, we incorporate serverless com-

puting that allows the on-demand allocation of computational

resources and easy accessibility. By leveraging serverless

computing, medical diagnostics can be performed more cost-

effectively without sacrificing performance or accuracy. This

makes the implementation of AI in healthcare more accessi-

ble, particularly in resource-limited settings where traditional

computing infrastructures may not be available. Despite the

potential benefits of AI and serverless computing in medical

diagnostics, there are challenges to be addressed. Another

important challenge in the serverless computing platform is

managing the flow of data between different components by in-

corporating data pipeline technology. Nevertheless, the use of

AI and serverless computing with data pipeline technology in

medical diagnostics remains a promising area of research with

significant potential for improving public health outcomes.

B. Novelty and Contributions
Motivated by the above-mentioned challenges, in this paper,

we develop a new serverless data pipeline framework for

predicting COVID-19 disease [1] using chest X-ray images.

The contributions of the paper are summarized as follows.

• We develop a serverless data pipeline framework for

disease prediction to automate the movement of data

in cloud infrastructure. The proposed serverless data

pipeline is created on the Google Cloud Platform (GCP),

where a function is created using a standard DL model

and is triggered by a cloud bucket whenever a chest X-ray

image is uploaded for diagnosis. The proposed framework

automates the process of fetching, pre-processing, and

storing data while eliminating manual errors and reducing

the overall deployment time of the infrastructure.

• Incorporate various standard DL models such as VGG-

16, DenseNet121, and ResNet50 in GCP as a function for

disease prediction. Initially, the model is trained using the

publicly available dataset related to chest X-ray images

in the cloud server. Once the model is trained, a transfer

learning mechanism is applied over the trained DL model

to prepare a lightweight model and deploy it on GCF

during disease prediction.

Extensive simulation results demonstrate the efficiency of

the proposed serverless data pipeline framework and VGG-

16 model over the existing ones using various performance

metrics. The remaining sections of this research paper are

organized as follows. Section II describes the state-of-the-

art techniques in the fields of serverless computing and DL.

Section III outlines the system model followed by the problem

statement. Section IV describes the detailed methodology of

the proposed serverless data pipeline framework. The experi-

mental results of the proposed methodology are demonstrated

in Section V. Finally, Section VI concludes the proposed

methodology.

II. LITERATURE REVIEW

Cloud computing is a revolutionary advancement in the

field of information technology, and it has become a primary

business model for delivering computational resources. With

the advent of cloud computing, both individuals and organiza-

tions can enjoy the benefits of on-demand access to a shared

pool of managed and scalable resources including processing

devices, applications, and storage [2]. Users/Customers depend

heavily on cloud services in their daily lives for storing data,

writing documents, managing businesses, and engaging in

online activities such as gaming. The concept of the computing

reference model and the development of cloud services have

progressed to new levels. Serverless computing is a cutting-

edge execution model, where the cloud service provider

185

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 28,2023 at 02:37:41 UTC from IEEE Xplore.  Restrictions apply. 



dynamically manages the allocation of compute resources

without the intervention of the users. Instead of paying for

pre-purchased units of computing capacity, the consumer is

billed for the actual volume of resources consumed during

data processing or analysis. This innovative model provides

optimal cost-efficiency, reduces configuration overheads, and

enhances the application’s scalability in the cloud [3]. Cloud

service providers like Amazon Web Services(AWS), Azure [4],

and Google Cloud Platform (GCP) [5] have embraced the

potential of the serverless compute model, evident by their

adoption of the serverless computing paradigm. Some open-

source serverless frameworks also exist like OpenFaaS [6],

Knative [7], etc. FaaS is a serverless paradigm that allows

developers to build and deploy small, independent functions

that are triggered by an event [8]. These functions are designed

to perform a specific task bound to an event and can be

easily integrated into larger applications. Whenever an event

occurs, it triggers the bound function through an Application

Programming Interface (API) call, and the cloud platform

executes the corresponding function parallelly. This computing

model also has some drawbacks, which are described as

follows.

• The function must be stateless, i.e., any intermediate data

generated during execution must be stored in external

cloud storage, provided by the platform.

• The functions are allocated limited resources such as CPU

power, local storage, and run-time. For example, GCF [9]

offers a maximum of 8 GB of local memory and 500 MB

of function size, and each function has a maximum run-

time of 540 seconds and a maximum event size of 10

MB.

• Most cloud providers limit the integration of functions

to the other computing services available on their own

platform.

• Serverless functions only support a limited set of popular

programming languages and development tools. The de-

bugging capabilities of serverless code are fairly limited.

