
Composing Microservices and Serverless
for Load Resilience

Dilina Dehigama

University of Edinburgh

Edinburgh, UK

dilina.dehigama@ed.ac.uk

Shyam Jesalpura

University of Edinburgh

Edinburgh, UK

s.jesalpura@gmail.com

Antonios Katsarakis

Huawei Research

Edinburgh, UK

antoniskatsarakis@yahoo.com

Marios Kogias

Imperial College London

London, UK

m.kogias@imperial.ac.uk

Rakesh Kumar

NTNU

Trondheim, Norway

rakesh.kumar@ntnu.no

Boris Grot

University of Edinburgh

Edinburgh, UK

boris.grot@ed.ac.uk

ABSTRACT
Online services strive to maintain application responsive-

ness even when the traffic is unpredictable and fluctuating.

Today’s online services are commonly deployed as graphs of

microservices, each microservice packaged as one or more

containers inside a virtual machines (VMs). While perfor-

mant and affordable when the load is steady, VM-based de-

ployments are known to be slow to scale when the load

spikes, resulting in degraded performance for end-users of

the service. To avoid such performance degradations, service

providers can over-provision their deployments; however,

such a strategy is costly and inefficient, leaving resources

heavily under-utilized for extended periods of time.

To address this challenge, we propose Hydra, a hybrid

architecture that combines microservices with serverless

computing. Hydra utilizes VMs to handle steady workloads

cost-effectively and leverages serverless elasticity to absorb

traffic spikes. When compared to an all-VM deployment with

Kubernetes auto-scaling, Hydra achieves a 62.4% reduction

in peak tail latency with a minimal 2.3% increase in cost.

1 INTRODUCTION
Today’s online services are complex, tiered applications com-

posed of multiple functionalities that must deliver a cost-

effective and seamless end-user experience on a tight latency

budget. Examples of such services include social networks,

online stores and media portals. Due to the need for high

scalability, availability and developer productivity, online

services are typically developed and deployed as microser-
vices – a collection of lightweight independent services that

communicate via RPC.

Prior works have shown that it is common for online ser-

vices to experience load fluctuation, both at regular intervals

(e.g., higher load during a day and lower load at night-time)

as well as less-predictable episodic spikes [27, 28, 5]. The lat-

ter may arise due to a major news event, an online flash sale,

or the release of a suddenly popular digital media item. Regu-

lar load fluctuations are straight-forward to accommodate by

provisioning capacity for the expected load ahead of time. In

contrast, irregular changes in load may present a challenge,

particularly if they are sudden and if the amplitude of the

spike is large.

Maintaining a highly responsive service in the face of a

load spike is a well-known challenge [35, 27, 1]. First, a spike

must be detected and confirmed to be non-transient, and

then additional resources must be provisioned and brought

online before traffic can be redirected to them. In practice,

these steps may take minutes or even tens of minutes. For

instance, Unity [41], a service provider that hosts several

e-stores that sometimes feature flash sales, has an online

forum where users frequently complain about their inability

to access a given store whenever a flash sale is in progress. In

one such discussion thread, titled "Store Server Overloaded

Resulting in Missed Flash Sales Purchases", a user writes: "In

12 minutes since the sale started the page has only pulled up

once." [37].

To avoid the slow scale-out problem, services can be over-

provisioned by deploying more instances than required for a

given load level. However, our analysis of a week-long trace

from Twitter [5] shows that the load spikes by over 2x on

several occasions during the week. Having enough stand-by

capacity to absorb such spikes would be prohibitively expen-

sive, since the extra resources would have to be deployed

and paid for continuously, even when they are not needed.

In theory, the bulk of an online service can be deployed

using serverless, which is known to be highly scalable both

in terms of time to launch an instance (typically just seconds

or less) and the number of concurrent instances (hundreds

or even thousands)
1
. In practice, though, the cost of run-

ning even a moderately popular online service on serverless

1
Only services that are inherently stateless can be ported to serverless.

Fortunately, these comprise the bulk of existing online services based on

our analysis of DeathStartBench workloads [18].

1

SESAME’24, April 2024, Athens, Greece Dilina Dehigama, Shyam Jesalpura, Antonios Katsarakis, Marios Kogias, Rakesh Kumar, and Boris Grot

would be prohibitive. Our calculations show that a represen-

tative hour-long steady-load fragment of the Twitter trace

would cost 3.6x more to serve using serverless than VM-

based microservices.

In this work, we observe that online services are best

served by microservices when the load is steady or pre-

dictable, thus providing good performance in a cost-effective

manner. However, we argue that effectively tolerating load

spikes is fundamentally challenging in existing microservice

architectures due to an inherent cost-performance trade-off.

