
ComFaaS: A Dynamic Approach to Edge and Cloud Computing
with Function-as-a-Service

Jaden Jinu Lee
Computer Science & Information

Systems Department
Minnesota State University Moorhead

Moorhead, Minnesota, USA
jinu.lee@go.minnesota.edu

Judah J. Nava∗
Computer Science & Information

Systems Department
Minnesota State University Moorhead

Moorhead, Minnesota, USA
judah.nava@go.mnstate.edu

Hanku Lee
Computer Science & Information

Systems Department
Minnesota State University Moorhead

Moorhead, Minnesota, USA
hanku.lee@mnstate.edu

Abstract
The rapid evolution of cloud and edge computing has redefined
how data-intensive applications are developed and deployed, with
Function-as-a-Service (FaaS) playing a pivotal role in this trans-
formation. FaaS provides a serverless model where functions are
executed in response to specific events, offering developers au-
tomatic scalability, high availability, and reduced infrastructure
management overhead. The latest release of ComFaaS brings sub-
stantial improvements in flexibility, scalability, security, and ease
of use. It introduces a dynamic architecture that enables FaaS ap-
plications to be added and executed at runtime, without the need
to modify the core system, streamlining feature integration and
enhancing scalability. ComFaaS also includes dynamic load balanc-
ing, which intelligently distributes workloads between edge and
cloud environments, ensuring that tasks always benefit from the
most efficient computing resources available. This hybrid approach
allows edge and cloud computing to complement each other, result-
ing in optimized performance tailored to the specific needs of each
application. The fully functional release of ComFaaS now delivers
a powerful and adaptable solution for modern FaaS deployments,
offering a secure and scalable platform for both cloud and edge
environments.

CCS Concepts
• Distributed computing methodologies; • Concurrent com-
puting methodologies; • Parallel computing methodologies;

Keywords
Edge Computing, FaaS, Event-Driven, Cloud Computing, Serverless
Computing
ACM Reference Format:
Jaden Jinu Lee, Judah J. Nava, and Hanku Lee. 2024. ComFaaS: A Dynamic
Approach to Edge and Cloud Computing with Function-as-a-Service. In
2024 the 9th International Conference on Cloud Computing and Internet of

∗Judah Nava (judah.nava@go.minnesota.edu) and Hanku Lee (hanku.lee@mn-
state.edu) are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1716-1/24/11
https://doi.org/10.1145/3704304.3704312

Things (CCIOT) (CCIOT 2024), November 01–03, 2024, HaNoi, Vietnam. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3704304.3704312

1 Introduction
The evolution of cloud and edge computing has significantly im-
pacted the way data-intensive applications are developed and de-
ployed. Function-as-a-Service (FaaS) [1] has emerged as a core
component of this shift, offering a serverless computing model
that enables functions to execute in response to specific events.
With FaaS, developers benefit from scalability, high availability,
and streamlined infrastructure management, allowing them to fo-
cus on application logic while resources are dynamically allocated
based on demand.

Cloud computing has long been the dominant platform for FaaS,
providing centralized resources, scalability, and simplified deploy-
ment through services like AWS Lambda [2] and Google Cloud
Functions. However, this centralization introduces latency chal-
lenges as data often must travel considerable distances from edge
devices to remote cloud data centers, limiting the responsiveness
of real-time applications.

Edge computing [3] tackles these limitations by moving com-
putation closer to the data source. By processing data locally at
the network edge, edge computing reduces latency and improves
real-time performance. This is particularly valuable for applications
in domains such as the Internet of Things (IoT), smart cities, and
autonomous systems, where immediate data processing is essential
for effective operations.

As IoT devices generate increasing volumes of data, the con-
straints of cloud-based FaaS become more apparent, especially in
latency-sensitive use cases. Industries like construction, which
require real-time data analysis, demonstrate the need for localized
edge solutions. To address this, we developed ComFaaS—a system
that evaluates and compares FaaS implementations on both cloud
and edge infrastructures.

