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Abstract
Serverless computing has become a promising paradigm for video
processing workflows, offering simplified deployment and flexible
management of business logic. However, the dynamic, multi-stage
nature of video processing pipelines poses significant challenges
for traditional serverless resource management, particularly in effi-
ciently modeling optimal configurations and adapting to rapidly
evolving pipeline structures. To address this challenge, we propose
ConfigNavigator, a video pipeline resource tuning framework ca-
pable of adapting to dynamic inputs and pipeline structures with
minimal overhead. In the offline phase, ConfigNavigator models
function execution time distributions at the fundamental operation
level and leverages graph theory to decompose complex video pro-
cessing pipelines, thereby obtaining optimal configurations with
minimal overhead. In the online phase, it dynamically adjusts func-
tion configurations on critical paths through real-time performance
feedback, ensuring pipeline performance stability across varying
workloads. We evaluate ConfigNavigator using real video streams
on the commercial serverless platform AWS Lambda. Compared
to state-of-the-art baselines, ConfigNavigator reduces configura-
tion search time by 94.11% while decreasing end-to-end pipeline
processing time by 13.97%.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; • Computer systems organization → Cloud comput-
ing; • Information systems → Multimedia streaming.
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1 Introduction
Video traffic, accounting for approximately one-third of down-
stream traffic [36], has become an inseparable part of our daily lives.
With the popularity of User-Generated Content [48] and video so-
cial applications, video processing workflows have evolved beyond
traditional encoding and decoding to incorporate object detection,
beautification, super-resolution, and other technologies [51], result-
ing in multi-stage, dynamic processing pipelines [25]. Decoupling
processing logic from deployment specifications to improve main-
tainability and scalability has emerged as a significant trend for
video processing workflows to address increasingly complex inter-
service processing logic and conflicts in business code management
across teams [11, 21]. Serverless computing abstracts infrastruc-
ture management away from application development [10, 37]. By
delegating infrastructure management to cloud service providers,
development teams can focus on business logic while leveraging
elastic scaling and fine-grained billing features that enable users to
achieve optimal resource utilization through flexible configuration
options for their diverse computational needs [26].

Resource tuning strategies have been proposed to effectively har-
ness serverless computing for pipeline application to meet Service
Level Objective(SLO) requirements as shown in Table 1, which can
be broadly categorized into two types: Resource tuning based on
expert knowledge [19, 24, 30, 34, 35, 47] relies on domain-specific
insights about the pipeline and serverless, which may fail if run-
time conditions deviate from initial assumptions(such as constraint
violations or intermediate optimization parameter mismatches).
Resource tuning based on learning [2, 12, 20, 31, 32, 45, 52, 53]
adopts data-driven, end-to-end optimization approach, bypassing
explicit pipeline modeling or queueing theory analysis. It directly
learns and optimizes the pipeline’s overall performance under cer-
tain assumptions which can be deviated(e.g., Gaussian runtime
distribution) [2], leading to ineffective and sometimes completely
erroneous search results.

However, there remains a significant gap in applying these ap-
proaches to video processing scenarios:
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Table 1: Comparison of existing pipeline resource management systems with ConfigNavigator based on whether they (a) have
low overhead(both in measuring and infrastructure), (b) address the challenges of meeting performance targets for general
video pipelines, and (c) can adapt to dynamic workflow and changing pipeline.  G##denotes the level of overhead, where
 indicates high overhead, G#indicates moderate overhead, and #indicates low overhead.

System Year Tuning
Challenges

Overhead Accurate & Fast tuning Adaptability
Measurement System

COSE [2] 2020 Bayesian G# # ✓ ×
Charmseeker [52] 2022 Sequential Bayesian G# # ✓ ×
Aquatope [53] 2022 Batched Bayesian G# # ✓ ×
Llama [34] 2021 Heuristic G# # Limited ✓
SLAM [35] 2022 Heuristic  # Limited ×
FaaSConf [45] 2024 Reinforcement Learning  G# ✓ ×
SIMPPO [31] 2022 Reinforcement Learning  G# ✓ ×
AWARE [32] 2023 Reinforcement Learning  G# ✓ ✓
ConfigNavigator - Prediction & Heuristic # # ✓ ✓