Overprovisioning resources to handle the worst-case load is

costly, while provisioning new resources on the fly to handle

a spike incurs a high latency overhead.

In response, we propose Hydra, a hybrid architecture com-

bining microservices and serverless. Under normal load, Hy-

dra runs online applications using microservices, exactly

the same as it is done in today’s deployments. When the

load spikes, Hydra engages a serverless component, rapidly

shifting as much load as necessary to absorb the spike while

new microservice instances are launched in the background.

Once new microservice instances are available, the load is

shifted onto them. Our results show that Hydra achieves

the best of both serverless and microservice designs – high

scalability, responsiveness and cost-efficiency.

2 MOTIVATION
2.1 Modern Online Services
Modern online services, extensively utilized by users, have

evolved into complex systems. Given their interaction with

users, they encounter varied and unpredictable usage pat-

terns [5]. Nevertheless, meeting Service Level Objectives

(SLO) and adhering to latency constraints is crucial, as any

deviation significantly compromises the user experience [25].

To address these challenges, large service providers such as

Airbnb, Netflix, LinkedIn, Uber, and Twitter have adopted a

distributed microservice architecture [14, 38, 34, 40, 21].

In the microservices architecture, an application is com-

posed of small, loosely coupled components , each responsi-

ble for handling specific isolated functions. These microser-

vices are deployed as containers in virtual machines (VMs),

allowing each component to scale independently. As a design

principle, microservices are typically intended to be stateless

in nature [22, 18], facilitating greater scalability.

2.2 Varying Load Patterns
The load, or request arrival rate, of a service can exhibit

significant variability, influenced by factors such as the time

of day, day of the week, or season [5]. This is evident in

several online services, as demonstrated by Twitter, a social

networking platform facing higher loads during the day and

Figure 1: The load trace of Twitter over a week’s times-
pan. The highlighted section represents a few hours
from a specific day.

lower loads at night, or a shopping website encountering

increased demand during the holiday season.

Figure 1 illustrates the load pattern of Twitter [5] over

a week-long period. We observe a mostly consistent traffic

pattern characterized by predictable periodic trends with

minor fluctuations based on the time of day. However, the

figure also shows multiple instances of load spiking at vari-

ous points in the week without a clear periodic trend. The

zoomed-in portion of Figure 1 shows one such spike, starting

from 07:10 when the load suddenly increases from just under

4000 requests/min to 8000 requests/min – a doubling in load.

This emphasizes that microservice systems must be capable

of gracefully handling unexpected spikes without compro-

mising service quality. The pivotal question is: Can existing

microservice deployments and their autoscaling mechanisms

effectively contend with such load spikes?

2.3 Microservice Deployment Strategies
and Autoscaling

Microservices are commonly deployed as containers on top

of a cluster of virtual machines (VMs) with the help of con-

tainer orchestration platforms such as Kubernetes (K8s). [32,

2, 30]. Kubernetes streamlines the management of microser-

vices by offering features like automated deployment, scal-

ing, and monitoring. In the Kubernetes framework, the fun-

damental unit of deployment and scaling is a pod, which
typically comprises a primary container and, if necessary,

additional helper containers. One or more pods are deployed

within a single VM on a physical node.

At the initial scaling level, operations are conducted at the

pod granularity, and the Horizontal Pod Autoscaler (HPA)

plays a pivotal role in this process. In the scaling-out process,

2

Composing Microservices and Serverless
for Load Resilience SESAME’24, April 2024, Athens, Greece

Figure 2: Impact of a sudden spike in load on a
microservices-based application.

the HPA orchestrates the creation of new pods within a run-

ning VM based on observed metrics, such as CPU utilization

or metrics like requests per second (RPS).

In scenarios where the existing cluster of VMs lacks the

necessary capacity to accommodate new pods, the Cluster

Autoscaler (CA) serves as the second level of autoscaling.

The CA dynamically provisions new VMs and seamlessly

integrates them into the cluster, thereby enabling HPA to

place additional pods inside the newly-created VMs.

Problematically, cluster scaling operations are not without

their limitations. For instance, HPA incurs a detection lag,

which is 15 seconds by default and cannot be further reduced

in current production Kubernetes clusters, such as Amazon

Elastic Kubernetes Service (EKS) [6] and Google Kubernetes

Engine (GKE) [19].

On top of the extra latency for detection, initiating new

pods usually requires multiple seconds, while provisioning

new VMs can extend to minutes [4]. In short, in case of

a major load spike, when existing VMs are not sufficient

to absorb the load, new VMs must be provisioned and the

autoscaling process can take minutes to complete, during

which time, the service quality will inevitably suffer.