The latest version of ComFaaS introduces several significant im-
provements over previous iterations [4, 5], enhancing its flexibility,
versatility, security, and ease of use. The system has undergone a
complete reimplementation, transitioning to a dynamic architec-
ture that allows FaaS programs to be added and executed at runtime,
without modifying the core system. This upgrade simplifies the
integration of new features and boosts scalability. Additionally,
ComFaaS now supports Python virtual environments, which isolate
Python instances and dependencies, preventing conflicts between
different FaaS applications. This isolation ensures that multiple
applications can run concurrently without interference, addressing

53

https://orcid.org/0009-0001-5365-840X
https://orcid.org/0009-0005-4464-9260
https://orcid.org/0009-0001-4126-3638
https://doi.org/10.1145/3704304.3704312
https://doi.org/10.1145/3704304.3704312
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704304.3704312&domain=pdf&date_stamp=2025-01-22

CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam Jaden Lee et al.

both version control and security concerns. These enhancements
make ComFaaS a more versatile, scalable, and secure platform for
deploying FaaS in both cloud and edge environments.

This paper marks the official release of ComFaaS version 1.0.0,
a significant achievement in the integration of edge computing
with Function-as-a-Service (FaaS). This release introduces essential
bug fixes, improved stability, and optimized performance, making
ComFaaS a more reliable and efficient solution for deployment in
production environments. With this version, ComFaaS becomes a
robust, scalable system designed for seamless use in real-world edge
computing scenarios. The package is available for download on
the Parallel Solvit website (https://parallelsolvit.com/research-and-
publications/) [6], with an alternative option provided on GitHub
site (https://github.com/judahn02/ComFaaS) [7].

This paper evaluates the effectiveness of cloud and edge comput-
ing for FaaS applications, offering guidance on when to leverage
each platform. The remainder of the paper is structured as follows:
Section 2 explores related work, Section 3 details the ComFaaS
architecture and setup, Section 4 presents benchmark results and
analysis, and Section 5 concludes with a summary of findings.

2 Related Work
2.1 Status of Serverless Computing and

Function-as-a-Service(FaaS) in Industry and
Research

The Workshop on Serverless Computing (WoSC 2017) played a
pivotal role in shaping the understanding of serverless computing
during that period. Fox’s report [8] not only provided a compre-
hensive overview of the state of serverless technologies at the time
but also introduced a clear framework for key concepts such as
Function-as-a-Service (FaaS), edge computing, and event-driven
computing. By thoroughly detailing these concepts, the workshop
offered valuable insights into how these technologies were evolving
and their potential applications inmodern computing environments.
For the development of this project, the WoSC report was an in-
dispensable reference, helping to inform decisions and guiding the
technical approach. Its relevance to serverless computing made it a
foundational resource that contributed significantly to the direction
and structure of the work undertaken.

2.2 FaaS execution models for edge applications
The study of FaaS execution models for edge applications [5] em-
phasizes the importance of utilizing advanced implementations
of FaaS services to ensure that the research remains relevant and
impactful for the reader. The work presented in [9] offers valu-
able insights into multi-edge environments, demonstrating how
edge nodes can communicate and efficiently distribute and manage
functions. In particular, the paper explores three specific models—
PureFaaS, StateProp, and StateLocal—that provide distinct methods
for implementing FaaS services across multiple edge nodes. While
these models offer significant contributions, our research shifts
focus to investigating the interaction between cloud and edge envi-
ronments over varying physical distances. We specifically analyze

how these spatial factors influence performance from the perspec-
tive of edge users, adding a unique dimension to the ongoing study
of FaaS in edge computing.

2.3 Balancing local vs. remote state allocation
for micro-services in the cloud–edge
continuum

The research presented in [10] centers on balancing local versus
remote state allocation for microservices within the cloud-edge con-
tinuum, specifically focusing on the implementation of Platform-
as-a-Service (PaaS) and Function-as-a-Service (FaaS) in edge com-
puting environments. Given the limited computational resources
at the edge, proper management is essential to avoid congestion.
This study examines the distinct characteristics of processes in both
PaaS and FaaS models, highlighting their behaviors in edge com-
puting scenarios. Additionally, the paper explores the flexibility
of dynamically switching applications between platforms during
runtime. The findings conclude by identifying two key parameters
that optimize the provisioning of PaaS and FaaS applications, with
careful consideration of cost efficiency.

2.4 P2PFaaS: A framework for FaaS peer-to-peer
scheduling and load balancing in Fog and
Edge computing

This research [11] introduces a software solution aimed at enabling
fully decentralized scheduling and load balancing in Fog and Edge
environments. This innovative framework reduces latency for end
users by allowing edge networks to function more independently,
minimizing the reliance on centralized control. As a result, FaaS
services can be delivered more efficiently, especially in latency-
sensitive applications. The insights from this research are highly
relevant to our project, as it provides a practical approach to preserv-
ing the cloud-edge relationship while incorporating redundancy
mechanisms to enhance system resilience. By adopting peer-to-
peer strategies inspired by P2PFaaS, edge networks can not only
improve their ability to balance workloads autonomously but also
boost their capacity for self-support. This decentralized model is
a significant step forward in enhancing the efficiency, scalability,
and fault tolerance of edge computing systems, which is critical for
managing the growing demands on these infrastructures.