HighMeasurement Overhead in Serverless Analytics: In video
processing workflows, the multi-pipeline nature causes inaccu-
rate performance characterizations to create cascading effects that
further exacerbate performance degradation [49]. However, accu-
rate performance characterization of serverless functions requires
repeated executions to mitigate cold-start variability and multi-
tenancy interference [27, 41, 44]. Achieving representative perfor-
mance distributions (capturing central tendencies and noise charac-
teristics) with minimal measurement overhead remains a critical yet
unresolved challenge in video processing workflow optimization.
High-dimensional Configuration Space of Pipelines: Due to
the need to support the rich variety of video processing tasks avail-
able today, the length and complexity of pipelines create a vast and
intricate configuration spacewith prevalent local optima [28, 29, 33].
Evaluating each configuration incurs significant time and resource
costs, making brute-force search approaches impractical. Existing
methods face fundamental trade-offs between efficiency and quality:
knowledge-based approaches lack scalability in high-dimensional
spaces, while learning-based techniques frequently converge to
suboptimal configurations.
Dynamic Pipeline Updates: Video pipelines face inherent run-
time dynamics from content changes (resolution, encoding, motion
complexity) and structural mutations, resulting in non-stationary
execution paths and latency distributions [17, 18]. Current static
optimization paradigms [7, 34, 46] fail to generalize across this vari-
ability spectrum—either focusing too narrowly on input features
while neglecting pipeline reconfiguration events, or requiring im-
practical retraining overhead when encountering unseen scenarios.

Therefore, we propose ConfigNavigator, a dynamism-oriented
video pipeline resource tuning framework that enables low-overhead
performance prediction through basic operationmodeling to achieve
global optimization:
Lightweight performance modeling with basic operations:
ConfigNavigator enables lightweight function profiling through a
decomposition-recomposition method. We observe that all func-
tions are composed of basic operations (e.g., arithmetic operations,
I/O calls), whose execution time distributions exhibit stable char-
acteristics across serverless platform configurations. This stability

allows their relationship with configurations to be accurately mod-
eled by a neural network trained on a small-scale dataset which
includes offline-collected basic operation benchmarks and online-
measured timing metrics. We then reconstruct a function’s execu-
tion time by combining profiles of its involved basic operations
instead of directly measuring the execution time, thus eliminating
the need for prolonged measurement.
Hierarchical dimensionality reduction strategy: By leveraging
the inherent parallelism of video pipelines, ConfigNavigator groups
parallel nodes to reduce the complexity of search space.Within each
group, a Bayesian-Exhaustive hybrid search is performed to identify
optimal configuration under given constraints. These parallel nodes
are then abstracted into equivalent nodes, further simplifying the
pipeline structure to reducing search complexity.
Online adaptive controller: ConfigNavigator continuously mon-
itors the real-time performance of the pipeline and analyzes its
critical path. ConfigNavigator then dynamically adjusts resource
allocation—either constricting resources on non-critical paths or re-
laxing them on critical paths, ensuring robust performance despite
variations in input stream characteristics and pipeline structures.

Our contributions can be summarized as follows:
(1) Through extensive measurements of 50 popular videos col-

lected from Bilibili and composite pipelines combined from 7 repre-
sentative video processing functions, we summarize the key factors
affecting serverless pipeline tuning from three dimensions: mea-
surement overhead, configuration space, and dynamic updates.

(2)We propose amulti-stage tuning framework, ConfigNavigator,
which combines offline and online phases to search the entire con-
figuration space with minimal overhead, while effectively adjusting
critical paths in response to dynamic input videos and changes in
pipeline structure.

(3) We implemented ConfigNavigator on AWS Lambda [5] and
evaluated it in multi-step video analysis pipelines. ConfigNavigator
significantly outperforms existing learning-based methods across
multiple metrics. It achieves over 94.11% reduction in configuration
search time. When processing dynamic video inputs, it reduces
end-to-end latency by 13.97% across applications in average.
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2 Background and Motivation
2.1 Serverless Video Processing
Modern video processing pipelines consist of multiple heteroge-
neous stages, such as decoding, filtering, object detection, and en-
coding, each exhibiting distinct computational characteristics, re-
source utilization patterns, and execution time distributions [34].
These pipelines must ensure robust SLO guarantees despite highly
dynamic conditions, including unpredictable variations in frame
rates (ranging from 30 to 120 fps), resolution shifts (from HD to 4K),
and fluctuating scene complexity [18, 22, 23]. To address these chal-
lenges, prior studies have explored approaches such as adaptly ad-
justing configurations such as neural network model sizes [15] and
orchestrating pipeline functions to meet SLO requirements [6, 14].