2.4 Microservices Meet Load Spikes
Handling sudden load spikes poses a significant challenge

for current microservice autoscaling systems. The difficulty

lies in the time it takes for the autoscaler to recognize that

a bona-fide spike is in progress (detection lag) and the sub-

sequent time needed to scale-out instances (reaction lag).
The combined detection and reaction lag can lead significant

request queuing within existing instances, adversely affect-

ing system performance and user experience. In essence,

autoscalers struggle to swiftly adapt to sharp spikes in work-

load, resulting in performance bottlenecks and delays during

periods of higher demand.

We now evaluate the impact of the load spikes on the

end-to-end latency, defined as the total time taken from the

moment a client’s request is sent to when the response is

received. This evaluation is conducted by replaying a one-

hour-long load trace from the day highlighted in Figure 1

on an application deployed on Kubernetes in an AWS EKS

cluster. The application comprises two microservices in a se-

quential chain. The initial service handles client requests, sub-

sequently invoking the second service. Once responses are

obtained from the second service, the first service forwards

them back to the client. Our infrastructure integrates both

Horizontal Pod Autoscaler (HPA) and Cluster Autoscaler

(CA), representing state-of-the-art production-grade auto-

scaling. Section 5 provides detailed information on the pa-

rameters used in this study.

In the portion of the trace outside of the spike (i.e., before

7:10 and after 7:14), we observe minimal load fluctuation,

resulting in consistently low and stable latency. Starting from

07:11, there is a notable surge in the arrival rate of requests,

causing a significant rise in response time. As shown in

Figure 2, the average latency increases by 14x and the tail

latency by 8.3x.

As discussed earlier, slow scaling can overload the system,

resulting in high latency for end-users and violations of

Service Level Agreements (SLAs). In attempts to address this

issue, service providers often over-provision clusters.[10]

The load spike, illustrated in Figure 1, is identified as being

twice the regular load. Therefore, even with a marginal over-

provisioning strategy aimed at handling a 2x spike, there is

a potential for a 66% increase in costs during an hour long

period from the Twitter trace (6:40 - 7:40), as illustrated in

Figure 7. Such over-provisioning contributes to low resource

efficiency and elevated costs [42].

2.5 Serverless to the Rescue?
While traditional microservices architectures struggle with

handling sudden spikes in load, serverless computing offers a

promising alternative for tackling this challenge. Within the

serverless model, the application’s functionality is divided

into event-driven tasks, which are lightweight and stateless,

referred to as functions. Being lightweight and stateless al-

lows near-instantaneous scaling of these functions from zero

to thousands of active instances [24] on the order of seconds,

compared to the minutes it takes to launch VM instances.

The fact that many services within a typical microservice

framework are stateless by design, presents an opportunity

to deploy them as serverless functions without the need to

rewrite the application. Major cloud service providers, in-

cluding AWS Lambda [36], GCF [12], and Azure Functions

[9], offer support for serverless deployments. In addition to

rapid scaling and fast instance launch, serverless computing

3

SESAME’24, April 2024, Athens, Greece Dilina Dehigama, Shyam Jesalpura, Antonios Katsarakis, Marios Kogias, Rakesh Kumar, and Boris Grot

Figure 3: Impact of a sudden spike in load on a
serverless-function based application.

also features a pay-as-you-go model that eliminates costs for

idle resources. It’s seamless scalability position serverless

computing as a compelling solution for applications with

highly variable load patterns.

We study the effect of the load spike highlighted in Fig-

ure 1 on the simple two-service benchmark described in 2.4

deployed using serverless functions. Results of the study are

shown in Figure 3. Unlike the microservice scenario depicted

in Figure 2, where the load spike resulted in a significant in-

crease in tail and average latency (8.3x and 14x respectively),

the serverless functions show only a slight uptick in both

average and tail as low as 1.9x. This result highlights the

resilience of serverless functions in reacting to sudden spikes

in load.

Serverless functions may not be optimal for scenarios in-

volving foreseeable and steady loads due to their higher cost

compared to provisioning resources in advance[13, 23]. For

instance, the estimated cost of running a single service from

our toy application for an hour-long steady-load segment

of the Twitter trace (from 05:10 to 06:10) is 3.6x higher on

serverless as compared to running on VMs. The calculation

is based on AWS Lambda and AWS EC2 pricing [7, 8], where

serverless function memory is configured to match the vC-

PUs of the VM instance. [31]. The higher cost of running on

serverless is because serverless functions are charged based

on the number of requests and the time taken to execute

each request. Hence, for a predictable and consistent load, it

is more economical to use dedicated VMs. In contrast, server-

less best accommodates sporadic workloads that can scale

up and down based on demand [13].