2.5 Distributed Deep Learning Model with Edge
Computing

This paper [12] investigates the use of Edge Artificial Intelligence
(EAI) in video surveillance (VS) systems to tackle issues such as
excessive network communication overhead. The authors intro-
duce a Distributed Intelligent Video Surveillance (DIVS) system
that utilizes a multi-layer edge computing architecture along with
a distributed deep learning model. Similar to ComFaaS Distributed,
both systems harness the power of edge computing and parallel
processing. However, their focus areas differ: while ComFaaS is
primarily concerned with enhancing efficiency in FaaS applications,
the DIVS system prioritizes reducing communication overhead,
enabling low-latency analysis, and addressing challenges related
to uneven connections and varying computational capacities. Key

54

https://parallelsolvit.com/research-and-publications/
https://parallelsolvit.com/research-and-publications/
https://github.com/judahn02/ComFaaS

ComFaaS: A Dynamic Approach to Edge and Cloud Computing with Function-as-a-Service CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam

contributions of the DIVS system include developing an edge com-
puting architecture, implementing parallel processing at both the
task and model levels, introducing a synchronization method for up-
dating model parameters, and proposing a dynamic data migration
strategy to improve workload balancing across the network.

2.6 EDGELESS Project: On the Road to
Serverless Edge AI

The EDGELESS project [13, 14] and ComFaaS both focus on server-
less computing at the edge, but they take different approaches in
their goals and implementations. EDGELESS prioritizes optimizing
resource efficiency across a variety of computing environments,
from resource-limited edge devices to cloud platforms. By leverag-
ing AI andmachine learning, the project automates deployment and
configuration, aiming to build a horizontally scalable solution that
fully utilizes heterogeneous edge resources while seamlessly inte-
grating with the cloud. With an emphasis on sustainability, EDGE-
LESS dynamically adjusts configurations to allocate resources for
performance-tolerant applications, ensuring efficient use of avail-
able capacity. This collaborative effort, led by Worldline (Spain)
and involving 12 partners from six European countries, spans 36
months. Notably, EDGELESS focuses on applying the serverless
paradigm across the entire edge-cloud continuum, enabling effec-
tive horizontal pooling of resources across both edge nodes and
cloud infrastructures.

2.7 mpiPython
mpiPython [15–17] is a Python module designed to enable parallel
computing by integrating the Message Passing Interface (MPI) stan-
dard into Python programs. Officially available as a pip package,
it acts as a lightweight wrapper around MPI functions written in
C, built on the MPICH implementation of MPI. The architecture
of mpiPython is structured in multiple layers, ensuring smooth
interoperability between Python and MPI. Its API is designed with
simplicity in mind, striking an ideal balance between functionality
and ease of use. Unlike more complex libraries such as mpi4py,
which can involve a steep learning curve and extensive boilerplate
code, mpiPython streamlines the process by minimizing the need
for explicit datatype declarations. This allows developers to concen-
trate on building efficient, maintainable parallel code without be-
coming entangled in MPI complexities. Additionally, mpiPython’s
installation process is extremely straightforward; with a single
pip command, users can install the library effortlessly, bypassing
the challenges of complex builds or dependencies. This simplicity
makes high-performance parallel computing accessible to develop-
ers of all experience levels, aligning well with ComFaaS’s goals of
usability and efficiency.

3 THE COMFAAS
3.1 Motivation
In recent years, there has been a growing interest in exploring
the potential of edge computing, particularly in the context of
Function-as-a-Service (FaaS) applications. The research commu-
nity has recognized that edge computing offers a powerful para-
digm for optimizing flexible and scalable FaaS implementations

that can significantly reduce latency and improve performance in
time-sensitive applications [18].