Despite these limitations, the merits of serverless computing

such as cost-effectiveness, scalability, and ease of deployment,

outweigh its drawbacks [10]. On the other hand, containeriza-

tion provides a lightweight, portable, and consistent environ-

ment to package and deploy serverless functions [11]. Addi-

tionally, they provide isolation, which increases the security

of the application by preventing one function from accessing

the data or resources of another function. Serverless computing

has emerged as a promising platform for deploying ML models

in the cloud [12]. The data pipeline is an important aspect

of serverless applications [13]. Data pipeline tools allow for

the automated movement of data between different stages or

systems [14]. This can be particularly useful in serverless

architectures, where the focus is on building and deploying

small, independent functions that are triggered by events [15].

The medical industry is continuously adopting new tech-

nologies to improve disease detection and treatment methods.

With the increasing availability of medical imaging data, there

TABLE I
COMPARATIVE INVESTIGATION OF THE STUDY GAP IN LITERATURE

Existing
Work

Deep Neural
Networks

High
Scalability

Efficient Resource
Utilization Data Pipeline

[18] � χ χ χ
[17] � χ χ χ
[14] χ � � �
[23] χ � � χ
[11] χ � χ χ
[24] � χ χ χ
[15] χ � � χ

Our Work � � � �

is a growing demand for automated and efficient methods

for disease detection using image processing and DL algo-

rithms [16]. In recent years, there has been a shift towards

using AI and DL algorithms for the diagnosis of various

diseases. One such application is the detection of COVID-19

disease using chest X-ray images [17], [18]. Lately, there have

been several studies exploring the use of serverless architecture

for deploying DL models in the medical industry [19].

In summary, the literature indicates that the use of AI and

ML models in disease diagnosis is a growing field with many

successful applications in the medical industry. Furthermore,

the use of serverless architecture with data pipelining provides

a promising platform for the deployment of end-to-end ML

model workflow with benefits such as reduced costs [20],

simplified deployment, and automation [21], [22]. The com-

parative analysis of the proposed serverless data pipeline

framework and existing works for disease prediction over four

key attributes is depicted in Table I.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section outlines the components and their interactions

in the system model and provides the problem statement that

the proposed solution aims to address.

A. System Model

In this work, we develop a serverless data pipeline frame-

work for running DL-based image classification models that

leverages cloud-based services to automate the process of

disease prediction using chest X-ray images and improves the

reliability and scalability of the application. Fig. 1 illustrates

the proposed serverless data pipeline framework. The system

relies on cloud-based storage services for storing the images

and the trained DL model for disease prediction using func-

tion. The images are uploaded to a designated cloud bucket

while the model is stored in another bucket.

The system triggers the GCF through Pub/Sub whenever

the designated trigger event occurs, which fetches the image

and pre-processes it. The pre-processing step involves resizing

the image to a specific size and normalizing the pixel values.

Next, the processed image is passed to the data pipeline that

manages the flow of the images and analyzed the images using

a DL model. During model training, we used VGG-19 for

training the model using publicly available datasets in the

cloud server [25]. Initially, the trained model is stored in a
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Fig. 1. Serverless Framework for Disease Prediction

separate cloud bucket, which is further loaded by the GCF

during run-time for disease prediction.

The system is designed to be fully serverless, which means

that it does not require any servers to be provisioned or

managed by the user. This causes lower infrastructure costs

and faster development and deployment times, and the system

can be ready more quickly for data analysis. The system

leverages cloud-based services such as GCF, Pub/Sub, and

cloud storage to handle the various components of the data

pipeline. The pipelining enables the system to be fault-tolerant

and scalable.

B. Problem Description

The main challenge in traditional server-based architectures

is the need for manual server provisioning and management.

This can be a time-consuming and costly mechanism as it

requires dedicated computational resources to handle server

maintenance and upgradation. Additionally, server-based ar-

chitectures may struggle with scalability issues as they may not

handle sudden spikes in traffic without manual intervention.

Serverless architectures address these challenges by providing

a fully managed environment, where users only pay for the

computing resources they use.

In many data-driven applications, data needs to be processed

and transformed as it moves through the system. This can

involve complex workflows and data transformations that are

difficult to manage manually. Traditional data processing ar-

chitectures may require custom scripts or manual interventions

to handle these workflows, which can be time-consuming and

error-prone. Data pipeline technologies address these chal-

lenges by providing a structured and automated way to move

data through the system. Data pipelines can handle complex

data transformations and workflows automatically, allowing

users to focus on higher-level application logic. Additionally,

data pipelines can be designed to be fault-tolerant and scalable.