3 DESIGN
We use two insights to address the limitations of existing

scalable deployment approaches. First, we capitalize on the

elasticity and ultra-fast startup time of serverless functions

to efficiently manage load spikes. Second, we harness the

cost-effective nature of virtual machines to handle steady

workloads reliably. Leveraging both insights, we introduce

Hydra, a hybrid system that strategically combines VMs and

serverless functions to provide predictable performance and

cost efficiency when the load is stable, with rapid scaling

when a load spikes.

3.1 System in Action
Figure 4 provides a high-level depiction of Hydra in action.

Incoming service requests, under typical load, are directed

to existing pods in VMs by the load balancer (step 1). The

Hydra controller detects load spikes by monitoring RPS and

CPUmetrics (step 2). Upon identifying a spike, theHydra con-

troller instructs the load balancer to shift a fraction of the

traffic to serverless functions (step 3). Consequently, the load

balancer routes the excess traffic portion to serverless func-

tions, alleviating the load on VMs (step 4). Simultaneously,

CA brings up new VMs to accommodate the increased load.

Once the new VMs are operational, the Hydra controller

instructs the load balancer to shift all the traffic back to the

VMs (step 5).

Next, we describe the Hydra Controller, a novel compo-

nent that comprises a monitoring module and is responsible

for executing the entire load balancing logic.

3.2 Hydra Controller
We introduce a lightweight component called the Hydra Con-
troller that runs as an application within the cluster. This

controller is responsible for monitoring CPU and RPSmetrics

and making decisions accordingly. Hydra’s monitoring sys-

tem operates at a fine granularity of 1-second intervals, ensur-

ing close to instantaneous detection of any surge in demand.

The controller is also in charge of distributing the traffic

between VMs and serverless instances whenever serverless

is engaged or disengaged. This controller is fully automated,

operating in the background, continously monitoring the

load and making decisions accordingly.

Hydra employs a weighted load balancing approach[17,

29] to effectively distribute traffic between VMs and server-

less components. Under steady load conditions, traffic is

directed solely towards VM clusters, with serverless clusters

receiving no traffic. In the event of a load spike, Hydra dy-

namically calculates weights in real-time for both VM and

serverless clusters based on observed metrics. During weight

calculation, Hydra ensures that the weight assigned to the

serverless cluster corresponds only to the excess traffic gen-

erated by the load spike. Once the CA has added new VMs

to the cluster and they are operational, the Hydra controller

gradually updates the load balancer weights to redirect traffic

back to the VMs.

Key Takeaway: The Hydra controller, serving as the sole
novel component, runs independently within the K8s cluster.

4

Composing Microservices and Serverless
for Load Resilience SESAME’24, April 2024, Athens, Greece

Figure 4: Hydra design overview

Hydra controller integrates into current K8s deployments

without necessitating any modifications. Additionally, both

data and control paths remain unaltered for both serverless

and VM implementations.

4 IMPLEMENTATION
We implement Hydra using Knative enabled K8s cluster. Kna-

tive extends K8s to provide a framework for deploying and

managing serverless functions. [20]

Fine-Grained Monitoring: To detect the load spikes,

K8s uses CAdvisor [11] to monitor the CPU usage of each

pod. To enable real-time load spike detection, we extend the

CAdvisor source to collect CPU usage statistics from each

pod every 1 second rather than the older minimum of 15 sec-

onds and trigger the redirection of requests to the serverless

functions. These metrics are consumed by Prometheus [33],

which is a widely used monitoring system and is exposed to

the controller. Prometheus also collects service-level metrics

like RPS and latency and exposes them to the controller. The

Hydra controller uses these metrics to calculate the weights

within the load-balancing algorithm.

Dynamic Load Shifting: For dynamic redirection of re-

quests, we use Istio [39]. Istio is a service mesh that offers a

way to control how microservices interact with each other

without changing the microservices themselves. Istio sup-

ports dynamic redirection by injecting a sidecar container

named Envoy proxy[16], alongside each microservice and

configuring those proxies to control and track network traffic

between services. Outgoing requests from a microservice are

intercepted by the Envoy proxy and redirected to the appro-

priate destination. Each service has 2 possible destinations:

the containerized version of the service and the serverless

version of the service. The ratio of requests sent to each des-

tination is determined by the load-balancing logic described

under Section 3.2.

5 EXPERIMENTAL METHODOLOGY
To evaluate cost and performance trade-offs, we compare

Hydra against a baseline using the following experiment

setup.

Benchmarks: We create a custom benchmark consisting

of 2 microservices Caller and Callee. Upon receiving a re-

quest, the Load Balancer invokes the Caller service. The

Caller service then invokes Callee service and waits for

the response. Once the response from Callee is received,

Caller returns too. The Callee service is a CPU-intensive ser-

vice written in C++ that performs floating-point operations.