The primary challenge in traditional cloud-based FaaS deploy-
ments stems from the inherent distance between data sources and
centralized cloud data centers. In regions where cloud infrastruc-
ture is limited or geographically distant—such as the Midwest of
the United States—latency and data transfer uncertainty become
pressing concerns. For example, AWS’s cloud availability zones are
concentrated on the coasts, requiring data from users in places like
Minnesota and North Dakota to travel substantial distances to reach
data centers in Oregon or Northern Virginia. This leads to potential
delays in processing and introduces uncertainty in time-sensitive
data transfers, which can negatively impact the performance of
FaaS applications that rely on quick, efficient computations.

Edge computing addresses this issue by bringing computation
closer to the data source, minimizing the need for long-distance
data transfers. This shift enables faster data processing and decision-
making, especially for applications that require fast responses. In
this context, ComFaaS was developed to support both cloud-based
and edge-based FaaS deployments, offering a detailed comparison
of their efficiencies in various scenarios.

The key distinction between ComFaaS and traditional cloud sys-
tems, as shown in Figure 1, lies in the proximity and distribution of
data processing. While traditional cloud computing offers signifi-
cant computational power, scalability, and centralized management,
it often requires data to be transmitted over networks to remote
data centers, leading to higher latency. In contrast, ComFaaS lever-
ages edge computing to process data locally, near the source, which
significantly reduces network latency and optimizes bandwidth
usage. This localized processing allows for streamlined decision-
making and rapid responses to local events, which are crucial in
applications such as healthcare monitoring, autonomous vehicles,
and IoT-based systems.

By evaluating and comparing both cloud and edge computing
for FaaS implementations, this research seeks to provide insights
into the respective strengths and limitations of each paradigm.
The ultimate goal is to highlight the potential of edge computing
to complement traditional cloud services, particularly in regions
where latency and data transfer challenges are more pronounced.
ComFaaS aims to offer a comprehensive analysis of how these
two computing models perform in real-world applications, helping
inform future decisions about the optimal deployment strategies
for FaaS applications across various domains.

3.2 The ComFaaS Architecture
We present a comparative analysis of edge computing integrated
with Function-as-a-Service (FaaS) through a system called Com-
FaaS. In the ComFaaS architecture, three key components work
together: the Internet of Things (IoT) component, the edge com-
ponent, and the cloud component. These elements collaborate to
address the unique challenges of processing large volumes of data
in event-driven cloud environments, utilizing FaaS for efficient task
execution.

The IoT component consists of a network of interconnected
physical devices and sensors positioned at the outermost layer of
the network. These devices collect data from their surroundings

55

CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam Jaden Lee et al.

Figure 1: ComFaaS vs Traditional Cloud

in real-time, generating substantial volumes of information. IoT
devices, including sensors, actuators, wearables, and other smart
technologies, serve as the entry point into the edge computing
ecosystem, transmitting data to the edge component for further
processing.

The edge component acts as a bridge between IoT devices and
cloud infrastructures. Typically consisting of edge servers or gate-
ways, it is deployed close to the IoT devices, often at the network
edge or on-site. The edge component is responsible for essential
tasks such as data filtering, preprocessing, and local analysis. By
processing data closer to its source, the edge component minimizes
latency and optimizes bandwidth usage. It also enables real-time
decision-making, allowing immediate responses to triggers without
depending on cloud processing. This proximity and responsiveness
make the edge component a natural fit for running FaaS services,
providing users with faster results and reducing network conges-
tion.

The cloud component represents centralized cloud infrastruc-
ture housed in remote data centers. This component is tasked with
complex data processing, long-term storage, backups, advanced
analytics, and other data-heavy operations. It provides scalability,
global access, and extensive computing resources, supporting ap-
plications that require significant computational power. The cloud
component also enables centralized management, data sharing, and
collaboration across geographically distributed edge devices [19].

Together, the IoT, edge, and cloud components form a distributed
architecture that facilitates efficient and scalable data processing
in IoT environments. The IoT component gathers data from the
physical world, the edge component processes and analyzes data
locally for quick decision-making, and the cloud component handles
more complex, resource-intensive tasks. This layered approach
reduces network latency and enhances the overall performance and
responsiveness of IoT systems.

ComFaaS is designed to automate the scheduling of event-driven
FaaS processes and streamline data transfers between edge devices

and the cloud, eliminating the need for manual data management in
the cloud. The system empowers the edge component with greater
control and flexibility, enabling it to execute FaaS services and
respond to real-time edge triggers effectively.