Among these efforts, serverless computing has emerged as a
promising paradigm for scalable and cost-efficient video processing
by offloading infrastructure management to cloud providers, leav-
ing users responsible only for configuring pipeline resources. Expert
knowledge-based resource management methods can achieve com-
putational overhead as low as 0.01 milliseconds [34, 35], but face
suboptimal solutions due to environmental noise and distortion of
intermediate variables under unpredictable circumstances. Bayesian
optimization methods (such as COSE [2], Charmseeker [52], and
Aquatope [53]) enhance the ability to handle high-dimensional
search spaces by improving noise processing mechanisms and
pipeline segmentation strategies. However, two fundamental chal-
lenges remain: limited transferability when functions change, ne-
cessitating retraining of the entire model; and difficulty in modeling
serverless platform noise, affecting proxy function effectiveness.

Existing methods struggle with limited sampling. While rein-
forcement learning incurs low inference overhead (milliseconds),
it poses practical issues in serverless settings: additional depen-
dencies increase storage requirements by 200-500MB, leading to
increased cold start latency; data collection is also costly—FaaSConf
[45] requires 31,000 samples over 43 days, and SIMPPO [31] needs
240ms of environment interaction per iteration. These limitations
constitute practical barriers in production environments requiring
rapid deployment and adaptation.

2.2 Measurement and Challenges
We perform characterization study based on a diverse dataset com-
prising 50 popular music videos from Bilibili’s [8] trending section
(collected in November 13, 2024), processed through 7 representa-
tive video processing function services for 100 times. These services
encompass CPU-intensive operations, network-intensive tasks, and
ML inference workloads, which are randomly combined to con-
struct pipelines with varying architectures. The experimental setup
deploys these composite pipelines on AWS Lambda [5], while the
input streaming patterns are simulated using traces from Microsoft
Azure [38] to reflect realistic workload scenarios. Below, we high-
light the key challenges identified through our measurements.
Measurement overhead with cold start: Accurate measurement
is critical for pipeline configuration, as small inaccuracies in the
measurement propagate into larger biases, which can fundamen-
tally undermine the reliability and applicability of prior algorithmic
assumptions, as shown in Figure 1a.
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Figure 1: Measurements of noise effect and characteristics.
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(a) 3-function pipeline (branch).
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(b) 3-function pipeline (sequence).

Figure 2: 3 function pipeline’s configuration space and end-
to-end latency with exceed-bound penalty. The x, y and z
axis denote the memory configuration of each function.

In serverless performance profiling, the accuracy of measure-
ments is inherently challenging due to the transient and dynamic
nature of cloud execution environments. Cold starts are a primary
factor distorting measurement validity, causing unpredictable la-
tency spikes—up to 213.08% in our measurements—due to factors
like non-deterministic sandbox setup and logging initialization (Fig-
ure 1b). Moreover, the transient nature of cold start necessitates a
large number of repeated invocations to statistically filter out such
noise, rendering traditional single-run benchmarking approaches
ineffective for serverless environments.

(a) Staired configuration graph. (b) Continuous configuration graph.

Figure 3: End-to-end latency under different configurations,
which exhibits a stair-like pattern.

Large configuration space and Performance stair: Pipeline
operations offer a variety of knobs that can be tuned to improve
latency and resource use. For example, serverless pipelines expose
multiple tunable parameters per function, including memory provi-
sioning (e.g., 128MB-10GB), and concurrency limits (e.g., 1-1000 in-
stances), creating a high-dimensional configuration space(e.g., over
1 million possible configurations in a simple 4-function pipeline
face-detection) that grows exponentially with pipeline length. De-
termining configurations is challenging due to the combinatorial
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explosion of the configuration space driven by the number of tun-
able parameters, pipeline stages. Our measurement reveals that
optimal configurations form sparse, localized clusters in the pa-
rameter space (Figure 2), where performance remains stable within
regions but exhibits abrupt transitions (14.75–38.02% latency jumps)
between adjacent near-optimal zones (Figure 3). This stair-like per-
formance landscape creates a fundamental tension: optimization
strategies must efficiently explore globally to identify these isolated
high-performance regions while exploiting locally to refine config-
urations within plateaued neighborhoods—all while overcoming
measurement noise and combinatorial search complexity.
Dynamic pipeline update: The serverless video processing pipeline
must support frequent, low-latency reconfiguration to accommo-
date the rapid iteration of filters and video processing algorithms.
An example is TikTok’s AR ecosystem [43], where users continu-
ously upload custom filters—necessitating immediate pipeline adap-
tation while maintaining strict latency guarantees. Furthermore,
the structure of pipelines can change dynamically based on input
content. For example, in face detection tasks, the number of process-
ing branches may vary depending on the number of detected faces.
While this adaptability is essential for handling diverse inputs, it
complicates pipeline design, particularly when maintaining low
latency and high throughput under variable workloads.