The Caller service written in golang just acts as a proxy to in-
voke Callee service. Both the services are stateless and hence

can be deployed as either Knative services or K8s services.

Configurations:We compare Hydra against the K8s de-

fault baseline (Baseline), that utilizes an EKS cluster with

default parameters for HPA and CA. The HPA is configured

to trigger scaling when the average CPU utilization reaches

a threshold of 50% [28]. Additionally, the average Requests

Per Second (RPS) threshold is configured to correspond to

the RPS at 50% CPU utilization. The HPA has a default met-

rics polling interval of 15 seconds (–horizontal-pod-autoscaler-
sync-period), while the CA checks the need for new VMs at

intervals of 10 seconds(-scan-interval).
Cluster: The K8s cluster is deployed using Amazon EKS

[3] and the nodes are EC2 instances. The nodes are of type

t3.xlarge with 4 vCPU cores and 16 GB of RAM. The cost of

the cluster is 0.1670 USD per hour per VM [8]. For Knative de-

ployments, dedicated VMs are allocated within the same K8s

cluster. Since the cold start times of the production server-

less offerings like AWS Lambda, Azure Functions, is 10 times

lower than that of Knative [15], we keep Knative functions

warm to replicate the production serverless offerings.

Load trace:We use the Twitter trace [5] to generate the

load. Since, the original trace is sampled, we scale up the

trace by 7x for our evaluation to generate sufficient load to

trigger CA-level auto-scaling. We use locust [26] to generate

the load. Locust is deployed in a VM with 4 vCPU cores and

16 GB of RAM in the same AWS region as the cluster.

Cost Estimate: For the serverless costs, we calculate the
total run-time of the Knative functions and use the AWS cost

calculator [7] to estimate the cost for AWS Lambda functions

with the same memory and CPU configuration for a similar

execution time. For example, if a Knative function runs for 1

second with 128 MB of memory and has 1000 invocations,

we estimate the cost of the AWS Lambda function with 128

MB of memory for 1000 seconds.

5

SESAME’24, April 2024, Athens, Greece Dilina Dehigama, Shyam Jesalpura, Antonios Katsarakis, Marios Kogias, Rakesh Kumar, and Boris Grot

Figure 5: Average end-to-end latency comparison

Figure 6: Tail end-to-end latency comparison (95th per-
centile)

6 EVALUATION
6.1 Performance
We first evaluate Hydra’s ability to compensate for increased

tail latencies due to sudden load spikes. We compare the

average and tail (95%) latencies of Hydra against the baseline.

Results are depicted in Figures 5 and 6. Before a spike in the

trace (before 7:10), the baseline and Hydra exhibit similar

latencies.

In comparison to the Kubernetes default baseline, Hydra

showcases substantial latency improvements, reducing peak

tail latency by 62.4% and peak average latency by 78.5%.

Additionally, it is noteworthy that Hydra quickly absorbs

the load spike, with the latency spike beginning to decrease

in less than 30 seconds. In contrast, the baseline takes around

2 minutes to absorb the load. This indicates that Hydra can

quickly absorb load spikes with minimal performance im-

pact.

6.2 Cost
Next, we compare the cost of Hydra against the baseline

and another configuration—an over-provisioned VM-based

cluster (over-provisioned). The over-provisioned cluster is

configured to absorb the peak load in the studied trace with

Figure 7: Cost comparison

an average CPU utilization of 50% or less. As the observed

peak load is approximately double the stable load, the over-

provisioned configuration has twice the resources of the

baseline cluster.

We illustrate the cost comparison in Figure 7. Throughout

an hour-long trace, the baseline incurs a cost of $1.71, the

over-provisioned configuration costs $2.84, and Hydra has a

cost of $1.75 in total. The cost of Hydra is 2.3% higher than

the baseline and 38.3% lower than the over-provisioned con-

figuration. This indicates that Hydra can effectively absorb

load spikes with minimal cost impact.

7 CONCLUSION
Dealing with sudden spikes in load poses a considerable

challenge for existing VM-based microservices due to the

time required to bring up additional resources. While server-

less functions with ultra-fast startup times offer a promising

solution, the high cost of a serverless-only approach hin-

ders widespread adoption. To address this issue, we propose

Hydra, a hybrid architecture that seamlessly combines mi-

croservices with serverless computing to improve scalability

and load resilience. Our evaluation shows that Hydra sig-

nificantly reduces peak tail latency by 62.4% compared to

the default Kubernetes baseline, with only a minimal 2.3%

increase in cost. This highlights Hydra’s effectiveness in pro-

viding a streamlined solution for achieving load resilience

cost-efficiently within modern online service architectures.