To address the above-mentioned challenges, in this work we

have developed a new serverless data pipeline framework in

GCP for predicting the COVID-19 disease using the standard

DL models. A detailed description of the proposed methodol-

ogy is elaborated in the following section.

IV. DEEP LEARNING-ENABLED SERVERLESS DATA

PIPELINE MECHANISM

In this section, we meticulously examine the problem

statement by presenting a comprehensive review of the in-

hand research challenges followed by the steps taken to

resolve those challenges. We have provided a thorough system

framework that has been created to address the reported issue.

Various factors such as scalability, performance, and cost-

effectiveness are taken into consideration for developing the

proposed methodology to design an optimal solution to solve

the problems efficiently and effectively. The proposed DL-

enabled serverless data pipeline methodology is applied in

disease prediction with chest X-ray images, which is a difficult

challenge owing to the complexity of the disease and the

limited image dataset available for DL model training.

A. Diesease Prediction Model

In the first phase of the proposed methodology, we built an

image classification model to predict the disease using chest

X-ray images. Two publicly available datasets of COVID-19

chest X-ray images are merged to develop a new dataset. The

new dataset suffers from population invariance as the number

of images of non-infected people is more in comparison to

people who were infected by COVID-19. To handle this issue,

we have applied data synthesis to select random images from

the COVID-19 pool and applied data augmentation to create

new images. Further, various pre-processing techniques such

as the resolution of images are used to modify images to 224×
224 pixels and then normalization is incorporated to manage

image consistency.

Once the dataset is ready, we proceed to train the proposed

DL-based image classification model for disease prediction.

Due to the limited size of the newly created dataset, training

an image classification model from scratch could not achieve

a desirable result. As a solution, we used a transfer learning

technique, which is an ML technique where a model trained

on one task is adapted for another related but not the same

task, often with much less data with minimum training time.

To incorporate transfer learning, we used three pre-trained DL

models, namely VGG-16, DenseNet121, and ResNet50, which

are already trained on ImageNet dataset on the cloud server.

Once the weights and biases are downloaded from the

trained DL models, we proceed to fine-tune them by setting

the learning rate to 0.001 using categorical cross-entropy as a

loss function and Adam as an optimizer. Here, the learning

rate reduction factor is set to 0.5 with patience 3 and for

the output layer, we have used softmax as the activation

function. Further, we used our previously created dataset to

train the image classification models in the serverless platform

for disease prediction. The workflow of model training for

disease prediction is depicted in Fig 2. Next. to deploy this

model on a cloud server and to automate the whole function,
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we create a serverless data pipeline, described in the following

sub-section.

Fig. 2. Training and Evaluation of DL Image Classification Model

B. Serverless Data Pipeline Framework

In the second phase of the proposed work, we have created

a serverless data Pipeline framework, illustrated in Fig. 3 that

obtains the best performance on limited resources by providing

easy scalability and reliability. The proposed serverless data

pipeline framework implemented on GCP involves the creation

of a cloud function along with a container, which is triggered

by a cloud bucket whenever a chest X-ray image is uploaded

to it. Whenever an object is created, an event is occurred,

which is then published to a Google Pub/Sub topic. The

subscribed cloud function receives the event and reads the

image from the cloud bucket. To access the cloud function

for disease prediction, proper permission policies needed to

be attached to the function using Identity and Access Man-

agement (IAM) service. IAM allows users to manage access

control and permissions for their GCP resources. IAM also

helps to implement security policies by providing fine-grained

access control over resources. After pre-processing the image

according to the trained DL model, the cloud function fetches

the trained DL model stored in a separate cloud bucket. Then,

the processed image is passed to the DL model for disease

detection. The obtained results are saved to a text file with the

same name as the image and saved to a separate cloud bucket

as a form of result. The use of a data pipeline is crucial to

design the proposed system model for efficient functioning.

It enables the automatic transfer of data between different

stages of the system. The proposed data pipeline model is

responsible for transferring data between the cloud bucket and

the cloud function for processing and analysis. By using the

data pipeline, we can streamline the flow of data between

different stages of the serverless platform and ensure smooth

functioning. This ensures that the proposed serverless data

pipeline mechanism performs efficiently and effectively and

can handle sudden spikes in traffic without any downtime or

performance issues.