3 ConfigNavigator Design
We propose an end-to-end, multi-stage resource tuning framework
as illustrated in Figure 4: a pre-trained prediction model (Sec 3.1)
that captures the impact of resource configurations on function
latency for low-overhead profiling, an offline search that segments
the pipeline to reduce complexity (Sec 3.2), and an online tuner
that searches within the neighborhood of optimal configurations
at adaptive granularity (Sec 3.3).

Figure 4: Framework of ConfigNavigator.

3.1 Performance Modeling
ConfigNavigator predicts the time distribution of unseen functions
using low-level detailed profiling through pretrained models. We
model both the central tendency and extreme tail behavior of the
data to fit the distribution curve of function execution times, en-
abling ConfigNavigator to accurately model the performance of
unseen functions. When functions are newly deployed in a pipeline,
performance predictions can be made using locally profiled basic
operations from a single run to determine resource allocation.

Function set synthesized from basic operations: Selecting rep-
resentative functions for testing is crucial for ensuring the reliability
and universality of measurements. Inspired by the Sizeless [13] ap-
proach, we generate test functions by combining modules, each
representing a key operation in serverless computing. These mod-
ules include floating-point computation, local cache read/write,
remote storage read/write, and network communication. By com-
bining these modules, we generate 400 diverse functions designed
to simulate common serverless workloads such as data processing,
storage-intensive tasks, and machine learning inference, ensuring
comprehensive coverage of typical serverless application scenarios.
Subsequently, we deploy these functions in a local Docker environ-
ment and profile the basic operations listed in Table 2.
Test Setup on Serverless Platforms:Wemeasure execution times
and resource consumption metrics for 400 different functions across
32 memory configurations, ranging from 128MB to 4096MB in
128MB increments. These configurations cover all availablememory
sizes on AWS Lambda, capturing both resource-constrained and
resource-rich execution environments. To minimize the effects of
cold starts and "traffic tide" fluctuations (irregular changes due to
multi-tenant competition [39]), we invoke each function every five
minutes, ensuring they remain in a warm state during testing [38,
40]. By conducting long-term testing over two weeks, we ensure
our measurements captured various resource contention scenarios,
providing a robust dataset for subsequent analysis.
Time Distribution Modeling: To model the performance behav-
ior of serverless functions, we develop two independent three-layer
neural network models. The first network predicts average exe-
cution time and 95% tail latency, capturing central and extreme
performance metrics. The second network estimates the variance
of execution times, thus modeling time distribution under different
conditions. Each network consists of three fully connected layers
with 64, 32, and 16 neurons respectively. This architecture is chosen
based on empirical evaluation, balancing model complexity and
prediction accuracy.

Based on the predicted time parameters, we construct two dis-
tinct probability distributions: a normal distribution fitted using
mean latency and variance, capturing the central tendency and
variability of the data; and a long-tailed Pareto distribution fitted
with mean latency and 95% tail latency, modeling the extreme tail
behavior observed in real-world scenarios. To combine these two
distributions, we introduce a smoothing function between the tail
of the normal distribution and the body of the Pareto distribution,
ensuring seamless fusion between the two distributions while pre-
serving the characteristics of both the central region and the tail.

Table 2: Methods and their corresponding metrics. Memory
snapshots is a sequence including the time, size and number
of memory allocation during execution.

Method Operation Metric
perf Instructions, Branches, Context-switches

valgrind Memory snapshots, Heap size
/proc Stack size

wrapper Bytes sent, Bytes received, Packets sent, Packets received
strace I/O throughput
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Figure 5: The procedure of Partition and Substitution.

3.2 Cost-based Offline Pipeline Tuning

We initially model the pipeline as a Directed Acyclic Graph(DAG)
𝐺 = (𝑉 , 𝐸), where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} represents the set of tasks
and 𝐸 ⊆ 𝑉 ×𝑉 represents the dependencies between tasks. In this
model, each task 𝑣𝑖 ∈ 𝑉 requires a certain amount of computational
resources 𝑟𝑖 and has an execution time 𝑡𝑖 (𝑟𝑖 ), which depends on
the resource allocation. The total execution time of the pipeline is
denoted as 𝑓 (𝑟 ), which depends on the resource allocation across
all tasks. The optimization objective is:

minimize
𝑟

𝑓 (𝑟 ) s.t. 𝑐 ≤ 𝐶bound,

where 𝐶boundis the cost constraint for the pipeline.