REFERENCES
[1] 2022. "Fascinating facts about facades at CBS Sports". [Online; ac-

cessed 25. Jan. 2024]. (Dec. 2022). https://www.gomomento.com/blo

g/fascinating-facts-about-facades-at-cbs-sports.

[2] 2023. "Swarm mode overview". [Online; accessed 11. Jan. 2024]. (Dec.

2023). https://docs.docker.com/engine/swarm.

[3] 2024. Amazon EKS Customers | Managed Kubernetes Service | Ama-

zon Web Services. [Online; accessed 25. Jan. 2024]. (Jan. 2024). https:

//aws.amazon.com/eks.

[4] 2024. AMI types - Amazon Elastic Compute Cloud. [Online; accessed

9. Jan. 2024]. (Jan. 2024). https://docs.aws.amazon.com/AWSEC2/lat

est/UserGuide/ComponentsAMIs.html#storage-for-the-root-devic

e.

[5] 2024. Archive Team: The Twitter Stream Grab. [Online; accessed 9.

Jan. 2024]. (Jan. 2024). https://archive.org/details/twitterstream.

6

https://www.gomomento.com/blog/fascinating-facts-about-facades-at-cbs-sports
https://www.gomomento.com/blog/fascinating-facts-about-facades-at-cbs-sports
https://docs.docker.com/engine/swarm
https://aws.amazon.com/eks
https://aws.amazon.com/eks
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device
https://archive.org/details/twitterstream

Composing Microservices and Serverless
for Load Resilience SESAME’24, April 2024, Athens, Greece

[6] 2024. AWS EKS Horizontal Pod Autoscaler Sync Interval. [Online;

accessed 9. Jan. 2024]. (Jan. 2024). https://github.com/aws/container

s-roadmap/issues/1809.

[7] 2024. AWS Lambda pricing calculator. [Online; accessed 27. Jan.

2024]. (Jan. 2024). https://calculator.aws/#/createCalculator/Lambda.

[8] 2024. AWS VM Instances cost. [Online; accessed 27. Jan. 2024]. (Jan.

2024). https://aws.amazon.com/ec2/instance-types/t3/.

[9] 2024. Azure Functions – Serverless Functions in Computing | Mi-

crosoft Azure. [Online; accessed 11. Jan. 2024]. (Jan. 2024). https://az

ure.microsoft.com/en-gb/products/functions#overview.

[10] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. 2019.

Burscale: using burstable instances for cost-effective autoscaling in

the public cloud. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC ’19). Association for Computing Machinery, Santa

Cruz, CA, USA, 126–138. isbn: 9781450369732. doi: 10.1145/3357223

.3362706.

[11] 2024. cadvisor. [Online; accessed 24. Jan. 2024]. (Jan. 2024). https://g

ithub.com/google/cadvisor.

[12] 2024. Cloud Functions | Google Cloud. [Online; accessed 11. Jan.

2024]. (Jan. 2024). https://cloud.google.com/functions.

[13] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-

stawski, and Torsten Hoefler. 2021. Sebs: a serverless benchmark

suite for function-as-a-service computing. (2021). arXiv: 2012.14132

[cs.DC].
[14] TC Currie. [n. d.] Airbnb’s 10 Takeaways from Moving to Microser-

vices — thenewstack.io. https://thenewstack.io/airbnbs-10-takeawa

ys-moving-microservices/. [Accessed 08-01-2024]. ().

[15] NilanjanDaw, Umesh Bellur, and PurushottamKulkarni. 2020. Xanadu:

mitigating cascading cold starts in serverless function chain deploy-

ments. In Proceedings of the 21st International Middleware Confer-
ence (Middleware ’20). Association for Computing Machinery, Delft,

Netherlands, 356–370. isbn: 9781450381536. doi: 10.1145/3423211.34

25690.

[16] 2024. Envoy proxy - home. [Online; accessed 2. Feb. 2024]. (Feb. 2024).

https://www.envoyproxy.io.

[17] 2024. Envoy Proxy | Load Balancing. [Online; accessed 27. Jan. 2024].

(Jan. 2024). https://www.envoyproxy.io/docs/envoy/latest/intro/arc

h_overview/upstream/load_balancing/load_balancers.

[18] Yu Gan et al. 2019. An open-source benchmark suite for microser-

vices and their hardware-software implications for cloud & edge

systems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). Association for Computing Machinery, Provi-

dence, RI, USA, 3–18. isbn: 9781450362405. doi: 10.1145/3297858.330

4013.

[19] 2024. Google Kubernetes Engine Horizontal Pod Autoscaler Sync

Interval. [Online; accessed 10. Jan. 2024]. (Jan. 2024). https://cloud.g

oogle.com/kubernetes-engine/docs/concepts/horizontalpodautosc

aler.