Fig. 3. Serverless Data Pipeline Framework

V. EXPERIMENTAL ANALYSIS

In this section, we conduct an extensive set of simulations

and demonstrate the efficiency of the proposed serverless data

pipeline framework with the standard DL model over the

benchmark COVID-19 dataset. It is important to thoroughly

analyze and test the DL models and serverless framework to

ensure that it meets the required specifications and performs

as expected. To this end, we have conducted a number of tests

on both the trained DL model and the serverless framework.

This includes testing the model’s accuracy, precision, recall,

and F1-score on multiple benchmark datasets. We have also

measured the model’s inference time and the time taken for

the serverless function to analyze the data. Furthermore, we

have analyzed the model’s performance on different subsets of

the dataset such as testing the model’s performance on images

from patients of different age groups or with different levels of

disease severity. This helps to identify any potential areas of

improvement and make necessary adjustments to the model.

Overall, the results of these tests provide valuable insights

into the performance of the proposed DL-enabled serverless

data pipeline methodology and guide future developments and

improvements.

A. Dataset

To show the working of the proposed methodology, we

have trained the model on the publicly available images of

the chest X-rays of COVID-19. Due to limited quality images

availability in a single dataset, we have merged two different

publicly available datasets 1 and 2. The newly created dataset

suffered from class imbalance as the number of NORMAL

case images is more than the COVID-19 case images. Further,

data augmentation was used to handle this class imbalance,

which resulted in the creation of the final dataset, consisted of

2746 total images that were divided into two classes: COVID-

19 and NORMAL. To evaluate the proposed serverless data

pipeline framework, we have created multiple test plans of

varying sizes by randomly selecting images from the dataset.

1https://github.com/ieee8023/covid-chestxray-dataset
2https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-

database

188

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 28,2023 at 02:37:41 UTC from IEEE Xplore.  Restrictions apply. 



B. Simulation Setup

We start by reshaping the images to the fixed dimensions

of 224 × 224 and normalizing them to reduce inconsistency.

The image classification models are trained on Google Colab

where the used configurations are 12.7GB of RAM, Nvidia

K80 GPU with 12GB of RAM, and 78GB of disk space. To

evaluate the proposed serverless disease prediction system, we

run a simulation on GCP with a test plan generated from pub-

licly available datasets of chest X-ray images. Moreover, the

resources utilized by the cloud function instances Intel Xeon

CPU, and 4GB of function memory. Further, the minimum

and maximum instance count for the GCF was set to 0 and

100 respectively. Then timeout for the cloud function is set to

180sec. The performance metrics of the conducted tests were

obtained through Google Cloud Metrics directly.

C. Performance Analysis

In this section, we evaluate the performance of the proposed

methodology for disease prediction using the DL model,

deployed on a serverless framework. We first present the

results of testing the trained models on a test dataset, followed

by an evaluation of the performance of the serverless platform

in terms of its latency and scalability. The performance anal-

ysis provides insights into the effectiveness and efficiency of

the proposed serverless data pipeline framework for disease

prediction, highlighting its potential as a practical tool for

healthcare professionals. The performance of the trained DL

models is analyzed in terms of accuracy, precision, recall, and

F1-score, defined in [26].

1) Prediction Accuracy and Loss : We evaluated the per-

formance of our trained DL models for image classification

based on different performance metrics. Table II presents a

comparison of the accuracy, precision, recall, and F-score

metrics for the standard DL models. The VGG-16 model

performs better due to the high number of trainable parameters

when compared to other DL models as it was trained on a

large dataset (ImageNet). Thus, VGG-16 has better pre-trained

weights, which enables it to extract more meaningful features.

TABLE II
COMPARATIVE ANALYSIS OF DIFFERENT DL MODELS

Method Train Test Accuracy Precision Recall F-score
CNN-2d 2196 550 80.91 0.69 0.72 0.70

2334 412 76.02 0.65 0.71 0.68
ResNet-50 2196 550 87.23 0.78 0.71 0.74

2334 412 84.71 0.77 0.68 0.72
VGG-16 2196 550 97.66 0.85 0.80 0.82

2334 412 75.47 0.81 0.72 0.76
DenseNet-121 2196 550 92.86 0.82 0.76 0.79

2334 412 89.41 0.78 0.75 0.76

The pictorial presentation of the accuracy and loss curves

for all the trained DL image classification models are shown

in Fig. 4 and Fig. 5, respectively, which accuracy and loss

depicted on the y-axis and number of epochs on the x-

axis. From the figures, we observe how the various models

performed throughout the training and validation process on

the COVID-19 X-ray image dataset. The number of epochs

was set to 30 while training the DL models to maintain

uniformity across them and to avoid overfitting due to the

limited size of the dataset before applying the transfer learning

technique over the standard DL model. As per the figure and

Table II, the VGG-16 model outperforms the existing DL

model followed by DenseNet-121.