As a comprehensive framework that includes both cloud and
edge components, ComFaaS ensures seamless interaction between
the two. The cloud manages system tests, ensuring compatibility
across multiple operating systems, while efficient data management
ensures smooth backups of edge device data to the cloud without
compromising FaaS performance. To reduce latency, ComFaaS em-
ploys a dedicated Application Programming Interface (API) that
streamlines communication between the cloud and edge compo-
nents, optimizing data transfer and coordination. Through this
integration, ComFaaS significantly enhances the performance of
FaaS in cloud-edge environments, making a valuable contribution
to the advancement of serverless and edge computing systems. The
architecture of the ComFaaS system is illustrated in Figure 1.

3.3 The Implementation
While designed to leverage the potential of edge computing for
Function-as-a-Service (FaaS) applications across multiple program-
ming languages, ComFaaS is itself fully implemented in Java. In
previous versions, the Java classes for the cloud and edge compo-
nents followed a server-client model, primarily because much of
the testing was initiated by the edge classes. The core operations of
ComFaaS housed the communication protocols and APIs required
to run Java, Python, C, and various MPI-based programs (Java
+ MPI, Python + MPI, and C + MPI), either sequentially or with
MPICH and OpenMPI support. However, this setup was rudimen-
tary, heavily dependent on interactions with the bash shell, and
lacked flexibility.

In the latest version of ComFaaS, the implementation has been re-
structured to improve flexibility, scalability, and support for future
enhancements. The system is now divided into a greater number of

56

ComFaaS: A Dynamic Approach to Edge and Cloud Computing with Function-as-a-Service CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam

Figure 2: The ComFaaS System Architecture

Java classes, each with a specific and focused responsibility. Dedi-
cated classes handle the execution of different types of programs,
paving the way for easier expansion as new languages and frame-
works are added. Additionally, terminal interactions have been
streamlined to align with standard bash practices, and shell scripts
have been introduced to simplify the initial setup of ComFaaS.These
changes make ComFaaS more modular and maintainable, ensur-
ing it can continue to evolve and meet the demands of a growing
ecosystem of FaaS applications.

3.4 New Features
As part of the official release of ComFaaS, several critical improve-
ments were made to enhance its flexibility, scalability, security, and
ease of use, particularly in its support for Python virtual environ-
ments. A Python virtual environment is an isolated instance of
Python with its own interpreter and package dependencies. This
isolation is achieved by creating a separate Python instance with a
dedicated filesystem, ensuring that each environment stores its own
copies of the necessary dependencies for a given application. This
is especially crucial for Python-based FaaS applications on Com-
FaaS, as it prevents conflicts between dependencies and enhances
security by keeping environments separate from each other.

For example, if Program A requires mpiPython 1.0.14 and Pro-
gram B requires mpiPython 2.0.1, without virtual environments,
only one program could run at a time, with the other needing to
wait until mpiPython is reconfigured to the appropriate version.
Virtual environments solve this problem by allowing both programs
to run concurrently without interference. Moreover, this isolation
also addresses security concerns.

Modern Linux distributions restrict global pip installations to
avoid system conflicts and enhance security. The recommended
solution is to use Python virtual environments (venv), which al-
low local package management in isolated environments without
needing admin privileges. Unlike global installations, which risk
version conflicts and security vulnerabilities, virtual environments

provide developers with full control over dependencies, ensuring
consistent, conflict-free project setups.

This update has also streamlined the testing process. Previously,
FaaS applications needed to be hardcoded into ComFaaS, but now
they can be added and executed dynamically from the Edge without
modifying the core system. This new capability allows for greater
flexibility and scalability, as FaaS applications can be installed and
run on demand during runtime. It simplifies the integration of new
features as well as updates without requiring a complete system
recompilation, enabling users to maintain, customize, and adapt
ComFaaS more efficiently to various tasks and/or environments.
These enhancements make ComFaaS a more versatile, scalable, and
secure platform for edge computing and FaaS deployments.

4 Benchmark
4.1 Hardware Setup
The edge component used in this research is an Acer Aspire A315-
41, featuring 8GB of RAM and powered by an AMD Ryzen 5 2500U
quad-core processor with integrated Vega 8 graphics. It operates
with network speeds below 100 Mbps for both download and up-
load, making it an ideal candidate for evaluating edge-based com-
putations under typical commercial internet conditions. Running
Ubuntu 22.04, this device is equipped with OpenJDK 21, Python
3.10, and GCC 11, providing a flexible environment for developing
and testing Java, Python, C/C++, and mpiPython workloads. This
configuration allows us to assess edge computing performance in
real-world scenarios where limited resources and bandwidth are
key factors.