3.2.1 Partitioning based on Parallel Structure. The optimal task
configuration problem, which involves determining the most effi-
cient allocation of tasks under given constraints, is a NP-complete
problem [42]. In serverless pipeline configuring, the execution time
of each module is not fixed due to varying resource configurations.
To address the computational intractability of the task configura-
tion problem in serverless pipelines, we adopt a divide-and-conquer
strategy. By decomposing the pipeline into smaller subsets of tasks,
we effectively reduce the problem’s scale, enabling more efficient
analysis and optimization. Since branches in a parallel group orig-
inate from the same source node and converge at the same sink
node, they ideally share a common execution deadline to prevent
straggler effects [50] and ensure balanced execution. Thus, a critical
challenge in decomposing the large configuration space is how to
efficiently model and simplify these parallel paths while preserving
the overall pipeline structure and performance constraints.
Node Classification: We classify all nodes in the DAG into three
categories: source nodes, sink nodes, and intermediate nodes. Source
nodes are nodes with out-degree bigger than 1, sink nodes are nodes
with in-degree bigger than 1. Intermediate nodes are other nodes
that neither qualify as source nodes nor sink nodes.
Parallel Group Construction: For each source node, we identify
all branch paths originating from this node and check all their sink
nodes. Count the occurrences of each sink nodes, and retain only
those appearing in at least two distinct paths. Branches sharing
the same source node and sink node are grouped into a parallel
group, denoted as {𝐺1,𝐺2, . . . ,𝐺𝑚}, where the nodes within each
𝐺𝑚 exclude the source node and sink node.
Check Parallel Group: A parallel group 𝐺𝑚 is defined as a
child parallel group of 𝐺𝑛 if the following condition holds: for
any node 𝑣𝑖 , if 𝑣𝑖 ∈ 𝐺𝑚 , then 𝑣𝑖 must belong to 𝐺𝑛 . Conversely, 𝐺𝑛

is referred to as the parent parallel group of 𝐺𝑚 . When a parent

parallel group is composed of multiple child parallel groups(i.e.
𝐺𝑝𝑎𝑟𝑒𝑛𝑡 =

⋃
𝑖 𝐺𝑐ℎ𝑖𝑙𝑑𝑖 ), the child parallel group with the smallest

number of nodes is removed from parallel group set. This pruning
step removes less impactful parallel groups in parent-child struc-
tures, while preserving sufficient optimization space within each
parent-level parallel path.

3.2.2 Search with Predicted Time Distribution. We utilizes a multi-
round iterative process as illustrated in Figure 5: in each round,
distinct cost limits are allocated to every parallel group, and an op-
timal configuration is systematically explored within the bounds of
these cost limits. Specifically, the following strategies are employed:
Allocate cost recursively: ConfigNavigator employs a bottom-up
recursive cost allocation strategy, assigning costs to parallel groups
from child to parent groups. When allocating resources to a parent
group, the algorithm specifically excludes computational nodes that
have already been assigned to its child groups For example, consider
a parent group 𝐺𝑚 = {(𝑣1, 𝑣2, 𝑣3), (𝑣4, 𝑣5)} with cost bound 𝐶bound
and a child group 𝐺𝑛 = {(𝑣2), (𝑣3)}. After assigning a cost 𝐶𝑛 ∈
(0,𝐶bound) to 𝐺𝑛 , the remaining nodes in 𝐺𝑚 , i.e., {𝑣1, 𝑣4, 𝑣5}, are
allocated a cost𝐶𝑚\𝑛 ∈ (0,𝐶bound−𝐶𝑛). This approach ensures that
costs are distributed efficiently without redundancy across nested
groups. For each iteration, we generate different costs allocations
for parallel groups.
Using previous configurations as initial values: After each
search, ConfigNavigator stores the resource configuration, cost,
and time distribution of the parallel group. During subsequent
searches, the configuration with the closest cost to the current
group is retrieved and used as the initial value.
Hybrid Search: ConfigNavigator combines Bayesian optimization
and exhaustive search for exploring the search space within parallel
groups. While exhaustive search is suitable for groups with limited
functions, the complexity becomes prohibitive for larger groups.
For such cases, Bayesian optimization is employed to focus on
promising regions of the search space, reducing unnecessary search
costs and accelerating convergence. This hybrid approach balances
thoroughness and efficiency, leveraging predictions from a simple
neural network to further narrow the search space.
Equivalence Transformation: ConfigNavigator estimates the
time and cost of all functions within a parallel group with Monte-
Carlo method, after that it replaces the parallel group with an
equivalent function. This equivalent function combines the follow-
ing properties: A fixed execution cost, which is equal to the total
cost allocated to the parallel group. Time distribution under this
total cost, generated through Monte Carlo simulation to capture
the aggregated behavior of the parallel group. By replacing parallel
groups with equivalent functions, ConfigNavigator significantly
reduces the complexity of subsequent calculations.