Fig. 4. Comparison of Accuracy for different DL models

Fig. 5. Comparison of Loss for different DL models

On analyzing Fig. 4 and Fig. 5, we observe that almost every

trained model is exhibiting an outlier behavior at 2 instances

near about epoch 15 and 22, however, the VGG-16 model

shows minimal outlier behaviour as visible in Fig. 6 and Fig. 7.

The figures show the accuracy and loss curves for the VGG-

16 image classification model. This outlier behavior may be

caused by neutral deviation in the population or the limited

size of the dataset.

2) CPU Utilization and Memory Usage: To evaluate the

performance of the serverless data pipeline framework for

disease prediction, we conducted several experiments using

multiple test datasets of variable sizes. We have used the

cloud metrics provided by GCP to monitor the results. We
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Fig. 6. Training & Validation Accuracy for VGG-16 model

Fig. 7. Training & Validation Loss for VGG-16 model

evaluated the application’s performance using metrics like

CPU utilization and memory usage.

Fig. 8 shows the memory usage pattern when 100 concurrent

requests are passed to the serverless function. The graph

represents three regions, where the first bottommost region

represents the memory range that half of the requests fall

within, and the second middle region shows the limit under

which 75% of the recommendations fall in. The top region

represents the maximum memory utilization. Similarly, Fig. 9

shows the distribution of execution time per call. The bottom

region of the figure represents the fastest 50% calls to function

that is treated as the best-case scenario, the middle region

represents the slowest 50% calls that are the median value and

the topmost line represents the slowest calls or the worst-case

scenario of serverless function execution.

To know how the proposed serverless function memory

usage changes with the number of concurrent requests, we

have made multiple invocations to the proposed function with

distinct numbers of concurrent requests being 1, 3, 7, and 15.

Fig. 10 shows the increase in memory utilization, which is

not linear when increasing the number of concurrent requests.

The memory needed for a single request is about 800MB while

Fig. 8. Memory usage Statistics of Cloud Function

Fig. 9. Distribution of Execution Time per Call

memory usage is about 1900MB and 2100MB for 7 and 15

concurrent requests, respectively.

Fig. 10. Cloud Memory Usage for Concurrent requests/users

In order to evaluate the load capacity and response time of

the proposed serverless data pipeline framework, we executed

three different test plans in JMeter, with sizes of 100, 200, and

300 requests, respectively. Each test plan simulated a certain

number of users, accessing the application simultaneously and

measured the response time and throughput of the application

under the above-mentioned loads. The test results are shown

in Table III, which represent the reliability of the proposed

serverless framework as all the requests were executed suc-

cessfully without any error. The performance of the serverless

framework was consistent. However, the response time for

the first test plan showed an outlier behavior where the max

response time for higher when it had the least number of

concurrent requests, compared to the remaining test plans. This

behavior can be observed in Fig. 11. This type of behavior can

be caused due to spawning of the containerized dependencies

and environment needed with the initial call. However, the

results are within the limits, there were no errors and the

system performed better at higher levels of the concurrent

requests.
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Fig. 11. Processing time per request in Threads

TABLE III
THROUGHPUT OF DL-ENABLED SERVERLESS DATA PIPELINE

FRAMEWORK OVER DIFFERENT SAMPLE DATASETS

Label Size Success(%) Throughput(request/sec) Avg Time(ms)
Test Plan-1 100 100.0 1.924 2530
Test Plan-2 200 100.0 3.966 719
Test Plan-3 300 100.0 5.904 846

VI. CONCLUSION

In this paper, we have presented the design, implementa-

tion, and evaluation of the proposed DL-enabled serverless

data pipeline framework. We demonstrated that serverless

computing provides better scalability, flexibility, and resource

utilization compared to the traditional cloud-based infrastruc-

ture. In accordance with this approach, we have created DL

models that can precisely predict COVID-19 disease from

chest X-ray images. We have performed a simulation-based

assessment of various DL image classification techniques out

of which the VGG-16 image classification model performed

the best in terms of accuracy, i.e., 97.66%, whereas the

simple Convolution Neural Network 2D approach achieved a

lower accuracy of 80.91%. The future research plan involves

extending our application to diagnose multiple diseases using

a larger and more diverse dataset. Additionally, we plan to

explore the feasibility of performing real-time diagnosis on

streaming X-ray images using an edge computing framework

with advanced ML models. These efforts will build upon our

current work and further advance the capabilities and impact

of the serverless data pipeline framework.
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