[20] 2024. Home - Knative. [Online; accessed 24. Jan. 2024]. (Jan. 2024).

https://knative.dev/docs.

[21] Jenny Qiu Hylbert and Steve Cosenza. 12 August 2020. Rebuilding

twitter’s public api. (12 August 2020). https://blog.twitter.com/engin

eering/en_us/topics/infrastructure/2020/rebuild_twitter_public_ap

i_2020.

[22] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: efficient and scal-

able serverless computing for latency-sensitive, interactive microser-

vices. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’21). Association for Computing Machinery, Virtual,

USA, 152–166. isbn: 9781450383172. doi: 10.1145/3445814.3446701.

[23] Eric Jonas et al. 2019. Cloud programming simplified: a berkeley

view on serverless computing. (2019). arXiv: 1902.03383 [cs.OS].
[24] 2024. Lambda function scaling - AWS Lambda. [Online; accessed 11.

Jan. 2024]. (Jan. 2024). https://docs.aws.amazon.com/lambda/latest/d

g/lambda-concurrency.html.

[25] Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and

Dilma Da Silva. 2023. Sora: a latency sensitive approach for mi-

croservice soft resource adaptation. In Proceedings of the 24th Inter-
national Middleware Conference (Middleware ’23). Association for

Computing Machinery, <conf-loc>, <city>Bologna</city>, <coun-

try>Italy</country>, </conf-loc>, 43–56. isbn: 9798400701771. doi:

10.1145/3590140.3592851.

[26] 2024. Locust.io. [Online; accessed 27. Jan. 2024]. (Jan. 2024). https://l

ocust.io.

[27] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping

Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing

microservice dependency and performance: alibaba trace analysis. In

Proceedings of the ACM Symposium on Cloud Computing (SoCC ’21).

Association for Computing Machinery, Seattle, WA, USA, 412–426.

isbn: 9781450386388. doi: 10.1145/3472883.3487003.

[28] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang,

Guodong Yang, and Chengzhong Xu. 2022. The power of prediction:

microservice auto scaling via workload learning. In Proceedings of
the 13th Symposium on Cloud Computing (SoCC ’22). Association

for Computing Machinery, San Francisco, California, 355–369. isbn:

9781450394147. doi: 10.1145/3542929.3563477.

[29] 2024. NGINX Docs | NGINX Load Balancing. [Online; accessed 27.

Jan. 2024]. (Jan. 2024). https://nginx.org/en/docs/http/load_balancin

g.html#nginx_weighted_load_balancing.

[30] 2024. Nomad | HashiCorp Developer. [Online; accessed 11. Jan. 2024].
(Jan. 2024). https://developer.hashicorp.com/nomad.

[31] 2024. Optimizing Lambda Cost with Multi-Threading. [Online; ac-

cessed 27. Jan. 2024]. (Jan. 2024). https://web.archive.org/web/20220

629183438/https://www.sentiatechblog.com/aws-re-invent-2020-d

ay-3-optimizing-lambda-cost-with-multi-threading?utm_source

=reddit&utm_medium=social&utm_campaign=day3_lambda.

[32] 2024. Production-Grade Container Orchestration. [Online; accessed

9. Jan. 2024]. (Jan. 2024). https://kubernetes.io.

[33] Prometheus. 2024. Prometheus - Monitoring system & time series

database. [Online; accessed 25. Jan. 2024]. (Jan. 2024). https://promet

heus.io.

[34] [n. d.] Q&A with Jim Brikman: Splitting Up a Codebase into Mi-

croservices and Artifacts. en. (). Retrieved Jan. 8, 2024 from https://e

ngineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--spli

tting-up-a-codebase-into-microservices.

[35] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,

and Ravishankar K. Iyer. 2020. FIRM: an intelligent fine-grained re-

source management framework for SLO-Oriented microservices. In

14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, (Nov. 2020), 805–825. isbn:

978-1-939133-19-9. https://www.usenix.org/conference/osdi20/pres

entation/qiu.

[36] 2024. Serverless Function, FaaS Serverless - AWS Lambda - AWS.

[Online; accessed 11. Jan. 2024]. (Jan. 2024). https://aws.amazon.com

/lambda.

[37] 2024. Store Server Overloaded Resulting in Missed Flash Sales Pur-

chases. [Online; accessed 9. Jan. 2024]. (Jan. 2024). https://forum.uni

ty.com/threads/store-server-overloaded-resulting-in-missed-flash

-sales-purchases.1265966.