3.3 Online Configuration Adjustment

3.3.1 Critical-Path Aware Configuration Tuning. ConfigNavigator
proposes an integration of the online adjustment mechanism capa-
ble of dynamically adapting pipeline configurations due to SLO re-
quirements. It conducts a localized search within the neighborhood
field of the optimal configurations identified offline. The advantage
of this approach is that it avoids falling into poor configurations
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Figure 6: Online Implementation.

during the search, which could result in significant increases in
execution time and costs.
When costs exceed the budget: Non-critical path constriction.
Adjusting the resource configurations of non-critical paths does not
increase the end-to-end latency of the pipeline but can significantly
reduce execution costs. ConfigNavigator employs a batch adjust-
ment strategy for functions that are not located on the same non-
critical path. By simultaneously reducing the resources allocated to
multiple functions on non-critical paths, this approach minimizes
the need for frequent, individual adjustments while maintaining
overall system efficiency.

The adjustment granularity is given by:

Δ𝑟 = 𝛼 (𝐶𝑟𝑒𝑎𝑙 −𝐶𝑏𝑜𝑢𝑛𝑑 ),

where 𝛼 is the adjustment factor that determines the amplitude for
the batch of function configurations to be adjusted.
When costs are below the budget: Critical path relaxation.
When costs are below the budget, ConfigNavigator focuses on
critical path relaxation to enhance pipeline performance. Adjust-
ing resource configurations on the critical path directly impacts
end-to-end latency. However, large-scale adjustments can intro-
duce instability by altering the critical path itself. To mitigate this,
ConfigNavigator adopts a conservative approach, making small,
incremental changes to individual functions. This ensures that per-
formance gains are achieved without disrupting pipeline stability.

3.3.2 When pipeline structure is updated. Upon pipeline updates,
ConfigNavigator performs basic profiling for potential newmodules
and re-applies search strategy on the updated pipeline. Both phases
exhibit exceptional computational efficiency, with complete exe-
cution times consistently remaining below 100 milliseconds. This
rapid adaptation capability enables ConfigNavigator to dynamically
respond to structural pipeline modifications.

3.3.3 Online Implementation. ConfigNavigator is implemented on
AWS Lambda [5], a widely-used Function-as-a-Service (FaaS) plat-
form [3]. To ensure platform independence, ConfigNavigator avoids
relying on platform-specific APIs for modifying function configu-
rations, invoking functions, and retrieving execution logs. These
APIs, such as AWS Lambda’s updateFunctionConfiguration and get-
FunctionLogs, are fundamental features of most serverless platforms.
Thus, ConfigNavigator can be easily extended to other serverless
platforms with minimal effort, making it highly adaptable for di-
verse deployment environments.

Figure 6 illustrates the implementation design of ConfigNav-
igator’s online component, which consists of two non-intrusive
modules: the log inspection module and the configuration update

module. For pipelines running on commercial serverless platforms,
the specific execution process is typically a black box. To address
this challenge, the log inspection module periodically queries ex-
ecution logs to extract information about end-to-end latency and
individual function execution times. By analyzing latency data and
call details from logs, the log inspection module reconstructs the
pipeline structure (e.g., certain modules may or may not be in-
voked, or may be called a varying number of times) and determines
whether the pipeline exceeds its cost constraints. The configuration
update module identifies functions requiring configuration updates
and applies changes without disrupting ongoing pipeline execu-
tions. Rather than directly modifying configurations of running
functions, updates are made to configuration files stored in central-
ized storage (e.g., AWS S3). Each serverless function reads from this
centralized storage to obtain configurations for its subfunctions,
then invokes the corresponding subfunctions accordingly.