The cloud component used in this research is a Dell PowerEdge
710, outfitted with dual Intel Xeon X5570 quad-core processors and
32GB of RAM. Its network connection supports download speeds
below 800 Mbps and upload speeds under 300 Mbps, representing a
higher-end cloud environment. The cloud runs a Debian 12 system
containerized via LXC, providing an isolated, controlled testing
environment. With OpenJDK 21, Python 3.11, and GCC 12 installed,

57

CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam Jaden Lee et al.

Table 1: mpiPython Pi Reduce algorithm with 1MB data transfer

Process 2 4 8 16

Chicago, IL 37.448 26.257 20.769 20.149
L.A., CA 27.469 16.278 10.79 10.17
New York, NY 36.926 25.735 20.247 19.627
Miami, FL 33.782 22.591 17.103 16.483
Edge 24.454 14.836 N/A N/A

Table 2: mpiPython Pi Reduce algorithm with 500MB data transfer

Process 2 4 8 16

Chicago, IL 65.094 53.903 48.415 47.795
L.A., CA 89.043 77.852 72.364 71.744
New York, NY 79.717 68.526 63.038 62.418
Miami, FL 70.852 59.661 54.173 53.553
Edge 47.792 38.174 N/A N/A

the cloud offers a consistent platform for software development
and testing of Java, Python, C/C++, and mpiPython workloads.

4.2 The Benchmark Test
To thoroughly test ComFaaS, we need to evaluate a scenario where
IoT devices communicate with both an edge component and cloud
components across four different locations. The IoT devices will
be in Moorhead, MN, and the edge component in Fargo, ND. The
cloud components are in Chicago, IL (600+ miles from Fargo); New
York, NY (1,400+ miles from Fargo); Los Angeles, CA (1,700+ miles
from Fargo); and Miami, FL (2,000+ miles from Fargo). The test uti-
lizes a Python collective communication library called mpiPython
to enable parallel execution on both the Edge and the Cloud. It
is important to note that the Edge is limited to a maximum of 4
processes per job, while the Cloud can scale up to 16 processes for a
single job, providing greater capacity for resource-intensive tasks.

The test used in the four different scenarios involves a Mon-
tecarlo Pi-based computational algorithm that processes data to
simulate a typical FaaS application performing operations on a
dataset. The benchmarks focus on evaluating both the stability
of the connection across varying distances and the efficiency of
running a FaaS application on cloud infrastructure compared to
running it on the edge.

4.3 Benchmark Analysis
Table 1 and 2 present the performance of the Edge and Cloud com-
puting across different cloud locations. Overall, the edge com-
ponent outperforms the cloud component, even when the cloud
component utilizes more processes for computation. In parallel
computing, more processes generally result in faster task com-
pletion, and this trend is reflected in both tables. However, the
performance of the cloud component is hindered due to the need
to transfer data to the cloud for computation, which offsets the
advantage of having more processes. A unique exception to this
is seen in the first table, where the cloud in Los Angeles outper-
formed the edge. This anomaly could be attributed to factors like

better network infrastructure, reduced congestion, or more efficient
resource allocation at the Los Angeles cloud data center, highlight-
ing the variability that can occur in cloud performance based on
location-specific conditions.

In Table 1, the Monte Carlo Pi-based algorithm involves a 1 MB
data transfer. In this benchmark, the 4-node edge outperformed
the 4-node cloud component in Chicago, IL by 43%. Additionally,
when comparing the 4-node edge component to the 16-node cloud,
the edge shows a 26% improvement. Table 2 represents the same
test program as Table 1, with a higher data transfer load of 500 MB.
The 4-node edge showed a 51% faster time compared to the 4-node
cloud component in Los Angeles, CA. Moreover, the 4-node edge
marked an improvement of 47% when compared to the 16-node
cloud.

The benchmark analysis presented in Tables 1 and 2 demon-
strates the significant advantages of edge computing over cloud-
based solutions, especially in the context of ComFaaS. Edge com-
puting consistently outperforms cloud alternatives, even when the
cloud uses more computational processes, as shown in both tables.
However, the exception in Los Angeles, CA (Table 1) illustrates
that while cloud computing can sometimes surpass edge perfor-
mance, the latency involved in transferring data to the cloud often
diminishes the benefits of its additional processing power.