[38] Web Team. 2023. Microservices at netflix: lessons for architectural

design. (Jan. 2023). https://www.nginx.com/blog/microservices-at-n

etflix-architectural-best-practices/.

7

https://github.com/aws/containers-roadmap/issues/1809
https://github.com/aws/containers-roadmap/issues/1809
https://calculator.aws/#/createCalculator/Lambda
https://aws.amazon.com/ec2/instance-types/t3/
https://azure.microsoft.com/en-gb/products/functions#overview
https://azure.microsoft.com/en-gb/products/functions#overview
https://doi.org/10.1145/3357223.3362706
https://doi.org/10.1145/3357223.3362706
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://cloud.google.com/functions
https://arxiv.org/abs/2012.14132
https://arxiv.org/abs/2012.14132
https://thenewstack.io/airbnbs-10-takeaways-moving-microservices/
https://thenewstack.io/airbnbs-10-takeaways-moving-microservices/
https://doi.org/10.1145/3423211.3425690
https://doi.org/10.1145/3423211.3425690
https://www.envoyproxy.io
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://knative.dev/docs
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://doi.org/10.1145/3445814.3446701
https://arxiv.org/abs/1902.03383
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://doi.org/10.1145/3590140.3592851
https://locust.io
https://locust.io
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3542929.3563477
https://nginx.org/en/docs/http/load_balancing.html#nginx_weighted_load_balancing
https://nginx.org/en/docs/http/load_balancing.html#nginx_weighted_load_balancing
https://developer.hashicorp.com/nomad
https://web.archive.org/web/20220629183438/https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading?utm_source=reddit&utm_medium=social&utm_campaign=day3_lambda
https://web.archive.org/web/20220629183438/https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading?utm_source=reddit&utm_medium=social&utm_campaign=day3_lambda
https://web.archive.org/web/20220629183438/https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading?utm_source=reddit&utm_medium=social&utm_campaign=day3_lambda
https://web.archive.org/web/20220629183438/https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-lambda-cost-with-multi-threading?utm_source=reddit&utm_medium=social&utm_campaign=day3_lambda
https://kubernetes.io
https://prometheus.io
https://prometheus.io
https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--splitting-up-a-codebase-into-microservices
https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--splitting-up-a-codebase-into-microservices
https://engineering.linkedin.com/blog/2016/02/q-a-with-jim-brikman--splitting-up-a-codebase-into-microservices
https://www.usenix.org/conference/osdi20/presentation/qiu
https://www.usenix.org/conference/osdi20/presentation/qiu
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://forum.unity.com/threads/store-server-overloaded-resulting-in-missed-flash-sales-purchases.1265966
https://forum.unity.com/threads/store-server-overloaded-resulting-in-missed-flash-sales-purchases.1265966
https://forum.unity.com/threads/store-server-overloaded-resulting-in-missed-flash-sales-purchases.1265966
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

SESAME’24, April 2024, Athens, Greece Dilina Dehigama, Shyam Jesalpura, Antonios Katsarakis, Marios Kogias, Rakesh Kumar, and Boris Grot

[39] 2024. The Istio service mesh. [Online; accessed 24. Jan. 2024]. (Jan.

2024). https://istio.io/latest/about/service-mesh.

[40] 2016. The Opportunities Microservices Provide at Uber Engineering.

[Online; accessed 8. Jan. 2024]. (Apr. 2016). https://www.uber.com/e

n-GB/blog/building-tincup-microservice-implementation.

[41] 2024. Unity | Asset Store. [Online; accessed 30. Jan. 2024]. (Jan. 2024).

https://assetstore.unity.com/.

[42] Chris Zaloumis. 2022. Are Your Data Centers Keeping You From

Sustainability? - IBM Blog. IBM Blog, (June 2022). https://www.ibm.c

om/blog/are-your-data-centers-keeping-you-from-sustainability.

8

https://istio.io/latest/about/service-mesh
https://www.uber.com/en-GB/blog/building-tincup-microservice-implementation
https://www.uber.com/en-GB/blog/building-tincup-microservice-implementation
https://assetstore.unity.com/
https://www.ibm.com/blog/are-your-data-centers-keeping-you-from-sustainability
https://www.ibm.com/blog/are-your-data-centers-keeping-you-from-sustainability

	Abstract
	1 Introduction
	2 Motivation
	2.1 Modern Online Services
	2.2 Varying Load Patterns
	2.3 Microservice Deployment Strategies and Autoscaling
	2.4 Microservices Meet Load Spikes
	2.5 Serverless to the Rescue?

	3 Design
	3.1 System in Action
	3.2 Hydra Controller

	4 Implementation
	5 Experimental Methodology
	6 Evaluation
	6.1 Performance
	6.2 Cost

	7 Conclusion