4 Evaluation
4.1 Experiment Setup
Dataset from Video Sharing Platforms: We collect 50 most
popular videos from the Music section of Bilibili in Nov. 13th, 2024.
The dataset comprises recordings captured using different cam-
era types and under distinct lighting conditions, with resolutions
ranging from 360p to 1080p. To facilitate subsequent analysis and
processing, the videos are segmented into 5-second clips. All clips
are stored on Amazon S3 [4], leveraging its high scalability and
reliability to ensure efficient data management. The input stream-
ing patterns are simulated using production traces from Microsoft
Azure [38] to reflect realistic workload scenarios.
Serverless Video Processing Pipelines: We evaluate our so-
lution on three different pipelines. The first pipeline is face de-
tection pipeline similar to the one tested in Charmseeker [52] (li-
cense plate recognition module replaced with HD module). We
also select two representative video processing pipelines from Bili-
bili [8] and Google MediaPipe [1]: face beautification [9] and Auto-
clip [16]. Both pipelines are re-implemented in a serverless version
and deployed on AWS Lambda. The specific functions in these
three pipelines are listed in Table 3. Notably, the structure of face-
beautification pipeline would change according to number of faces
detected in the pipeline.
Alternative Solutions: We compare our solution with specialized
versions of state-of-the-art methods: (1) Charmseeker [52] solution,
which directly addresses the problem of configuration optimization
under budget constraints, using a two-stage Bayesian search to find
the best pipeline configuration online. (2) Aquatope [53], which
uses a special noise modeling approach and batch Bayesian search.
We perform 40 search iterations for each of the two baselines, which
is twice the number used in Charmseeker.

4.2 Overall Performance
For different application pipelines and cost constraints, ConfigNav-
igator exhibits robust scalability across this complexity spectrum
as illustrated in Figure 7, maintaining its performance advantages
in both simple and complex scenarios. We observe improvements
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Table 3: Video pipelines used for evaluating ConfigNavigator and their tasks.

Pipeline Description Number Tasks Parallel Depth
face-detection detect human face 4 decode, face detection, high resolution, encode 1

face-
beautification

perform face beautification
on face extracted

7 decode, ROI, face beautification, judge resolution, HD,
restore, encode

2

Autoclip clip video to ideal size based
on objects and borders

8 decode, scale image, border detection, face detection,
object detection, signal fusing, scene cropping, encode

3
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Figure 7: Overall Performance. The x-axis denotes the threshold for cost bounds exceeding the minimal cost percentile.

Table 4: ConfigNavigator improves both time and cost con-
sumption in pipeline Autoclip.

Cost Bound 30% 50% 80% 100%
Latency 28.34 31.23 -3.95 0.25
Cost 0.53 1.77 10.35 -1.73

in three aspects: (1) ConfigNavigator performs better in resource-
constrained scenarios. Under the same cost constraint, ConfigNavi-
gator achieves 20-50% lower end-to-end application latency in most
cases compared to the best baseline method between Charmseeker
and Aquatope. (2) ConfigNavigator not only improves average per-
formance but also reduces performance variance: the whiskers in
ConfigNavigator’s boxplots are noticeably shorter than those of the
baselines. (3) Notably, the performance gains are most pronounced
at moderate workload levels (50%), where our system’s intelligent
configuration optimization shows its greatest impact. As workloads
approach 100%, the performance differential between different ap-
proaches diminishes, suggesting that system resource saturation
becomes the dominant factor rather than configuration efficiency.

To summarize the improvements of our method in end-to-end
latency and cost, Table 4 presents ConfigNavigator’s performance
gains compared to the better-performing baseline. The table shows
that ConfigNavigator achieves significant latency reductions under
stricter cost constraints. When the cost constraint is 30% or 50%
above the minimal possible cost, ConfigNavigator reduces latency
by approximately 30% without exceeding the cost incurred by the
baselines. Under higher cost constraints, the improvements by Con-
figNavigator are less pronounced. This is primarily because higher
cost constraints reduce the difficulty of the search for the base-
line methods; less precise search results do not lead to significant
changes in the final outcomes (i.e., with higher cost constraints,
there exists a broad feasible region where the shortest achievable
latency is close to the optimal solution).
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(b) Validation set.

Figure 8: Error of prediction model evaluated on both real
function set and validation set.
Table 5: Prediction error(%) for functions in face beautifica-
tion pipeline.