Despite edge computing’s strengths, there are scenarios where
cloud computing is more effective, particularly when large-scale
computational power and extensive resources are needed. Com-
FaaS addresses this by incorporating dynamic load balancing, in-
telligently distributing workloads between edge and cloud envi-
ronments. This hybrid approach ensures that the most efficient
solution is chosen for each task, allowing edge and cloud computing
to complement each other. By leveraging the strengths of both sys-
tems, ComFaaS provides a flexible, reliable, and scalable platform
for FaaS applications, delivering optimal performance based on the
specific needs of each application.

58

ComFaaS: A Dynamic Approach to Edge and Cloud Computing with Function-as-a-Service CCIOT 2024, November 01–03, 2024, HaNoi, Vietnam

5 Conclusion
The fully functional release of ComFaaS is now available, offer-
ing substantial improvements in flexibility, scalability, security,
and ease of use, with a strong focus on supporting Python vir-
tual environments. These environments allow isolated instances
of Python, preventing dependency conflicts and improving secu-
rity for Python-based FaaS applications. By enabling concurrent
execution of programs with different dependencies, virtual environ-
ments solve issues that previously required manual reconfiguration.
Additionally, the update introduces dynamic deployment of FaaS
applications from the Edge without altering the core system, stream-
lining updates and expanding scalability. These improvements
make ComFaaS a more adaptable, efficient, and secure platform for
edge computing and FaaS solutions.

The benchmark analysis emphasizes the clear advantages of
edge computing over cloud-based solutions, particularly in the con-
text of ComFaaS. Edge computing consistently delivers superior
performance, even when the cloud utilizes more computational
resources. However, there are situations where cloud computing
may offer better results, especially when large-scale processing
power or significant resources are needed. ComFaaS addresses this
by implementing dynamic load balancing, intelligently distribut-
ing workloads between edge and cloud environments. This hybrid
approach ensures that each task benefits from the most efficient
computing option available, with edge and cloud systems comple-
menting one another. As a result, ComFaaS provides a scalable and
reliable platform for FaaS applications, maximizing performance
based on the specific demands of each application.

This research sheds light on the strengths and limitations of
both cloud and edge computing in FaaS applications in the context
of ComFaaS. Edge computing proves highly effective in scenarios
where low latency, real-time processing, and efficient bandwidth
usage are essential. In contrast, cloud computing excels in cases
that require vast scalability, global access, and flexible resource
allocation, making it the preferred choice for tasks that demand
large-scale infrastructure.

References
[1] FaaS: https://www.ibm.com/topics/faas

[2] Amazon, “AWS Lambda – Serverless Compute - Amazon Web Services,” Amazon
Web Services, Inc., 2019. https://aws.amazon.com/lambda/ (accessed Jul. 15, 2023).

[3] Edge Computing: https://www.cloudflare.com/learning/serverless/glossary/
what-is-edge-computing/

[4] Jaden Jinu Lee, Judah J. Nava, and Hanku Lee. 2023. ComFaaS: Comparative
Analysis of Edge Computing with Function-as-a-Service. In Proceedings of the
2023 8th International Conference on Cloud Computing and Internet of Things
(CCIOT ’23). Association for Computing Machinery, New York, NY, USA, 84–90.
https://doi.org/10.1145/3627345.3627358

[5] J. J. Lee, J. Nava and H. Lee, ”ComFaaS Distributed: Edge Computing with
Function-as-a-Service in Parallel Cloud Environments,” 2024 7th International
Conference on Information and Computer Technologies (ICICT), Honolulu, HI,
USA, 2024, pp. 133-138, doi: 10.1109/ICICT62343.2024.00027.

[6] The Parallel Solvit website: https://parallelsolvit.com/research-and-publications/
[7] The GitHub site for ComFaaS: https://github.com/judahn02/ComFaaS
[8] G. C. Fox, Vatche Ishakian, V. Muthusamy, and A. Slominski, “Status of Serverless

Computing and Function-as-a-Service(FaaS) in Industry and Research,” Aug. 2017,
doi: https://doi.org/10.13140/rg.2.2.15007.87206.

[9] C. Cicconetti, M. Conti, and A. Passarella, “FaaS execution models for edge
applications,” Pervasive and Mobile Computing, vol. 86, p. 101689, Oct. 2022, doi:
https://doi.org/10.1016/j.pmcj.2022.101689.

[10] C. Puliafito, C. Cicconetti, M. Conti, Enzo Mingozzi, and A. Passarella, “Balancing
local vs. remote state allocation for micro-services in the cloud–edge continuum,”
Pervasive and Mobile Computing, vol. 93, p. 101808, 2023, doi: https://doi.org/10.
1016/j.pmcj.2023.101808.

[11] Gabriele Proietti Mattia and R. Beraldi, “P2PFaaS: A framework for FaaS peer-to-
peer scheduling and load balancing in Fog and Edge computing,” SoftwareX, vol.
21, p. 101290, 2023, doi: https://doi.org/10.1016/j.softx.2022.101290

[12] J. Chen, K. Li, Q. Deng, K. Li and P. S. Yu, ”Distributed Deep LearningModel for In-
telligent Video Surveillance Systems with Edge Computing,” in IEEE Transactions
on Industrial Informatics, doi: 10.1109/TII.2019.2909473.

[13] Claudio Cicconetti, Emanuele Carlini, and Antonio Paradell. 2023. EDGELESS
Project: On the Road to Serverless Edge AI. In Proceedings of the 3rd Workshop
on Flexible Resource and Application Management on the Edge (FRAME ’23).
Association for Computing Machinery, New York, NY, USA, 41–43. https://doi.
org/10.1145/3589010.3594890

[14] https://edgeless-project.eu/
[15] H. Park, J. DeNio, J. Choi and H. Lee, ”mpiPython: A Robust Python MPI Binding,”

2020 3rd International Conference on Information and Computer Technologies
(ICICT), San Jose, CA, USA, 2020, pp. 96-101, doi: 10.1109/ICICT50521.2020.00023.

[16] J. Nava and H. Lee, ”mpiPython: Prospects for Node Performance,” 2023 6th
International Conference on Information and Computer Technologies (ICICT),
Raleigh, NC, USA, 2023, pp. 182-187, doi: 10.1109/ICICT58900.2023.00038.

[17] J. Nava, J. J. Lee and H. Lee, ”mpiPython: Extensions of Collective
Operations,” 2024 7th International Conference on Information and Com-
puter Technologies (ICICT), Honolulu, HI, USA, 2024, pp. 468-473, doi:
10.1109/ICICT62343.2024.00082.

[18] C. Cicconetti, M. Conti, and A. Passarella, “FaaS execution models for edge
applications,” Pervasive and Mobile Computing, vol. 86, p. 101689, Oct. 2022, doi:
https://doi.org/10.1016/j.pmcj.2022.101689.

[19] Y. Khalidi, “Microsoft partners with the industry to unlock new 5G scenar-
ios with Azure Edge Zones | Azure Blog | Microsoft Azure,” Azure Blog, Mar.
31, 2020. https://azure.microsoft.com/en-us/blog/microsoft-partners-with-the-
industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/ (accessed Jul. 15,
2023).

59

https://www.ibm.com/topics/faas
https://aws.amazon.com/lambda/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing/
https://doi.org/10.1145/3627345.3627358
https://parallelsolvit.com/research-and-publications/
https://github.com/judahn02/ComFaaS
https://doi.org/10.13140/rg.2.2.15007.87206
https://doi.org/10.1016/j.pmcj.2022.101689
https://doi.org/10.1016/j.pmcj.2023.101808
https://doi.org/10.1016/j.pmcj.2023.101808
https://doi.org/10.1016/j.softx.2022.101290
https://doi.org/10.1145/3589010.3594890
https://doi.org/10.1145/3589010.3594890
https://edgeless-project.eu/
https://doi.org/10.1016/j.pmcj.2022.101689
https://azure.microsoft.com/en-us/blog/microsoft-partners-with-the-industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/
https://azure.microsoft.com/en-us/blog/microsoft-partners-with-the-industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and Research
	2.2 FaaS execution models for edge applications
	2.3 Balancing local vs. remote state allocation for micro-services in the cloud–edge continuum
	2.4 P2PFaaS: A framework for FaaS peer-to-peer scheduling and load balancing in Fog and Edge computing
	2.5 Distributed Deep Learning Model with Edge Computing
	2.6 EDGELESS Project: On the Road to Serverless Edge AI
	2.7 mpiPython

	3 THE COMFAAS
	3.1 Motivation
	3.2 The ComFaaS Architecture
	3.3 The Implementation
	3.4 New Features

	4 Benchmark
	4.1 Hardware Setup
	4.2 The Benchmark Test
	4.3 Benchmark Analysis

	5 Conclusion
	References