Resource(MB) 128 256 512 1024 2048 4096

face detection 37.5 29.7 20.4 17.6 16.9 12.3
face beautification 8.9 7.3 5.6 5.8 5.1 3.9

restore 27.8 23.4 15.6 10.9 12.7 12.3
HD 9.7 9.5 6.7 4.3 4.7 3.9

4.3 The Performance of Prediction Model
To evaluate the performance of the prediction model under differ-
ent functions and memory configurations, we conduct a series of
micro-benchmarks. Our function test set includes two parts: all the
functions in the pipeline mentioned above and the test set gener-
ated from the dataset in § 3.1 (split in an 8:2 ratio). As shown in
Figure 8, when we increase the configured memory, the error rates
for average latency, 95% latency, and variance all decreased.

Table 5 shows the predication error of some important functions
used in the application pipeline. As seen, for functions that do not
involve machine learning, the prediction error rates are relatively
small, with average latency prediction errors being less than 10%.
This evaluation demonstrates that our prediction model achieves
practical utility across diverse video processing scenarios, with
particularly strong performance in environments with adequate
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memory resources. The analysis provides a solid foundation for both
deployment decisions and future research directions in serverless
video processing optimization.

4.4 Effectiveness of the Offline Search
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Figure 9: The convergence process of ConfigNavigator com-
pared to baseline methods.
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Figure 10: Search effect under various budget constraints (30%,
50%, and 100% Above Minimal Cost). Cost is measured in MB
· ms, and the pricing may vary across different platforms.

We evaluate the effectiveness of our offline search algorithm
with fixed input. We repeat putting the same 5-second clips into
evaluation pipelines, ensuring the structure and execution of each
function are stable. We have both comparison algorithms, Charm-
seeker and Aquatope, perform online searches 80 times each (The
original number of searches in Charmseeker’s evaluation is 20, but
we quadruple it due to our more complex pipeline structure. For
each search, video streams are continuously sent to the pipeline
entrance for approximately 30 seconds), while ConfigNavigator
directly searches locally after offline testing of metrics for each
function in the pipeline.

The search convergence curves for the three functions are shown
in Figure 9. The search curve demonstrates that ConfigNavigator re-
duces 94.11% of time compared to the batch Bayesian configuration
optimizer Aquatope, while achieving superior performance. This
highlights ConfigNavigator’s effective integration of a prediction
model with an offline search algorithm.

As observed in Figure 10, ConfigNavigator consistently identi-
fies configurations that outperform both baselines (Charmseeker
and Aquatope) in terms of cost and latency. Although ConfigNav-
igator does not always discover the optimal configuration due to
discrepancies between the prediction model and real-world envi-
ronment, it demonstrates more stable search behavior, indicating
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Figure 11: End-to-end latency of pipeline face beautification
change when input video changes.

efficient exploration of the search space. As observed, although
ConfigNavigator does not always find the best configuration due to
the difference between predict model and real-world environment,
its search capability is more stable, indicating efficient exploration
of the solution space. In contrast, the two comparison algorithms
sometimes find better results but lack consistency in their search
performance. We observe from Figure 10 that ConfigNavigator
consistently outperforms the baseline methods under constrained
budget scenarios. Specifically, when the cost bound is set at 30%
or 50% above the minimal cost, ConfigNavigator achieves an av-
erage improvement of 31.57% in pipeline latency and 14.31% in
cost efficiency compared to Charmseeker and Aquatope. When the
cost bound is set at 100% above the minimum (representing a less
constrained scenario), all three methods converge to comparable
performance levels(also demonstrated in Figure 7). This suggests
that ConfigNavigator’s advantage is particularly pronounced when
operating under tighter resource constraints.

4.5 Tuning in dynamic environment
Figure 11 demonstrates the system’s latency response to input reso-
lution changes. Upon detecting lower resolution input, ConfigNavi-
gator initiates adaptation. When processing dynamic video inputs,
ConfigNavigator reduces end-to-end latency by 13.97% across ap-
plications in average. The system successfully establishes a lower
steady-state latency with reduced variance after adaptation.

5 Conclusion
Video processing pipelines present significant challenges in re-
source management due to time-consuming measurement, large
configuration spaces, and irregular input stream and pipeline struc-
ture. To address these challenges, we introduce ConfigNavigator, an
innovative resource tunning framework adapting to both fluctuat-
ing input streams and dynamic pipeline structures. ConfigNavigator
uses a prediction model based on basic operation profiling to reduce
measurement costs, combined with an efficient search algorithm
and dynamic adjustment capabilities. Through experiments on real-
world dataset, we demonstrate the superiority of ConfigNavigator.
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